

Basic & Applied Instruction

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

Manual number	JY997D34701
Manual revision	L
Date	9/2013

Foreword

This manual contains text, diagrams and explanations which will guide the reader through the safe and correct installation, use, and operation of the FX Series programmable controller function for structured programs. It should be read and understood before attempting to install or use the unit.

Store this manual in a safe place so that you can take it out and read it whenever necessary. Always forward it to the end user.

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

© 2009 MITSUBISHI ELECTRIC CORPORATION

Outline Precautions

- This manual provides information for the use of the FX Series Programmable Controllers. The manual has been written to be used by trained and competent personnel. The definition of such a person or persons is as follows;
- Any engineer who is responsible for the planning, design and construction of automatic equipment using the product associated with this manual should be of a competent nature, trained and qualified to the local and national standards required to fulfill that role. These engineers should be fully aware of all aspects of safety with aspects regarding to automated equipment.
- 2) Any commissioning or maintenance engineer must be of a competent nature, trained and qualified to the local and national standards required to fulfill the job. These engineers should also be trained in the use and maintenance of the completed product. This includes being familiar with all associated manuals and documentation for the product. All maintenance should be carried out in accordance with established safety practices.
- 3) All operators of the completed equipment should be trained to use that product in a safe and coordinated manner in compliance with established safety practices. The operators should also be familiar with documentation that is connected with the actual operation of the completed equipment.
 - **Note:** the term 'completed equipment' refers to a third party constructed device that contains or uses the product associated with this manual.
- This product has been manufactured as a general-purpose part for general industries, and has not been designed or manufactured to be incorporated in a device or system used in purposes related to human life.
- Before using the product for special purposes such as nuclear power, electric power, aerospace, medicine
 or passenger movement vehicles, consult with Mitsubishi Electric.
- This product has been manufactured under strict quality control. However when installing the product where major accidents or losses could occur if the product fails, install appropriate backup or failsafe functions into the system.
- When combining this product with other products, please confirm the standards and codes of regulation to which the user should follow. Moreover, please confirm the compatibility of this product with the system, machines, and apparatuses to be used.
- If there is doubt at any stage during installation of the product, always consult a professional electrical
 engineer who is qualified and trained in the local and national standards. If there is doubt about the
 operation or use, please consult the nearest Mitsubishi Electric representative.
- Since the examples within this manual, technical bulletin, catalog, etc. are used as reference; please use it after confirming the function and safety of the equipment and system. Mitsubishi Electric will not accept responsibility for actual use of the product based on these illustrative examples.
- The content, specification etc. of this manual may be changed for improvement without notice.
- The information in this manual has been carefully checked and is believed to be accurate; however, if you notice any doubtful point, error, etc., please contact the nearest Mitsubishi Electric representative.

Registration

- Microsoft[®], Windows[®] and Excel[®] are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
- · CompactFlash is a trademark of SanDisk Corporation in the United States and other countries.
- Ethernet is a trademark of Xerox Corporation.
- MODBUS[®] is a registered trademark of Schneider Electric SA.
- The company name and the product name to be described in this manual are the registered trademarks or trademarks of each company.

Table of Contents

Positioning of This Manual	11
Related Manuals	14
Generic Names and Abbreviations Used in Manuals	17

1. Outline	18
 1.1 Outline of Structured Programs and Programming languages	18 18 19 20 20 21 22 22 25 25 26
2. Instruction List	28
 2.1 Basic Instructions 2.2 Step Ladder Instructions 2.3 Applied Instructions 	28 29 29
3. Configuration of Instruction	42
 3.1 Expression and Operation Form of Sequence Instructions	42 44 47 48
4. How to Read Explanation of Instructions	50

5.	Basic Instruction	52
	5.1 LD, LDI, AND, ANI, OR, ORI	53
	5.2 LDP, LDF, ANDP, ANDF, ORP, ORF	57
	5.3 OUT (Excluding timers and counters)	62
	5.4 Operating Timer	65
	5.5 Operating Counters	69
	5.5.1 OUT_C, OUT_C_32	69
	5.6 AND(), OR()	71
	5.7 MPS, MRD, MPP	73
	5.8 INV	77
	5.9 MEP, MEF	79
	5.10 SET, RST	81
	5.11 PLS, PLF	
	5.12 MC, MCR	87

103

132

5.13	END) 1
5.14	NOP (for simple project only))1

6. Step Ladder Instructions

6.1. Step Ladder	
6.1.1 Outline	
6.1.2 Function and operation explanation	
6.1.3 Program examples	
6.2 STL	100
6.3 RET	101

7. Applied Instructions (Program Flow)

7.1	CJ / Conditional Jump	104
7.2	CALL / Call Subroutine	111
7.3	SRET / Subroutine Return	116
7.4	IRET / Interrupt Return	117
7.5	DI / Disable Interrupt	120
7.6	El / Enable Interrupt	121
7.7	FEND / Main Routine Program End	123
7.8	WDT / Watchdog Timer Refresh	125
7.9	FOR / Start a FOR/NEXT Loop	128
7.10) NEXT / End a FOR/NEXT Loop	129

8. Applied Instructions (Move and Compare)

8.1 CMP / Compare	. 133
8.2 ZCP / Zone Compare	. 136
8.3 MOV / Move	. 139
8.4 SMOV / Shift Move	. 143
8.5 CML / Complement	. 146
8.6 BMOV / Block Move	. 149
8.7 FMOV / Fill Move	. 154
8.8 XCH / Exchange	. 157
8.9 BCD / Conversion to Binary Coded Decimal	. 159
8.10 BIN / Conversion to Binary	. 163
···· · · · · · · · · · · · · · · · · ·	

9. Applied Instructions (Arithmetic and Logical Operation)

9.2 SUBP / Subtraction 171 9.3 MULP / Multiplication 174 9.4 DIVP / Division 178 9.5 INC / Increment 181
9.3 MULP / Multiplication 174 9.4 DIVP / Division 178 9.5 INC / Increment 181
9.4 DIVP / Division
9.5 INC / Increment 181
9.6 DEC / Decrement
9.7 WAND / Logical Word AND
9.8 WOR / Logical Word OR
9.9 WXOR / Logical Exclusive OR
9.10 NEG / Negation

Table of Contents

195

224

254

10. Applied Instructions (Rotation and Shift Operation)

10.1 ROR / Rotation Right 196	
10.2 ROL / Rotation Left	
10.3 RCR / Rotation Right with Carry 202	
10.4 RCL / Rotation Left with Carry 205	
10.5 SFTR / Bit Shift Right	
10.6 SFTL / Bit Shift Left	
10.7 WSFR / Word Shift Right	
10.8 WSFL / Word Shift Left	
10.9 SFWR / Shift Write [FIFO/FILO Control]219	1
10.10 SFRD / Shift Read [FIFO Control]	

11. Applied Instructions (Data Operation)

12. Applied Instructions (High Speed Processing)

12.1 REF / Refresh	. 255
12.1.1 What should be understood before using the REF instruction	258
12.2 REFF / Refresh and Filter Adjust	. 259
12.2.1 What should be understood before using REFF instruction	262
12.3 MTR / Input Matrix	. 263
12.3.1 Operation and cautions for MTR instruction	266
12.4 DHSCS, DHSCS_I / High Speed Counter Set, High Speed Interrupt Counter Set	. 267
12.4.1 Common cautions on using instructions for high speed counter	271
12.5 DHSCR / High Speed Counter Reset	. 275
12.6 DHSZ / High Speed Counter Zone Compare	. 279
12.6.1 Program in which comparison result is set to ON when power is turned ON [ZCP] instruction	283
12.6.2 Table high speed comparison mode (M8130)	285
12.6.3 Frequency control mode (DHSZ, DPLSY) (M8132)	289
12.7 SPD / Speed Detection	. 292
12.8 PLSY / Pulse Y Output	. 296
12.9 PWM / Pulse Width Modulation	. 303
12.10 PLSR / Acceleration/Deceleration Setup	. 306

13. Applied Instructions (Handy Instruction)

13.1 IST / Initial State	
13.2 SER / Search a Data Stack	
13.3 ABSD / Absolute Drum Sequencer	
13.4 INCD / Incremental Drum Sequencer	

389

418

13.5 TTMR / Teaching Timer	334
13.6 STMR / Special Timer	337
13.7 ALT / Alternate State	
13.8 RAMP / Ramp Variable Value	343
13.9 ROTC / Rotary Table Control	346
13.10 SORT / SORT Tabulated Data	

14. Applied Instructions (External FX I/O Device)

14.1 TKY / Ten Key Input35314.2 HKY / Hexadecimal Input35714.3 DSW / Digital Switch (Thumbwheel Input)36114.4 SEGD / Seven Segment Decoder36514.5 SEGL / Seven Segment With Latch36714.5.1 Selection procedure of 7-segment display unit37014.5.2 Selection procedure of parameter n by specification of 7-segment display37014.6 ARWS / Arrow Switch37214.7 ASC / ASCII Code Data Input37614.8 PR / Print (ASCII Code)37814.9 FROM / Read From A Special Function Block38114.9.1 Common terms of FROM/TO instruction (detail)38414.10 TO / Write To A Special Function Block386

15. Applied Instructions (External Device (optional device))

15.1RS / Serial Communication39015.2PRUN / Parallel Run (Octal Mode)39315.3ASCI / Hexadecimal to ASCII Conversion39515.4HEX / ASCII to Hexadecimal Conversion39915.5CCD / Check Code40315.6VRRD / Volume Read40615.7VRSC / Volume Scale40915.8RS2 / Serial Communication 241115.9PID / PID Control Loop414

16. Applied Instructions (External Device)

 16.1
 MNET / F-16NP/NT communication
 419

 16.2
 ANRD / Read from F2-6A
 421

 16.3
 ANWR / Write to F2-6A
 423

 16.4
 RMST / F2-32RM start
 424

 16.5
 RMWR / Write to F2-32RM
 425

 16.6
 RMRD / Read from F2-32RM
 427

 16.7
 RMMN / F2-32RM monitor
 429

 16.8
 BLK / Specify F2-30GM
 430

 16.9
 MCDE / F2-30GM code
 432

17. Applied Instructions (Data Transfer 2)

433

17.1 ZPUSH / Batch Store of Index Register	434
17.2 ZPOP / Batch POP of Index Register	437

18. Applied Instructions (Floating Point)

	1
18.1 DECMP / Floating Point Compare	441
18.2 DEZCP / Floating Point Zone Compare	443
18.3 DEMOV / Floating Point Move	
18.4 DESTR / Floating Point to Character String Conversion	
18.5 DEVAL / Character String to Floating Point Conversion	
18.6 DEBCD / Floating Point to Scientific Notation Conversion	
18.7 DEBIN / Scientific Notation to Floating Point Conversion	
18.8 DEADD / Floating Point Addition	
18.9 DESUB / Floating Point Subtraction	465
18.10 DEMUL / Floating Point Multiplication	
18.11 DEDIV / Floating Point Division	
18.12 DEXP / Floating Point Exponent	
18.13 DLOGE / Floating Point Natural Logarithm	
18.14 DLOG10 / Floating Point Common Logarithm	
18.15 DESQR / Floating Point Square Root	
18.16 DENEG / Floating Point Negation	
18.17 INT / Floating Point to Integer Conversion	
18.18 DSIN / Floating Point Sine	
18.19 DCOS / Floating Point Cosine	
18.20 DTAN / Floating Point Tangent	
18.21 DASIN / Floating Point Arc Sine	
18.22 DACOS / Floating Point Arc Cosine	
18.23 DATAN / Floating Point Arc Tangent	490
18.24 DRAD / Floating Point Degrees to Radians Conversion	
18.25 DDEG / Floating Point Radians to Degrees Conversion	

19. Applied Instructions (Data Operation 2)

19.1	WSUM / Sum of Word Data	197
19.2	WTOB / WORD to BYTE	500
19.3	BTOW / BYTE to WORD	503
19.4	UNI / 4-bit Linking of Word Data	506
19.5	DIS / 4-bit Grouping of Word Data	508
19.6	SWAP / Byte Swap	510
19.7	SORT2 / Sort Tabulated Data 2	512

20. Applied Instructions (Positioning Control)

20.1	DSZR / Dog Search Zero Return	518
20.2	DVIT / Interrupt Positioning	520
20.3	DTBL / Batch Data Positioning Mode	523
20.4	DABS / Absolute Current Value Read	525
20.5	ZRN / Zero Return	527
20.6	PLSV / Variable Speed Pulse Output	531
20.7	DRVI / Drive to Increment	534
20.8	DRVA / Drive to Absolute	537

496

517

, ٠, ٠, -,

21. Applied Instructions (Real Time Clock Control)

_		
21.1	TCMP / RTC Data Compare	541
21.2	TZCP / RTC Data Zone Compare	544
21.3	TADD / RTC Data Addition	547
21.4	TSUB / RTC Data Subtraction	549
21.5	HTOS / Hour to Second Conversion	551
21.6	STOH / Second to Hour Conversion	554
21.7	TRD / Read RTC data	557
21.8	TWR / Set RTC data	559
21.9	HOUR / Hour Meter	563

22. Applied Instructions (External Device)

22.1	GRY / Decimal to Gray Code Conversion	567
22.2	GBIN / Gray Code to Decimal Conversion	569
22.3	RD3A / Read form Dedicated Analog Block	571
22.4	WR3A / Write to Dedicated Analog Block	573

23. Applied Instructions (Extension Function)

23.1 EXTR_IN / External ROM function	576
23.2 EXTR_OUT / External ROM function	579

24. Applied Instructions (Others)

24.1	COMRD / Read Device Comment Data	584
24.2	RND / Random Number Generation	587
24.3	DUTY / Timing Pulse Generation	589
24.4	CRC / Cyclic Redundancy Check	592
24.5	DHCMOV / High Speed Counter Move	596

25. Applied Instructions (Block Data Operation)

25.1	BK+ / Block Data Addition6	01
25.2	BK- / Block Data Subtraction	05
25.3	BKCMP=, >, <, < >, <=, >= / Block Data Compare6	09

26. Applied Instructions (Character String Control)

26.1	STR / BIN to Character String Conversion	617
26.2	VAL / Character String to BIN Conversion	622
26.3	\$+ / Link Character Strings	628
26.4	LEN / Character String Length Detection	631
26.5	RIGHT / Extracting Character String Data from the Right	634
26.6	LEFT / Extracting Character String Data from the Left	637
26.7	MIDR / Random Selection of Character Strings	640
26.8	MIDW / Random Replacement of Character Strings	643
26.9	INSTR / Character string search	647
26.1	0 \$MOV / Character String Transfer	650

540

566

575

583

616

27. Applied Instructions (Data Operation 3)

27.1	FDEL / Deleting Data from Tables	654
27.2	FINS / Inserting Data to Tables	657
27.3	POP / Shift Last Data Read [FILO Control]	660
27.4	SFR / Bit Shift Right with Carry	664
27.5	SFL / Bit Shift Left with Carry	666

28. Applied Instructions (Data Comparison)

28.1	LD =, >, <, <>, <=, >= / Data Comparison	669
28.2	AND=, >, <, < >, <=, >= / Data Comparison	672
28.3	OR=, >, <, < >, <=, >= / Data Comparison	675

29. Applied Instructions (Data Table Operation)

29.1	LIMIT / Limit Control	679
29.2	BAND / Dead Band Control	683
29.3	ZONE / Zone Control	687
29.4	SCL / Scaling (Coordinate by Point Data)	691
29.5	DABIN / Decimal ASCII to BIN Conversion	695
29.6	BINDA / BIN to Decimal ASCII Conversion	698
29.7	SCL2 / Scaling 2 (Coordinate by X/Y Data)	702

30. Applied Instructions (External Device Communication)

30.1 IVCK / Inverter Status Check	
30.2 IVDR / Inverter Drive	
30.3 IVRD / Inverter Parameter Read	
30.4 IVWR / Inverter Parameter Write	
30.5 IVBWR / Inverter Parameter Block Write	
30.6 IVMC / Inverter Multi Command	
30.7 ADPRW / MODBUS Read/Write	
30.7.1 Command Code and Parameters	

31. Applied Instructions (Data Transfer 3)

31.1 RBFM / Divided BFM Read	729
31.1.1 Common items between RBFM instruction and WBFM instruction	731
31.2 WBFM / Divided BFM Write	735

32. Applied Instructions (High Speed Processing 2)

32.1 DHSCT / High Speed Counter Compare With Data Table

33. Applied Instructions (Extension File Register Control)

33.1 LOADR / Load From ER	. 744
33.2 SAVER / Save to ER	. 748
33.3 INITR / Initialize R and ER	. 757

Table of Contents

653

678

707

728

737

743

33.4	LOGR / Logging R and ER76	51
33.5	RWER / Rewrite to ER	35
33.6	INITER / Initialize ER	70

34. Applied Instructions (FX3U-CF-ADP)

34.1 FLCRT / File create • check	775
34.2 FLDEL / File delete • CF card format	779
34.3 FLWR / Data write	781
34.4 FLRD / Data read	785
34.5 FLCMD / FX3U-CF-ADP command	
34.6 FL STRD / FX3U-CF-ADP status read	

35. Interrupt Function and Pulse Catch Function

792

35.1 Outline	792	
35.2 Common items	793	
35.2.1 Interrupt function	793	
35.2.2 How to disable interrupt function and pulse catch function	794	
35.2.3 Related items	795	
35.2.4 Cautions on use (common)	796	
35.3 Input Interrupt (Interrupt Triggered by External Signal) [Without Delay Function]	798	
35.3.1 Input Interrupt (Interrupt Triggered by External Signal) [Without Delay Function]	798	
35.3.2 Examples of practical programs (programs to measure short pulse width)	802	
35.4 Input Interrupt (Interrupt by External Signal) [With Delay function]	804	
35.5 Timer Interrupt (Interrupt in Constant Cycle)	805	
35.5.1 Timer Interrupt (Interrupt in Constant Cycle)	805	
35.5.2 Example of practical program (timer interrupt program using instruction)	806	
35.6 Counter Interrupt - Interrupt Triggered by Counting Up of High Speed Counter	810	
35.7 Pulse Catch Function[M8170 to M8177]	811	
35.8 Pulse width/Pulse period measurement function [M8075 to M8083, D8074 to D8097]813		

Appendix A: Relationships between devices and addresses

Appendix B: Applied Instruction List [by Instruction Type / in Alphabetic Order]	820
Appendix B-1 Applied instructions [by instruction type]	820
Appendix B-2 Applied instructions [in alphabetical order]	827
Warranty	833
Revised History	834

Positioning of This Manual

This manual explains sequence instructions for structured programs provided by GX Works2. Refer to other manuals for devices, parameters and application functions. Refer to each corresponding manual for analog, communication, positioning control and special units and blocks.

1. When using FX3S/FX3G/FX3GC/FX3U/FX3UC PLCs

3. When using FXos/FXo/FXoN/FXU/FX2C PLCs

Related Manuals

This manual explains devices and parameters for structured programs provided by GX Works2.

Refer to other manuals for sequence instructions and applied functions.

This chapter introduces only reference manuals for this manual and manuals which describe the hardware information of PLC main units.

Manuals not introduced here may be required in some applications.

Refer to the manual of the used PLC main unit and manuals supplied together with used products. Contact the representative for acquiring required manuals.

Common among FX PLCs [structured]

Manual name	Manual number	Supplied with product or Additional Manual	Contents	Model name code
MELSEC-Q/L/F Structured Programming Manual (Fundamentals)	SH-080782	Additional Manual	Programming methods, specifications, functions, etc. required to create structured programs	13JW06
FXCPU Structured Programming Manual [Device & Common]	JY997D26001	Additional Manual	Devices, parameters, etc. provided in structured projects of GX Works2	09R925
FXCPU Structured Programming Manual [Basic & Applied Instruction]	JY997D34701	Additional Manual	Sequence instructions provided in structured projects of GX Works2	09R926
FXCPU Structured Programming Manual [Application Functions]	JY997D34801	Additional Manual	Application functions provided in structured projects of GX Works2	09R927

FX3S/FX3G/FX3GC/FX3U/FX3UC PLCs

Manual name	Manual number	Supplied with product or Additional Manual	Contents	Model name code
PLC main unit				
FX3U Series Hardware Manual	JY997D18801	Supplied with product	I/O specifications, wiring and installation of the PLC main unit FX ₃ U extracted from the FX ₃ U Series User's Manual - Hardware Edition. For detailed explanation, refer to the FX ₃ U Series User's Manual - Hardware Edition.	-
FX3U Series User's Manual- Hardware Edition	JY997D16501	Additional Manual	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX3U PLC main unit.	09R516
FX3UC (D, DS, DSS) Series Hardware Manual	JY997D28601	Supplied with product	I/O specifications, wiring and installation of the PLC main unit FX3UC (D, DS, DSS) extracted from the FX3UC Series User's Manual - Hardware Edition. For detailed explanation, refer to the FX3UC Series User's Manual - Hardware Edition.	-
FX3UC-32MT-LT-2 Hardware Manual	JY997D31601	Supplied with product	I/O specifications, wiring and installation of the PLC main unit FX3UC-32MT-LT-2 extracted from the FX3UC Series User's Manual - Hardware Edition. For detailed explanation, refer to the FX3UC Series User's Manual - Hardware Edition.	-
FX3UC Series User's Manual - Hardware Edition	JY997D28701	Additional Manual	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX3UC PLC main unit.	09R519
FX3G Series Hardware Manual	JY997D46001	Supplied with product	I/O specifications, wiring and installation of the PLC main unit FX3G extracted from the FX3G Series User's Manual - Hardware Edition. For detailed explanation, refer to the FX3G Series User's Manual - Hardware Edition.	-
FX3G Series User's Manual- Hardware Edition	JY997D31301	Additional Manual	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX3G PLC main unit.	09R521
FX3GC Series Hardware Manual	JY997D45201	Supplied with product	I/O specifications, wiring and installation of the PLC main unit FX3GC extracted from the FX3GC Series User's Manual - Hardware Edition. For detailed explanation, refer to the FX3GC Series User's Manual - Hardware Edition.	-
FX3GC Series User's Manual- Hardware Edition	JY997D45401	Additional Manual	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX3GC PLC main unit.	09R533

Manual name	Manual number	Supplied with product or Additional Manual	Contents	Model name code
PLC main unit				
FX3S Series Hardware Manual	JY997D48301	Supplied with product	I/O specifications, wiring and installation of the PLC main unit FX3s extracted from the FX3s Series User's Manual - Hardware Edition. For detailed explanation, refer to the FX3s Series User's Manual - Hardware Edition.	-
FX3s Series User's Manual- Hardware Edition	JY997D48601	Additional Manual	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX3s PLC main unit.	09R535
Programming				
FX3S/FX3G/FX3GC/FX3U/FX3UC User's Manual- Analog Control Edition	JY997D16701	Additional Manual	Details about the analog special function block (FX3U-4AD, FX3U-4DA, FX3UC-4AD) and analog special adapter (FX3U-****-ADP).	09R619
FX Series User's Manual -Data Communication Edition	JY997D16901	Additional Manual	Details about simple N : N link, parallel link, computer link and no-protocol communication (RS instruction and FX2N-232IF).	09R715
FX3s/FX3G/FX3G/FX3U/FX3UC Series User's Manual - MODBUS Serial Communication Edition	JY997D26201	Additional Manual	Explains the MODBUS serial communication network in FX3s/FX3G/FX3G/FX3U/FX3U/FX3UC PLCs.	09R626
FX3S/FX3G/FX3G/FX3U/FX3UC Series User's Manual -Positioning Edition	JY997D16801	Additional Manual	Details about the positioning function built in the FX3s/FX3G/FX3GC/FX3U/FX3UC Series.	09R620
FX3U-CF-ADP User's Manual	JY997D35401	Additional Manual	Describes details of the FX ₃ U-CF-ADP CF card special adapter.	09R720

FX1s/FX1N/FX1NC PLCs FX2N/FX2NC PLCs [whose production is finished]

Manual name	Manual number	Supplied with product or Additional Manual	Contents	Model name code
PLC main unit				
FX1s HARDWARE MANUAL	JY992D83901	Additional Manual	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX1s PLC main unit.	-
FX1N HARDWARE MANUAL	JY992D89301	Additional Manual	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX1N PLC main unit.	-
FX2N HARDWARE MANUAL	JY992D66301	Additional Manual	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX2N PLC main unit.	09R508
FX1NC HARDWARE MANUAL	JY992D92101	Additional Manual	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX1NC PLC main unit. (Japanese only)	09R505
FX2NC HARDWARE MANUAL	JY992D76401	Additional Manual	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX2NC PLC main unit.	09R509
Programming				
FX Series User's Manual -Data Communication Edition	JY997D16901	Additional Manual	Details about simple N : N link, parallel link, computer link and no-protocol communication (RS instruction and FX2N-232IF).	09R715

FX0S/FX0/FX0N/FXU/FX2C PLCs [whose production is finished]

Manual name	Manual number	Supplied with product or Additional Manual	Contents	Model name code
PLC main unit				
FX0/FX0N HARDWARE MANUAL	JY992D47501	Supplied with product	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX0/FX0N PLC main unit.	-
FX0S HARDWARE MANUAL	JY992D55301	Supplied with product	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FXos PLC main unit.	-
FX/FX2C HARDWARE MANUAL	JY992D47401	Supplied with product	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FXU/FX2c PLC main unit.	-
Programming				
FX Series User's Manual -Data Communication Edition	JY997D16901	Additional Manual	Details about simple N : N link, parallel link, computer link and no-protocol communication (RS instruction and FX2N-232IF).	09R715

Manuals of models whose production is finished

Production is finished for FX0s/FX0/FX0N/FXU/FX2C/FX2N/FX2NC PLCs.

Generic Names and Abbreviations Used in Manuals

Abbreviation/generic name	Name
PLCs	
FX3U Series or FX3U PLC	Generic name of FX3U Series PLCs
FX3UC Series or FX3UC PLC	Generic name of FX3UC Series PLCs
FX3G Series or FX3G PLC	Generic name of FX3G Series PLCs
FX3GC Series or FX3GC PLC	Generic name of FX3GC Series PLCs
FX3S Series or FX3S PLC	Generic name of FX3S Series PLCs
FX2N Series or FX2N PLC	Generic name of FX2N Series PLCs
FX2NC Series or FX2NC PLC	Generic name of FX2NC Series PLCs
FX1N Series or FX1N PLC	Generic name of FX1N Series PLCs
FX1NC Series or FX1NC PLC	Generic name of FX1NC Series PLCs These products can only used in Japan.
FX1s Series or FX1s PLC	Generic name of FX1S Series PLCs
FXU Series or FXU PLC	Generic name of FXU(FX,FX2) Series PLCs
FX2C Series or FX2C PLC	Generic name of FX2C Series PLCs
FXon Series or FXon PLC	Generic name of FX0N Series PLCs
FXos Series or FXos PLC	Generic name of FXos Series PLCs
FX0 Series or FX0 PLC	Generic name of FX0 Series PLCs
Special adapters	
CF card special adapter	Generic name of CF card special adapters
CF-ADP	FX3U-CF-ADP
Programming language	
ST	Abbreviation of structured text language
Structured ladder	Abbreviation of ladder diagram language
FBD	Abbreviation of function block diagram language
Manuals	
Q/L/F Structured Programming Manual (Fundamentals)	Abbreviation of MELSEC-Q/L/F Structured Programming Manual (Fundamentals)
FX Structured Programming Manual [Device & Common]	Abbreviation of FXCPU Structured Programming Manual [Device & Common]
FX Structured Programming Manual [Basic & Applied Instruction]	Abbreviation of FXCPU Structured Programming Manual [Basic & Applied Instruction]
FX Structured Programming Manual [Application Functions]	Abbreviation of FXCPU Structured Programming Manual [Application Functions]
COMMUNICATION CONTROL EDITION	Abbreviation of FX Series User's Manual-DATA COMMUNICATION CONTROL EDITION
ANALOG CONTROL EDITION	Abbreviation of FX3s/FX3G/FX3GC/FX3U/FX3UC Series User's Manual-ANALOG CONTROL EDITION
POSITIONING CONTROL EDITION	Abbreviation of FX3s/FX3G/FX3GC/FX3U/FX3UC Series User's Manual-POSITIONING CONTROL EDITION

1. Outline

This manual explains setting of sequence instructions for structured programs provided by GX Works2. Refer to another manuals for device, parameter, and application functions for structured programs. Refer to the following manual for label, data types and programming languages for structured programs. $\rightarrow Q/L/F$ Structured Programming Manual (Fundamentals)

1.1 Outline of Structured Programs and Programming languages

1.1.1 Outline of Structured Programs

You can construct two or more programs (program blocks) into one program. Because you can divide the entire machine processing into small sub processes and create a program for each sub process, you can create a program for a large system efficiently.

1. Structured program

Program structuring is a technique to divide the contents of control executed by the PLC CPU into hierarchical small units (blocks) of processing, and then construct a program. By using this technique, you can design a program while recognizing structuring of a sequence program.

Advantages of hierarchical program

- You can examine the outline of a program at first, and then design its details gradually.
- Program blocks located at the lowest level in the hierarchy are extremely simple and highly dependent.

Advantages of program consisting of program blocks

- Because the processing of each block is clear, the entire program is easy to understand.
- The entire program can be divided into several blocks that are created by several people.
- The program reusability is improved, and the development efficiency is improved accordingly.

2. Improved reusability of programs

You can save program blocks in a library. Program resources in the library can be shared, and often used again.

1.1.2 **Programming languages**

The following programming languages can be used in each program block.

Graphic languages

1. Structured ladder language

This graphic language is created based on the relay circuit design technology. A circuit always starts from the bus line located on the left side.

The structured ladder language consists of contacts, coils, functions and function blocks. These components are connected with vertical lines and horizontal lines.

2. FBD [Function Block Diagram language]

FBD is a graphic language easy to understand visually.

You can easily create programs by connecting parts (functions and function blocks) for special processing, variables and constants along the flow of data and signals to improve the programming efficiency.

Text language

1. ST ("Structured text language")

The ST language can describe control achieved by syntax using selective branches with conditional statements and repetition by repetitive statements in the same way as high-level languages such as C language. By using the ST language, you can create simple programs easy to understand.

```
Y000:=(X000 OR Y000) AND NOT X001;

IF X001 THEN

D2:=D0; (* When X001 is ON, the contents of D0 are transferred to D2.*)

END_IF;

IF X002 THEN

D4:=D4+1; (* When X002 is ON, the contents of D4 are added by "1". *)

ELSE

D6:=D6+1; (* When X002 is OFF, the contents of D6 are added by "1". *)

END_IF;
```

led Instructions tation and t Operation)

1.2 PLC Series and Programming Software Version

PLC series	Software package name (model name)	GX Works2 version	
FX3U•FX3UC			
FX3G			
FX2N•FX2NC			
FX1N•FX1NC		Ver. 1.08J or later	
FX1S	GX Works2 (SW1DNC-GXW2-E)		
FXU•FX2C			
FX0N			
FX0•FX0S			
FX3GC		Ver. 1.77F or later	
FX3S		Ver. 1.492N or later	

1.3 Cautions on Creation of Fundamental Programs

This section explains cautions on programming.

Refer to the following manual for cautions on structured programs and programming languages:

ightarrow Q/L/F Structured Programming Manual (Fundamentals)

Refer to the following programming manual for detailed operations of and cautions on devices and parameters:

 \rightarrow FX Structured Programming Manual [Device & Common]

1.3.1 I/O PROCESSING AND RESPONSE DELAY

1. Operation timing of I/O relays and resonse delay

FX PLCs execute the I/O processing by repeating the processing (1) to processing (3).

Accordingly, the control executed by PLCs contains not only the drive time of input filters and output devices but also the response delay caused by the operation cycle.

Acquiring the latest I/O information

For acquiring the latest input information or immediately outputting the operation result in the middle of the operation cycle shown above, the I/O refresh instruction "REF" is available.

2. Short input pulses cannot be received.

The ON duration and OFF duration of inputs in PLCs require longer time than "PLC scan time + Input filter response delay."

When the response delay "10 ms" of the input filter is considered and the scan time is supposed as "10 ms", the ON duration and OFF duration should be at least 20 ms respectively.

Accordingly, PLCs cannot handle input pulses at 25 Hz (1000 / (20+20) = 25) or more. However, the situation can be improved by PLC special functions and instructions.

Convenient functions for

improvement

By using the following functions, PLCs can receive pulses shorter than the operation cycle.
High speed counter function

- Input interrupt function
- Pulse catch function
- Input filter value adjustment function

	This "input ON" can be received.
5	This "input ON" cannot be received. This "input OFF" cannot be received. OFF ON OFF
	Program Program Program Program processing Proces Processing Processing Processing Processing Processing Proce
	Output processing Operation cycle
	processing

1.3.2 Double output (double coil) operation and countermeasures

This subsection explains the double output (double coil) operation and countermeasures.

1. Operation of double output

When a coil (output variable) is used twice (double coil) in another program block to be executed or in the same program block, the PLC gives priority to the last coil.

Suppose that the same coil Y003 is used in two positions as shown in the figure on the right. For example, suppose that X001 is ON and X002 is OFF.

In the first coil Y003, the image memory turns ON and the output Y004 turns ON also because the input X001 is ON.

In the second coil Y003, however, the image memory is set to OFF because the input X002 is OFF.

Accordingly, the actual output to the outside is "Y003 = OFF, Y004 = ON".

2. Countermeasures against double output

Double output (double coil) does not cause an illegal input (program error), but the operation is disrupted as described above. Change the program as shown in the example below.

SET, RST or jump instruction can be used instead, or a same output coil can be programmed at each state by using step ladder instructions STL or RET.

When you use the step ladder instruction STL or RET, note that the PLC regards it as double coils if you program, inside the state, an output coil located outside the RET from another program block or the STL instruction.

9

Applied Instructions (Arithmetic and Logical Operation)

10

(Rota

plied Instructions otation and hift Operation)

1

Outline

1.3.3 Circuits which cannot be created by structured ladder programs and countermeasures

1. Bridge circuit

A circuit in which the current flows in both directions should be changed as shown in the figure on the right (so that a circuit without D and a circuit without B are connected in parallel).

2. Coil connection position

• You can program a contact on the right side of a coil. In this case, be sure to program a coil (including a function or a function block) at the end of the circuit.

1.3.4 Handling of general flags

In some types of sequence instructions, the following flags operate: <Examples> M8020: Zero flag M8021: Borrow flag M8022: Carry flag M8029: Instruction execution complete flag M8090: Block comparison signal^{*1} M8328: Instruction non-execution flag^{*1} M8329: Instruction execution abnormal complete flag ^{*2} M8304: Zero flag^{*2} M8306: Carry flag^{*2}

*1. Supported only by FX3U and FX3UC PLCs.

*2. Supported only by FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs.

Each of these flags turns ON or OFF every time the PLC executes a corresponding function. These flags do not turn ON or OFF when the PLC does not execute a corresponding function or when an error occurs. Because these flags turn ON or OFF in many sequence instructions, the ON/OFF status of flags changes every time such instructions are executed.

Refer to the examples in the next page, and program a flag contact just under the target sequence instruction.

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation or

ç,

5

Basic Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

9

1 0

1. Program containing many flags (example of instruction execution complete flag M8029)

If you program the instruction execution completion flag M8029 for two or more sequence instructions which actuate the flag M8029, you cannot judge easily by which sequence instruction the flag M8029 is controlled. In addition, the flag M8029 does not turn ON or OFF correctly for each corresponding sequence instruction. Refer to the next page when you would like to use the flag M8029 in any position other than the position just under the corresponding sequence instruction.

2. Introduction of method for using flags in any positions other than directly under sequence instructions.

When two or more sequence instructions are programmed, general flags turn ON or OFF when each sequence instruction turns ON.

Accordingly, when using a flag in any position other than directly under a sequence instruction, set to ON or OFF another bit device (variable), and then use the contact (variable) of the device as the command contact.

1.3.5 Handling of operation error flag

When there is an error in the sequence instruction configuration, target device or target device number range and an error occurs while operation is executed, the following flag turns ON and the error information is store.

1. Operation error

		Device storing error occurrence step	
Error flag	ag Device storing error code	FX0S/FX0/FX0N/FX1S/FX1N/FX1NC/ FXU/FX2C/FX2N/FX2NC/FX3S/FX3G/FX3GC	FX3U/FX3UC
M8067	D8067	D8069 ^{*1}	D8315, D8314

^{*1.} When the error occurrence step is up to the 32767th step in FX_{3U} and FX_{3UC} PLCs, the error occurrence step can be checked in D8069 (16 bits).

- When an operation error has occurred, M8067 is set, D8067 stores the operation error code number, and the device storing error occurrence step (see the table above) stores the error occurrence step number.
- If another error occurs in another step, the stored data is updated in turn to the error code and step number of the new error. (These devices are set to OFF when errors are cleared.)
- When the PLC mode switches from STOP to RUN, these devices are cleared instantaneously, and then set to ON again if errors have not been cleared.

2. Operation error latch

		Device storing error occurrence step	
Error flag Device	Device storing error code	FX0S/FX0/FX0N/FX1S/FX1N/FX1NC/ FXU/FX2C/FX2N/FX2NC/FX3S/FX3G/FX3GC	FX3U/FX3UC
M8068	-	D8068 ^{*2}	D8313, D8312

- *2. When the error occurrence step is up to the 32767th step in FX_{3U} and FX_{3UC} PLCs, the error occurrence step can be checked in D8068 (16 bits).
- When an operation error has occurred, M8068 is set, and the device storing error occurrence step (see the table above) stores the error occurrence step number.
- Even if another error has occurred in another step, the stored data is not updated, and remains held until these devices are forcibly reset or until the power turns OFF.

1.3.6 Handling of function extension flag

In some sequence instructions, the function can be extended by combining a specific special auxiliary relay determined for each sequence instruction. An example is explained below.

X000

41

- When X000 turns ON, this instruction exchanges the contents of D10 and D11 with each other.
- If M8160 has been driven before the XCH function and the source and destination of the XCH instruction are specified to the same device, high-order 8 bits and loworder 8 bits are exchanged with each other inside the device.
- For returning this XCH to the normal XCH function, it is necessary to set M8160 to OFF.

d1 - D10 d2 D11 X000 M8160 Function extension flag H۲ for the XCH instruction XCHP FN **FNO** d1 – D10] Same d2 D10 number M8000 M8160 _1/_ —()—

XCHP

ENO

FN

When using an instruction requiring the function extension flag in an interrupt program, program DI function (for disabling interrupt) before driving the function extension flag, and program EI function (for enabling interrupt) after turning OFF the function extension flag.

1.3.7 Limitation in the number of instructions and limitation in simultaneous instruction instances

Each sequence instruction has a limitation in the number of using the instruction and the number of simultaneous instances of instructions. The limitation, however, differs from one PLC to another.

Limitations in the number of instructions

Some instructions can be used only up to the specified number of times.

As for the instructions having a limited number of times of use and whose operands allow indexing, device numbers and numeric values in such instructions can be changed by index registers. By indexing, when driving multiple instances simultaneously is required, such instruction can be used as if they were used beyond the allowable number of times.

 \rightarrow FX Structured Programming Manual [Device & Common] Note that some PLCs do not provide some instructions.

 \rightarrow 2. Instruction List

Instruction name	Allowable number of times of use	Remarks
MTR	1	-
SPD	8 (1 instruction / 1 input or fewer)	Pay attention so that this instruction does not overlap the input numbers in interrupt input in DVIT instruction, DOG inputs in ZRN instruction, zero point signal in DSZR instruction, input interrupt numbers and high speed counter input numbers.
IST	1	-
SORT	1	FX3S, FX3G or FX3GC PLCs are not provided.
TKY	1	FX3S, FX3G or FX3GC PLCs are not provided.
HKY	1	FX3S, FX3G or FX3GC PLCs are not provided.
ARWS	1	FX3S, FX3G or FX3GC PLCs are not provided.
PR	2	FX3S, FX3G or FX3GC PLCs are not provided.
SORT2	2	FX3S, FX3G or FX3GC PLCs are not provided.
DUTY	5 (1 instruction / 1 output or fewer)	FX3S, FX3G or FX3GC PLCs are not provided.
DHSCT	1	FX3S, FX3G or FX3GC PLCs are not provided.

FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs

FX1S, FX1N, FX1NC, FX2N and FX2NC PLCs

Instruction	Allowable numb	er of times of use
name	FX1S, FX1N, FX1NC	FX2N, FX2NC
MTR	1	1
SPD	1	1
PWM	1	1
IST	1	1
ABSD	1	1
INCD	1	1
ROTC	FX1S, FX1N or FX1NC PLCs are not provided.	1
SORT	FX1S, FX1N or FX1NC PLCs are not provided.	1
TKY	FX1S, FX1N or FX1NC PLCs are not provided.	1
НКҮ	FX1S, FX1N or FX1NC PLCs are not provided.	1
DSW	No limit	2
SEGL	No limit	2
ARWS	FX1S, FX1N or FX1NC PLCs are not provided.	1
PR	FX1S, FX1N or FX1NC PLCs are not provided.	2

FX0S, FX0, FX0N, FXU and FX2C PLCs

Instruction name	Allowable number of times of use	Remarks
MTR	1	FX0, FX0S or FX0N PLCs are not provided.
PLSY	1	_
PWM	1	
IST	1	-
ABSD	1	
INCD	1	
ROTC	1	
SORT	1	
TKY	1	EYOS EYO or EYON PLCs are not provided
HKY	1	1 X03, 1 X0 01 1 X011 1 LOS are not provided.
DSW	2	
SEGL	2	
ARWS	1	
PR	2	

Limitation in simultaneous instances of instructions

Some instructions can be programmed two or more times, but the number of simultaneous instances is limited. Even in instructions not shown below, if two or more instructions are driven at the same time for a same I/O number, it is regarded as double outputs. In some combinations of instructions, the operation may be disrupted, or the instructions cannot be executed.

For details, refer to the caution described in each instruction page.

- FX3S, FX3G, FX3GC, FX3U and FX3UC PLCS PLSY, PWM, PLSR, DSZR, DVIT^{*1}, ZRN, PLSV, DRVI, DRVA DHSCS, DHSCR, DHSZ, DHSCT^{*1} RS, RS2, IVCK, IVDR, IVRD, IVWR, IVBWR^{*1}, IVMC FLCRT^{*1}, FLDEL^{*1}, FLWR^{*1}, FLRD^{*1}, FLCMD^{*1}, FLSTRD^{*1}
 *1. FX3S, FX3G and FX3GC PLCs are not compatible.
- FX1S, FX1N, FX1NC, FX2N and FX2NC PLCs DHSCS, DHSCR, DHSZ(FX1S, FX1N, FX1NC, FX2N and FX2NC PLCs) RS (FX2N and FX2NC PLCs) PLSY, PLSR, RS, ZRN, PLSV, DRVI, DRVA(FX1S, FX1N and FX1NC PLCs)
- FX0S, FX0, FX0N, FXU and FX2C PLCs DHSCS, DHSCR, DHSZ(FX0, FX0S, FX0N, FXU and FX2C PLCs) RS (FX0N, FXU and FX2C PLCs)

2. Instruction List

This chapter introduces a list of instructions available in programming.

2.1 Basic Instructions

Instruction name	Function	FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)	Reference
LD	Initial logical operation contact type NO (normally open)										
LDI	Initial logical operation contact type NC (normally closed)										
AND	Serial connection of NO contacts	\checkmark	~	~	\checkmark	~	\checkmark	~	\checkmark	~	Section 5.1
ANI	Serial connection of NC contacts										
OR	Parallel connection of NO contacts										
ORI	Parallel connection of NC contacts										
LDP	Initial logical operation of rising edge pulse										
LDF	Initial logical operation of falling edge pulse										
ANDP	Serial connection of rising edge pulse	/									
ANDF	Serial connection of falling edge pulse	V	v	v	V	v	V				Section 5.2
ORP	Parallel connection of rising edge pulse										
ORF	Parallel connection of falling edge pulse										
OUT	Coil drive	\checkmark	~	~	~	~	~	~	~	\checkmark	Section 5.3
OUT_T	Timer drive	~	~	~	~	~	~	~	~	~	Section 5.4.1
OUT_C		,	,	,	,	,	,	,	,	,	
OUT_C_32		V	V	V	V	V	V	V	V	V	Section 5.5.1
AND(***)	Serial connection of circuit block	~	~	~	~	~	~	~	~	~	Section 5.6
OR(***)	Parallel connection of circuit block										
MPS	Stack pushdown										
MRD	Stack read	\checkmark	~	~	\checkmark	~	\checkmark	~	\checkmark	~	Section 5.7
MPP	Stack popup										
INV	Invert the current result of the internal PLC operations	\checkmark	~	~	~	~	~				Section 5.8
MEP	Conversion of operation result to leading edge pulse	*1									Section E 0
MEF	Conversion of operation result to trailing edge pulse	I	v	v							360101 5.9
SET	Set bit device latch ON										
RST	Reset bit device OFF and clear current value and resister	~	~	~	\checkmark	~	\checkmark	~	\checkmark	~	Section 5.10
PLS	Rising edge pulse differential output	,			,		,	,	,		0 11 5 4 4
PLF	Falling edge pulse differential output	~	~	`	↓ ✓	`	↓ ✓	~	↓ ✓	~	Section 5.11
MC	Connection to common contact	,	,	,	,	,	,	,	,	,	0
MCR	Clear connection to common contact	~	~	~	~	~	~	~	~	~	Section 5.12
END	Program END, I/O refresh and return to step 0	~	~	~	~	~	~	~	~	~	Section 5.13
NOP	No operation or null step		1	1		1				1	Section 5.14

*1. The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.30 or later.

2.2 Step Ladder Instructions

Instruction name	Function		FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)	Reference
STL	Starts step ladder	~	\checkmark	~	\checkmark	~	\checkmark	~	\checkmark	~	Section 6.2
RET	Completes step ladder	~	\checkmark	~	\checkmark	~	\checkmark	~	\checkmark	~	Section 6.3

2.3 Applied Instructions

						Appli	icable	PLCs				
Instruction name	Execution condition	Function	FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)	Reference
Program Flow												
CJ	Continuous		~	~	~	~	~	\checkmark	~	~	~	Section 7.1
CJP	Pulse		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~			
CALL	Continuous		~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~			Section 7.2
CALLP	Pulse		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~			
SRET	Continuous	Subroutine return	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~			Section 7.3
IRET	Continuous	Interrupt return	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	Section 7.4
DI	Continuous	Disable interrupt	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	Section 7.5
EI	Continuous	Enable interrupt	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	Section 7.6
FEND	Continuous	Main routine program end	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	Section 7.7
WDT	Continuous	Watchdog timer refresh	~	\checkmark	Section 7.8							
WDTP	Pulse	Watchdog timer reliesin	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
FOR	Continuous	Start a FOR/NEXT loop	~	\checkmark	Section 7.9							
NEXT	Continuous	End a FOR/NEXT loop	~	~	~	~	~	\checkmark	~	~	~	Section 7.10
Move and Compare												
CMP	Continuous		~	\checkmark	~	\checkmark	~	\checkmark	~	\checkmark	\checkmark	
CMPP	Pulse	Compare	~	~	~	~	~	\checkmark	~			Section 8.1
DCMP	Continuous	Compare	~	~	~	~	~	\checkmark	~	~	~	
DCMPP	Pulse		~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
ZCP	Continuous		~	\checkmark								
ZCPP	Pulse	Zono comparo	~	~	~	~	~	~	~			Section 9.2
DZCP	Continuous		~	~	~	~	~	~	~	~	~	3601011 0.2
DZCPP	Pulse		~	~	~	~	~	~	~			
MOV	Continuous		~	\checkmark								
MOVP	Pulse	Maya	~	~	~	~	~	~	~			Section 9.2
DMOV	Continuous	Nove	~	~	~	~	~	~	~	~	~	3601011 0.3
DMOVP	Pulse		~	~	~	~	~	~	~			
SMOV	Continuous	Shift move	~	~	~	~			~			Section 9.4
SMOVP	Pulse	Shirt move	~	~	~	~			~			Section 0.4
CML	Continuous		~	~	~	~			~			
CMLP	Pulse		~	\checkmark	\checkmark	\checkmark			\checkmark			Castian 0 5
DCML	Continuous		~	~	~	~			~			Section 8.5
DCMLP	Pulse		~	~	~	\checkmark			\checkmark			
BMOV	Continuous	Plack mayo	~	~	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		Section 9.6
BMOVP	Pulse	DIUCK HIOVE	~	~	~	~	\checkmark	\checkmark	~			Section 8.6

1 Outline 2 Instruction List 3 Configuration of Instruction 4 How to Read Explanation of Instructions 5 Basic Instruction 6 Step Ladder Instructions 7 Applied Instructions (Program Flow) 8 Applied Instructions (Move and Compare)

Applied Instructions (Arithmetic and Logical Operation) **1** (Rotation and Shift Operation)

Instruction name Execution condition Function Reference Reference Reference Move and Compare FMOV Continuous FM C <th></th> <th></th> <th></th> <th colspan="8">Applicable PLCs</th> <th></th> <th></th>				Applicable PLCs									
Move and Compare V	Instruction name	Execution condition	Function	FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)	Reference
FMOV Continuous DFMOVP Fulse Fulse Fill move Image: Continuous of the continuous of	Move and Compare	1											
FMOVP Pulse DFMOV Full move Image	FMOV	Continuous		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark			
DFMOV Continuous Pullade V	FMOVP	Pulse		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark			Castion 0.7
DFMOVP Pulse V	DFMOV	Continuous		\checkmark	\checkmark	~	~			*1			Section 8.7
XCH Continuous Exchange /	DFMOVP	Pulse		\checkmark	\checkmark	~	~			*1			
XCHP Pulse Exchange I <thi< th=""> <thi< th=""> I <</thi<></thi<>	XCH	Continuous		~			~			\checkmark			
DXCH Continuou Exchange Image	XCHP	Pulse		\checkmark			~			\checkmark			
DXCHP Pulse BCD Continuous BCDP Pulse DBCD Conversion to binary coded decimal · <td>DXCH</td> <td>Continuous</td> <td>Exchange</td> <td>\checkmark</td> <td></td> <td></td> <td>\checkmark</td> <td></td> <td></td> <td>\checkmark</td> <td></td> <td></td> <td>Section 8.8</td>	DXCH	Continuous	Exchange	\checkmark			\checkmark			\checkmark			Section 8.8
BCD Continuous Conversion to binary coded decimal V </td <td>DXCHP</td> <td>Pulse</td> <td></td> <td>\checkmark</td> <td></td> <td></td> <td>\checkmark</td> <td></td> <td></td> <td>\checkmark</td> <td></td> <td></td> <td></td>	DXCHP	Pulse		\checkmark			\checkmark			\checkmark			
BCDP Pulse Conversion to binary coded decimal V	BCD	Continuous		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
DBCD Continuous Operation to binary coded decimal v </td <td>BCDP</td> <td>Pulse</td> <td>Conversion to binany added desimal</td> <td>~</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>~</td> <td></td> <td></td> <td>Section 9.0</td>	BCDP	Pulse	Conversion to binany added desimal	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~			Section 9.0
DBCDP Pulse BIN Continuous BINP Pulse DBIN Continuous DBIN Continuous DBIN Continuous DBIN Continuous DBIN Continuous DBIN Continuous DBINP Pulse Attimetic and Logical Operation V <td>DBCD</td> <td>Continuous</td> <td>Conversion to binary coded decimal</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>Section 8.9</td>	DBCD	Continuous	Conversion to binary coded decimal	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Section 8.9
BIN Continuous BINP Pulse Conversion to binary I	DBCDP	Pulse		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
BINP Pulse Conversion to binary V V V V </td <td>BIN</td> <td>Continuous</td> <td></td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td></td>	BIN	Continuous		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
DBIN Continuous Conversion to binary v <	BINP	Pulse		\checkmark	\checkmark	~	~	~	\checkmark	\checkmark			0 1 0 10
DBINP Pulse Antimetic and Logical Operation ADDP Pulse DADD Continuous Addition ✓<	DBIN	Continuous	Conversion to binary	~	~	~	~	~	~	~	~	~	Section 8.10
Arithmetic and Logical Operation ADDP Pulse Addition ✓<	DBINP	Pulse	v	~	~	~	~	~	~	~			
ADDP Pulse Addition ✓ <	Arithmetic and Logica	al Operation				1		1	1				
DADD Continuous Addition ✓	ADDP	Pulse		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
DADDP Pulse SUBP Pulse DSUB Continuous Subtraction ✓	DADD	Continuous	Addition	~	√	~	~	~	~	~	~	✓	Section 9.1
SUBP Pulse Subtraction V	DADDP	Pulse		~	√	~	~	~	~	~			
DSUB Continuous Subtraction Image: Continuous Subtraction Image: Continuous Section 9.2 Section 9.3 Section 9.4 Section 9.5	SUBP	Pulse		~	~	~	~	~	~	~			
DSUBP Pulse MULP Pulse MULP Pulse DMUL Continuous Multiplication V	DSUB	Continuous	Subtraction	~	~	~	~	~	~	~	~	~	Section 9.2
MULP Pulse Multiplication Image: Weak of the section	DSUBP	Pulse		~	~	~	~	~	~	~			
DMUL Continuous Multiplication Image: Multiplication	MULP	Pulse		√	√	~	~	~	~	~			
DMULP Pulse DIVP Pulse DDIV Continuous DDIVP Pulse DDIV Continuous DDIVP Pulse DDIVP Pulse INC Continuous INCP Pulse INCP Pulse Increment	DMUL	Continuous	Multiplication	~	~	~	~	~	~	~	~	~	Section 9.3
DIVP Pulse DDIV Continuous Division Image: Continuous	DMULP	Pulse		~	~	~	~	~	~	~			
DDIV Continuous Division Image: Continuous Division Image: Continuous	DIVP	Pulse		~	\checkmark	~	~	~	~	~			
DDIVP Pulse INC Continuous INCP Pulse INCP Pulse DINC Continuous V<	DDIV	Continuous	Division	~	~	~	~	~	~	~	~	~	Section 9.4
INC Continuous INCP Pulse DINC Continuous	DDIVP	Pulse	-	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
INCP Pulse DINC Continuous	INC	Continuous		~	~	~	~	~	~	~	~	~	
DINC Continuous	INCP	Pulse		~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
	DINC	Continuous	Increment	~	~	~	~	~	~	~	~	~	Section 9.5
DINCP Pulse	DINCP	Pulse		~	~	~	~	~	~	~			
DEC Continuous ✓ <t< td=""><td>DEC</td><td>Continuous</td><td></td><td>~</td><td>~</td><td>~</td><td>~</td><td>~</td><td>~</td><td>~</td><td>~</td><td>~</td><td></td></t<>	DEC	Continuous		~	~	~	~	~	~	~	~	~	
	DECP	Pulse		~	√	~	~	~	~	~			
DDEC Continuous Decrement	DDEC	Continuous	Decrement	~	~	~	~	~	~	~	~	~	Section 9.6
DDECP Pulse	DDECP	Pulse		~	~	~	~	~	~	~			
WAND Continuous ✓ <	WAND	Continuous		~	\checkmark								
WANDP Pulse	WANDP	Pulse	·	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
DAND Continuous Logical word AND	DAND	Continuous	Logical word AND	~	~	~	~	~	~	~	~	~	Section 9.7
DANDP Pulse	DANDP	Pulse	1	\checkmark	\checkmark	~	\checkmark	~	\checkmark	~			
WOR Continuous Image: Continu	WOR	Continuous		~	~	~	~	~	~	~	~	~	
WORP Pulse	WORP	Pulse		~	~	~	~	~	~	~			
DOR Continuous Logical word OR	DOR	Continuous	Logical word OR	~	~	~	~	~	~	~	~	~	Section 9.8
DORP Pulse	DORP	Pulse		~	\checkmark	~	~	~	~	~			

*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.

Instruction name Exaction condition Function Image of a g of							Appl	icable	PLCs				Jutiline		
Anthenetic and Logical Operation Z <thz< th=""> Z Z <t< th=""><th>Instruction name</th><th>Execution condition</th><th>Function</th><th>FX3U(C)</th><th>FX3G(C)</th><th>FX3S</th><th>FX2N(C)</th><th>FX1N(C)</th><th>FX1S</th><th>FXU/FX2</th><th>FXON</th><th>FX0(S)</th><th>Reference</th><th></th></t<></thz<>	Instruction name	Execution condition	Function	FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2	FXON	FX0(S)	Reference		
WXOR Continuous Continuous Image: Continuous Image: Continuous Continuous Image: Continuous Image:	Arithmetic and Logica	al Operation			-		-	_		C				2	
WXORP Puise Up cal exclusive OR V<	WXOR	Continuous		√	\checkmark		Inst								
DXOR Continuous Public Logical exclusive OR -	WXORP	Pulse	-	~	~	~	~	~	~	~				ructio	
DXORP Pulsa ·	DXOR	Continuous	Logical exclusive OR	~	~	~	~	~	~	~	√	√	Section 9.9	on	
NEG Continuous Negation C	DXORP	Pulse	-	~	~	~	~	√	√	√				st	
NEGC Pulae	NEG	Continuous		~			~		-	~				2	
Nuclair Name Nome	NEGP	Pulse	4											J	
UNCC Object of Pulse I	DNEG	Continuous	Negation										Section 9.10	Instr	
Roticol V </td <td>DNEGP</td> <td>Pulse</td> <td>4</td> <td>· ·</td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>ligura</td>	DNEGP	Pulse	4	· ·			•			•				ligura	
RND Continuous Rolation right C <td>Potation and Shift Or</td> <td></td> <td></td> <td>Ľ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>n</td>	Potation and Shift Or			Ľ										n	
NOR Outlinuous Rotation right I<			1								1	1		악	
NCH Proba Relation right V		Dulas	-	•	•	•	•			•				Δ	
Likok Collinuous V		Puise	Rotation right	•	•	•	•			•			Section 10.1	- - -	
DROLP Pulse V	DRUR	Continuous	-	×	V	V	V			V				nstru	
ROL Continuous Rotation left V </td <td></td> <td>Pulse</td> <td></td> <td>√</td> <td>✓ </td> <td>√</td> <td>√</td> <td></td> <td></td> <td>✓ </td> <td></td> <td></td> <td></td> <td>inati</td>		Pulse		√	✓ 	√	√			✓ 				inati	
ROLP Pulse Rotation left V	ROL	Continuous	4	✓	~	√	√			✓				ead ns	
DROL Continuous V <	ROLP	Pulse	Rotation left	~	~	~	~			~			Section 10.2	- f i	
DROLP Pulse V	DROL	Continuous	_	~	~	~	~			~				5	
RCR Continuous Relation right with carry Image: Continuous Section 10.3 Section 10.3 Section 10.3 Section 10.3 DRCRP Pulse Continuous Relation right with carry Image: Continuous Image: Continuous Image: Continuous Section 10.3 Section 10.4 Image: Continuous Section 10.4 Image: Continuous Section 10.4 Image: Continuous Section 10.4 Image: Continuous Section 10.4 Section 10.4 Image: Continuous Section 10.6 Section 10.6 Section 10.6 Section 10.6 Section 10.6 Section 10.6 Section 10.7 Section 10.6 Section 10.7 Section 10.7 Section 10.8 Section 10.9 Section 10.9 Section 10.1 Section 10.1 Section 10.1 Section 10.1	DROLP	Pulse		~	\checkmark	\checkmark	\checkmark			\checkmark				U U	
RCRP Pulse Rotation right with carry V <	RCR	Continuous		\checkmark			\checkmark			\checkmark				asic	
DRCR Continuous Image: Market System Case Image: Market System System Case Image: Market System Syste	RCRP	Pulse	Rotation right with carry	\checkmark		_	\checkmark			\checkmark			Section 10.3	Inst	
DRCRP Pulse ·	DRCR	Continuous		\checkmark			\checkmark			\checkmark				ructi	
RCL Continuous DRCL Pulse Continuous DRCL Rotation left with carry ✓	DRCRP	Pulse		\checkmark			\checkmark			\checkmark				on	
RCLP Pulse Rotation left with carry ✓ <t>✓ <t></t></t>	RCL	Continuous		\checkmark			\checkmark			~				6	
DRCL Continuous Polation fer with Carry ✓	RCLP	Pulse	Potation left with carry	~			~			~			Section 10.4	ы П П	
DRCLP Pulse V	DRCL	Continuous		\checkmark			\checkmark			\checkmark			360101110.4	Istrue	
SFTR Continuous Bit shift right ✓	DRCLP	Pulse	1	~			~			~				_add	
SFTRP Pulse Bit shift left ✓	SFTR	Continuous		~	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	~	\checkmark	Section 10 F	ਨ ਯ	
SFTL Continuous Bit shift left / <th <="" td=""><td>SFTRP</td><td>Pulse</td><td>Bit shift right</td><td>\checkmark</td><td>\checkmark</td><td>\checkmark</td><td>\checkmark</td><td>\checkmark</td><td>\checkmark</td><td>\checkmark</td><td></td><td></td><td>Section 10.5</td><td></td></th>	<td>SFTRP</td> <td>Pulse</td> <td>Bit shift right</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td></td> <td></td> <td>Section 10.5</td> <td></td>	SFTRP	Pulse	Bit shift right	\checkmark			Section 10.5							
SFTLP Pulse Bit shift left V	SFTL	Continuous		✓	~	✓	✓	~	~	~	~	\checkmark	0 11 10 0	7	
WSFR Continuous WSFRP Word shift right Image: Continuous Word shift write Image: Continuous Word shift write Image: Continuous Word shift write Image: Continuous Word shift read	SFTLP	Pulse	Bit shift left	\checkmark	\checkmark	\checkmark	\checkmark	~	~	~			Section 10.6	€₸	
WSFRP Pulse Word shift right ✓ <td>WSFR</td> <td>Continuous</td> <td></td> <td>✓</td> <td>\checkmark</td> <td>√</td> <td>~</td> <td></td> <td></td> <td>\checkmark</td> <td></td> <td></td> <td></td> <td>rogr</td>	WSFR	Continuous		✓	\checkmark	√	~			\checkmark				rogr	
WSFL Continuous Word shift left Image: Continuous Section 10.8 Section 10.8 WSFLP Pulse Continuous Shift write Image: Continuous Shift write Image: Continuous Section 10.8 Section 10.8 Section 10.9 Section 10.10 Section 11.1 Section 11.1 Section 11.1 Section 11.1 Section 11.1 Section 11.1 Section 11.2 Section 11.2 Section 11.2 Section 11.1 Section 11.2 Section 11.1 Section 11.2 Section 11.1 Se	WSFRP	Pulse	Word shift right	~	\checkmark	\checkmark	~			\checkmark			Section 10.7	am F	
WSFLP Pulse Word shift left ✓	WSFL	Continuous		~	\checkmark	\checkmark	\checkmark			\checkmark				-low)	
SFWR Continuous Shift write [FIFO/FILO control] ✓	WSFLP	Pulse	Word shift left	~	~	~	~			~			Section 10.8	SI ()	
SFWRP Pulse [FIFO//FILO control] ✓	SFWR	Continuous	Shift write	~	~	~	~	~	~	~				8	
SFRD Continuous Shift read [FIFO control] v	SFWRP	Pulse	[FIFO/FILO control]	~	~	~	~	~	~	~			Section 10.9	S(₹₽	
SFRDP Pulse [FIFO control] ✓	SFRD	Continuous	Shift read	~	\checkmark	~	~	~	~	~			· · · · ·	ove ; mpa	
Data Operation ZRST Continuous Zone reset ✓	SFRDP	Pulse	[FIFO control]	~	~	~	~	~	\checkmark	~			Section 10.10	nstru and re)	
ZRST Continuous Zone reset Image: Continuous Zestion 11.1 Image: Continuous Section 11.1 Section 11.1 Section 11.1 Section 11.1 Section 11.1 Section 11.1 Section 11.2 Section 11.3 Section 11.4 Section 11.4 DSUM Continuous Sum of active bits Image: Continuous Image: Cont	Data Operation													ctions	
ZRSTP Pulse Zone reset V	ZRST	Continuous		√	√	√	√	√	√	√	√	√			
DECO Continuous Decode Image: Continuous Decode Image: Continuous Image: Continuous Section 11.2 DECOP Pulse Decode Image: Continuous Image: Continuous </td <td>ZRSTP</td> <td>Pulse</td> <td>Zone reset</td> <td>~</td> <td>~</td> <td>~</td> <td>~</td> <td>~</td> <td>~</td> <td>~</td> <td></td> <td></td> <td>Section 11.1</td> <td>9</td>	ZRSTP	Pulse	Zone reset	~	~	~	~	~	~	~			Section 11.1	9	
DECO Pulse Decode Image: Continuous of the pulse Section 11.2 ENCO Continuous Encode Image: Continuous of the pulse Image: Continuous of	DECO	Continuous		~	~	~	~	~	~	~	√	√		Logi	
ENCO Continuous Encode V	DECOP	Pulse	Decode	~	~	~	~	~	~	√			Section 11.2	hmet cal C	
ENCOP Pulse Encode I	FNCO	Continuous		~	~	~	\checkmark	~	~	~	~	~	·	istruc pera	
SUM Continuous SUMP Pulse DSUM Continuous V V V V V V V V V V V DSUM Continuous Sum of active bits V V V V V V V V V V V V V V V Image: Non-one of the section 11.4 DSUMP Pulse Pulse V V V V V V V Image: Non-one of the section 11.4	FNCOP	Pulee	Encode									-	Section 11.3	tions tion)	
SUMP Pulse DSUM Continuous DSUMP Pulse Sum of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Continuous of active bits Image: Contit ac		Continuous		•		•								10	
DSUM Continuous DSUMP Pulse		Pulco	4	•	•	•	•			•				10	
DSUMP Pulse		Continue	Sum of active bits	• 	v .	• • /	v .			×			Section 11.4	(Rot	
		Dulas		• 	v .	• • /	v .			×				Opt	
	DOOINIL	Puise		v	v	v	v			v			[1 and Pratic	

			Applicable PLCs									
Instruction name	Execution condition	Function	FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)	Reference
Data Operation					I	I	I	I		I		
BON	Continuous		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark			
BONP	Pulse	Check appointed bit status	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark			Continue 11 E
DBON	Continuous	Check specified bit status	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark			Section 11.5
DBONP	Pulse		~	~	~	~			~			
MEAN	Continuous		~	~	~	~			~			
MEANP	Pulse	Moon	\checkmark	~	~	\checkmark			\checkmark			Section 11 6
DMEAN	Continuous	Mean	\checkmark	~	~	\checkmark			*1			Section 11.6
DMEANP	Pulse		\checkmark	\checkmark	\checkmark	\checkmark			*1			
ANS	Continuous	Timed annunciator set	\checkmark	\checkmark		\checkmark			\checkmark			Section 11.7
ANR	Continuous	A	~	~		~			~			
ANRP	Pulse	Annuncator reset	~	~		~			~			Section 11.8
SQR	Continuous		~			\checkmark			~			
SQRP	Pulse		~			\checkmark			~			
DSQR	Continuous	Square root	~			\checkmark			\checkmark			Section 11.9
DSQRP	Pulse		~			\checkmark			\checkmark			
FLT	Continuous		\checkmark	*2	\checkmark	\checkmark			*3			
FLTP	Pulse		~	*2	\checkmark	\checkmark			*3			
DFLT	Continuous	Conversion to floating point	~	*2	\checkmark	\checkmark			*3			Section 11.10
DFLTP	Pulse		~	*2	\checkmark	\checkmark			*3			
High Speed Processi	ng	1										
REF	Continuous		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√	
REFP	Pulse	Refresh	~	~	~	\checkmark	~	\checkmark	~			Section 12.1
REFF	Continuous		~			~			~			0 11 10 0
REFFP	Pulse	Refresh and filter adjust	~			~			~			Section 12.2
MTR	Continuous	Input matrix	~	~	~	~	~	~	~			Section 12.3
DHSCS	Continuous	High speed counter set	~	~	~	~	~	~	~	~	√	
DHSCS_I	Continuous	High Speed Interrupt Counter Set	\checkmark			\checkmark			\checkmark			Section 12.4
DHSCR	Continuous	High speed counter reset	~	~	~	~	~	~	~	~	√	Section 12.5
DHSZ	Continuous	High speed counter zone compare	~	~	~	~			~			Section 12.6
SPD	Continuous		~	~	~	~	~	~	~			0 11 10 7
DSPD	Continuous	Speed detection	*4	\checkmark	\checkmark							Section 12.7
PLSY	Continuous	Dulas V sutsut	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
DPLSY	Continuous	Puise Y output	~	\checkmark	Section 12.8							
PWM	Continuous	Pulse width modulation	~	~	~	\checkmark	~	\checkmark	~	~	~	Section 12.9
PLSR	Continuous	Appeloration (deceloration patur	~	~	~	\checkmark	~	\checkmark				Section 12.10
DPLSR	Continuous		\checkmark	~	~	\checkmark	~	\checkmark				Section 12.10
Handy Instruction												
IST	Continuous	Initial state	\checkmark	\checkmark	\checkmark	~	\checkmark	~	\checkmark	~	\checkmark	Section 13.1
SER	Continuous		\checkmark	\checkmark	\checkmark	\checkmark			*3			
SERP	Pulse	Search a data stack	\checkmark	~	~	\checkmark			*3			Section 13.2
DSER	Continuous	Search a data stack	\checkmark	\checkmark	\checkmark	\checkmark			*3			Section 13.2
DSERP	Pulse		\checkmark	\checkmark	\checkmark	\checkmark			*3			
ABSD	Continuous	Absolute drum sequencor	~	~	~	~	~	~	~			Section 12.2
DABSD	Continuous	ADSOLUTE UTUTTI SEQUENCE	~	~	~	~	~	~	*1			
INCD	Continuous	s Incremental drum sequencer	~	~	~	~	~	~	~			Section 13.4
TTMR	Continuous	Teaching timer	~	ſ	[~	[~	[Section 13.5

The instruction is provided in the FXU PLC Ver. 2.30 or later. The instruction is provided in the FX3G PLC Ver. 1.10 or later. The instruction is provided in the FXU PLC Ver. 3.07 or later. The 32-bit operations are provided in the FX3UC PLC Ver. 2.20 or later. *1.

*2. *3. *4.

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation of Instructions

5

Basic Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

Applied Instructions (Move and Compare)

9

Applied Instructions (Arithmetic and Logical Operation)

10

olied Instructions otation and ift Operation)

						Appl	icable	PLCs				
Instruction name	Execution condition	Function	FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)	Reference
Handy Instruction												
STMR	Continuous	Special timer	\checkmark			\checkmark			\checkmark			Section 13.6
ALT	Continuous	Alternate state	~	~	~	~	\checkmark	~	~	~	\checkmark	Section 13.7
ALTP	Pulse		~	~	~	~	\checkmark	~	~			
RAMP	Pulse	Ramp variable value	~	~	~	~	~	~	~	~	~	Section 13.8
ROTC	Continuous	Rotary table control	~			~			~			Section 13.9
SORT	Continuous	SORT tabulated data	\checkmark			\checkmark			*1			Section 13.10
External FX I/O Device	ce											
ТКҮ	Continuous	Ten key input	~			~			~			Section 14.1
DTKY	Continuous		\checkmark			\checkmark			\checkmark			
HKY	Continuous	Hexadecimal input	\checkmark			\checkmark			\checkmark			Section 14 2
DHKY	Continuous		\checkmark			~			\checkmark			0000011112
DSW	Continuous	Digital switch	~	\checkmark	~	~	\checkmark	\checkmark	\checkmark			Section 14.3
SEGD	Continuous	Seven segment decoder	~			~			\checkmark			Section 14.4
SEGDP	Pulse		~			~			~			
SEGL	Continuous	Seven segment with latch	~	~	~	~	~	~	~			Section 14.5
ARWS	Continuous	Arrow switch	~			~			~			Section 14.6
ASC	Continuous	ASCII code data input	~			~			~			Section 14.7
PR	Continuous	Print (ASCII code)	~			~			~			Section 14.8
FROM	Continuous		~	~		~	~		*2	\checkmark		
FROMP	Pulse	Read from a special function block	~	~		~	~		*2			Section 14.9
DFROM	Continuous	Read from a special function block	~	\checkmark		~	\checkmark		*2	\checkmark		30010114.9
DFROMP	Pulse		~	\checkmark		~	\checkmark		*2			
ТО	Continuous		~	\checkmark		~	\checkmark		*2	\checkmark		
TOP	Pulse	Write to a special function block	~	~		~	~		*2			Section 14 10
DTO	Continuous		~	\checkmark		~	\checkmark		*2	\checkmark		36010114.10
DTOP	Pulse		~	~		~	~		*2			
External Device (opti	onal devices)											
RS	Continuous	Serial Communication	~	\checkmark	√	~	\checkmark	~	*1	*3		Section 15.1
PRUN	Continuous		~	~	~	~	~	~	~			
PRUNP	Pulse	Parallel run (actal mode)	~	~	~	~	~	~	~			Section 15.2
DPRUN	Continuous		~	~	~	~	~	~	~			Section 15.2
DPRUNP	Pulse		~	~	~	~	~	~	~			
ASCI	Continuous		~	~	~	~	~	~	*1	*3		Section 15.2
ASCIP	Pulse	nexadecimal to ASCII conversion	~	~	~	~	~	~	*1			Section 15.5
HEX	Continuous		~	~	~	~	~	~	*1	*3		Section 15 4
HEXP	Pulse		~	~	~	~	~	~	*1		Sec	Section 15.4
CCD	Continuous	Chack and	~	~	~	~	~	~	*1	*3		Section 15 5
CCDP	Pulse		~	~	~	~	~	~	*1			Section 15.5

*1. The instruction is provided in the FXU PLC Ver. 3.07 or later.

*2. The instruction is provided in the FXU PLC Ver. 2.10 or later.

*3. The instruction is provided in the FX0N PLC Ver. 1.20 or later.

			Applicable PLCs									
Instruction name	Execution condition	Function	FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)	Reference
External Device (opti	onal devices)											
VRRD	Continuous	Volume read	*1	*2*3	~	*2	*2	~	~			Section 15.6
VRRDP	Pulse		*1	*2*3	~	*2	*2	~	~			000001110.0
VRSC	Continuous	Volume scale	*1	*2*3	\checkmark	*2	*2	\checkmark	~			Section 15.7
VRSCP	Pulse		*1	*2*3	\checkmark	*2	*2	\checkmark	~			
RS2	Continuous	Serial data communication 2	~	~	~							Section 15.8
PID	Continuous	PID control loop	~	~	~	~	~	~	*4			Section 15.9
External Device												
MNET	Continuous	E-16NP/NT communication							*5			Section 16.1
MNETP	Pulse								*5			
ANRD	Continuous	Read from E2-6A							*5			Section 16.2
ANRDP	Pulse								*5			000001110.2
ANWR	Continuous	Write to E2-6A							*5			Section 16.3
ANWRP	Pulse								*5			000001110.0
RMST	Continuous	F2-32RM start							~			Section 16.4
RMWR	Continuous								~			
RMWRP	Pulse	Write to F2-32RM							~			Section 16 5
DRMWR	Continuous								~			3601011 10.5
DRMWRP	Pulse								~			
RMRD	Continuous								~			
RMRDP	Pulse	Pood from E2 22PM							~			Section 16.6
DRMRD	Continuous								~			3601011 10.0
DRMRDP	Pulse								~			
RMMN	Continuous	F2 22DM monitor							~			Section 16.7
RMMNP	Pulse								~			Section 10.7
BLK	Continuous	Specify E2 20CM							*5			Section 16.9
BLKP	Pulse	Specity F2-30GM							*5			Section 10.0
MCDE	Continuous	F2 20CM code							*5			Section 16.0
MCDEP	Pulse								*5			3601011 10.9
Data Transfer 2					1	1	1		1	1	1	
ZPUSH	Continuous	Patch store of index register	✓									Section 17.1
ZPUSHP	Pulse	Batch store of index register	~									
ZPOP	Continuous	Patch DOD of index register	~									Section 17.0
ZPOPP	Pulse	Balch FOF OF Index register	\checkmark									360101117.2
Floating Point												
DECMP	Continuous	Electing point compare	√	*3	~	~						Section 19 1
DECMPP	Pulse		~	*3	~	~						Section 18.1
DEZCP	Continuous	Electing point zone compare	~			~	İ		İ			Section 19 0
DEZCPP	Pulse	Filiating point zone compare	~			~	İ		İ			
DEMOV	Continuous	Electing point move	~	*3	~		İ		İ			Section 10.0
DEMOVP	Pulse	Floating point move	~	*3	~							

*1. The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.70 or later.

*2. Though programmed, this instruction is not valid because the FX1NC, FX2NC or FX3GC PLC does not have a volume to read out under this instruction.

- *3. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
- *4. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
- *5. The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later.
1

						Appl	icable	PLCs					utline
Instruction name	Execution condition	Function	FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX20	FXON	FX0(S)	Reference	2
Floating Point													
DESTR	Continuous	Eloating point to character string	✓										Instru
DESTRP	Pulse	conversion	~									Section 18.4	uctio
DEVAL	Continuous	Character string to floating point	~										n Lis
DEVALP	Pulse	conversion	~									Section 18.5	4
DEBCD	Continuous	Floating point to scientific notation	~			√							3
DEBCDP	Pulse	conversion	~			✓						Section 18.6	= 0
DEBIN	Continuous	Scientific notation to floating point	~			✓							struc
DEBINP	Pulse	conversion	~			√						Section 18.7	tion
DEADD	Continuous		~	*1	~	✓							on of
DEADDP	Pulse	- Floating point addition	~	*1	~	✓						Section 18.8	
DESUB	Continuous		~	*1	√	√							4
DESUBP	Pulse	- Floating point subtraction	~	*1	~	√						Section 18.9	Inst Hov
DEMUL	Continuous		~	*1	~	✓							/ to F uctic
DEMULP	Pulse	Floating point multiplication	~	*1	√	√						Section 18.10	tion of the second
DEDIV	Continuous		~	*1	√	√						·	С,
DEDIVP	Pulse	Floating point division	~	*1	√	√						Section 18.11	5
DEXP	Continuous		~										
DEXPP	Pulse	Floating point exponent	~									Section 18.12	lasic
DLOGE	Continuous		~									·	Inst
DLOGEP	Pulse	Floating point natural logarithm	~									Section 18.13	·uctio
DLOG10	Continuous		√										S
DLOG10P	Pulse	Floating point common logarithm	~									Section 18.14	6
DESQR	Continuous		√	*1	√	√							In Ste
DESQRP	Pulse	Floating point square root	~	*1	~	~						Section 18.15	truct
DENEG	Continuous		~										ions
DENEGP	Pulse	Floating point negation	~									Section 18.16	
INT	Continuous		~	*1	√	√							7
INTP	Pulse	-	~	*1	√	√							
DINT	Continuous	Floating point to integer conversion	~	*1	√	√						Section 18.17	Prog
DINTP	Pulse	-	~	*1	~	~							ed Inst
DSIN	Continuous		~			√							Flov
DSINP	Pulse	Floating point sine	~			√						Section 18.18	V) SUIC
DCOS	Continuous		~			~							8
DCOSP	Pulse	Floating point cosine	~			~						Section 18.19	SSS
DTAN	Continuous		~			~						· · · · · · · · · · · · · · · · · · ·	love Inpa
DTANP	Pulse	Floating point tangent	~			~						Section 18.20	Instru and ire)
DASIN	Continuous		~										ctions
DASINP	Pulse	Floating point arc sine	~									Section 18.21	0
DACOS	Continuous		~										9
DACOSP	Pulse	- Floating point arc cosine	~									Section 18.22	Appli (Aritt
DATAN	Continuous		~										ied Ins nmeti al O
DATANP	Pulse	Floating point arc tangent	~									Section 18.23	c and perat
DRAD	Continuous	Floating point degrees to radians	~										ions ion)
DRADP	Pulse	conversion	~									Section 18.24	10
DDEG	Continuous	Floating point radians to degrees	~	<u> </u>	<u> </u>	<u> </u>							<u>(0, →</u>
DDEGP	Pulse	conversion	~		<u> </u>							Section 18.25	opliec Notat
DDEG	Pulse	conversion	× ×									Section 18.25	

*1. The instruction is provided in the FX3G PLC Ver. 1.10 or later.

and

			Applicable PLCs									
Instruction name	Execution condition	Function	FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)	Reference
Data Operation 2												
WSUM	Continuous		*1									
WSUMP	Pulse	Sum of word data	*1									Section 10.1
DWSUM	Continuous		*1									Section 19.1
DWSUMP	Pulse		*1									
WTOB	Continuous		*1									Section 10.2
WTOBP	Pulse		*1									Section 19.2
BTOW	Continuous	BYTE to WORD	*1									Section 193
BTOWP	Pulse		*1									00000113.5
UNI	Continuous	4-bit linking of word data	*1									Section 194
UNIP	Pulse		*1									00000110.4
DIS	Continuous	4-bit grouping of word data	*1									Section 19.5
DISP	Pulse		*1									000001110.0
SWAP	Continuous		~			~						
SWAPP	Pulse	Byte swap	~			~						Section 19.6
DSWAP	Continuous		\checkmark			\checkmark						
DSWAPP	Pulse		\checkmark			\checkmark						
SORT2	Continuous	Sort tabulated data 2	*1									Section 197
DSORT2	Continuous		*1									00000110.7
Positioning Control												
DSZR	Continuous	Dog search zero return	\checkmark	\checkmark	\checkmark							Section 20.1
DVIT	Continuous	Interrupt positioning	\checkmark									Section 20.2
DDVIT	Continuous		\checkmark									200001120.2
DTBL	Continuous	Batch data positioning mode	*1	~								Section 20.3
DABS	Continuous	Absolute current value read	~	\checkmark	\checkmark	*2	\checkmark	\checkmark				Section 20.4
ZRN	Continuous	Zero return	~	~	~		~	~				Section 20.5
DZRN	Continuous	2010 10(0111	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark				200001120.0
PLSV	Continuous	Variable speed pulse output	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark				Section 20.6
DPLSV	Continuous		\checkmark	\checkmark	~		\checkmark	\checkmark				2000001 2010
DRVI	Continuous	Drive to increment	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark				Section 20 7
DDRVI	Continuous		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark				20000112011
DRVA	Continuous	Drive to absolute	~	\checkmark	\checkmark		\checkmark	\checkmark				Section 20.8
DDRVA	Continuous		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark				00000120.0
Real Time Clock Con	itrol											
TCMP	Continuous	RTC data compare	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				Section 21.1
TCMPP	Pulse		\checkmark	\checkmark	~	\checkmark	\checkmark	\checkmark				0000012111
TZCP	Continuous	RTC data zone compare	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				Section 21.2
TZCPP	Pulse		\checkmark	\checkmark	~	\checkmark	\checkmark	\checkmark				
TADD	Continuous	RTC data addition	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				Section 21.3
TADDP	Pulse		\checkmark	\checkmark	~	\checkmark	\checkmark	\checkmark				
TSUB	Continuous	RTC data subtraction	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				Section 21.4
TSUBP	Pulse		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
HTOS	Continuous		\checkmark									
HTOSP	Pulse	Hour to second conversion	\checkmark									Section 21 5
DHTOS	Continuous		\checkmark									200001121.0
DHTOSP	Pulse		\checkmark									
STOH	Continuous		\checkmark									
STOHP	Pulse	Second to hour conversion	\checkmark									Section 21.6
DSTOH	Continuous		\checkmark									
DSTOHP	Pulse		\checkmark									

*1. *2.

The instruction is provided in the FX3UC PLC Ver. 2.20 or later. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.

1

Outline

10

blied Instructions otation and ift Operation)

			Applicable PLCs							Dutline			
Instruction name	Execution condition	Function	FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX20	FXON	FX0(S)	Reference	2
Real Time Clock Cor	ntrol								0				
TRD	Continuous		✓	✓	✓	\checkmark	\checkmark	\checkmark					Instru
TRDP	Pulse	Read RTC data	~	~	~	~	~	~				Section 21.7	Iction
TWR	Continuous	Sot PTC data	~	~	~	\checkmark	~	~				Section 21.9	ı List
TWRP	Pulse		~	~	~	\checkmark	\checkmark	\checkmark				Section 21.0	•
HOUR	Continuous	Hour meter	~	~	\checkmark	*1	~	\checkmark				Section 21.9	3
DHOUR	Continuous		\checkmark	\checkmark	\checkmark	*1	\checkmark	\checkmark					Cont
External Device		Γ	I .				1	1		r			igura
GRY	Continuous		✓	✓ ✓	✓ ✓	~							n
GRYP	Pulse	Decimal to gray code conversion	✓ 	×	×	✓ 						Section 22.1	of.
	Pulse		× 	v v	v v	v v							4
GBIN	Continuous		• •	• •	•	• •							Inst Hov
GBINP	Pulse	-	~		~	~							v to F ructic
DGBIN	Continuous	Gray code to decimal conversion	~	√	~	~						Section 22.2	tion c
DGBINP	Pulse		~	√	~	\checkmark)f
RD3A	Continuous		~	~	~	*1	~						5
RD3AP	Pulse	Read from dedicated analog block	~	~	~	*1	~					Section 22.3	Ba
WR3A	Continuous	Write to dedicated applace block	~	~	~	*1	~					Castian 22.4	ISIC Ir
WR3AP	Pulse	while to dedicated analog block	~	~	~	*1	~					Section 22.4	nstruc
Extension Function													ction
EXTR_IN	Continuous					*1						Section 23.1	6
EXTRP_IN	Pulse	External ROM function				*1							ں ح
EXTR_OUT	Continuous	-				*1						Section 23.2	Istruc
EXTRP_OUT	Pulse					*1							tions
Others	Continuouo		*0	T	I		1	1	1	1	1		
	Pulse	Read device comment data	*2									Section 24.1	7
RND	Continuous		~										
RNDP	Pulse	Random number generation	~									Section 24.2	Prog
DUTY	Continuous	Timing pulse generation	*2									Section 24.3	d Instru ram F
CRC	Continuous		~										-low)
CRCP	Pulse	Cyclic redundancy check	~									Section 24.4	。 。
DHCMOV	Continuous	High speed counter move	~									Section 24.5	Õ
Block Data Operation	ı				•								Applie (Mov
BK+	Continuous		*2										e anc pare)
BK+P	Pulse	Block data addition	*2									Section 25.1	1 ruction
DBK+	Continuous		*2										SI
DBK+P	Pulse		*2	<u> </u>									9
BK-	Continuous	4	*2										Appli Logic
	Continuous	Block data subtraction	*2									Section 25.2	interior al Op
	Pulse	4	*2										tructic c and peratic
	r uise	1	۷										ons on

*1. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.

The instruction is provided in the FX_{3UC} PLC Ver. 2.20 or later. *2.

			Applicable PLCs									
Instruction name	Execution condition	Function	FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)	Reference
Block Data Operation				1	1		1	1			1	
BKCMP=	Continuous		*1									
BKCMP>	Continuous		*1									
BKCMP<	Continuous		*1									
BKCMP<>	Continuous		*1									
BKCMP<=	Continuous		*1									
BKCMP>=	Continuous		*1									
BKCMP=P	Pulse		*1									
BKCMP>P	Pulse		*1									
BKCMP <p< td=""><td>Pulse</td><td></td><td>*1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></p<>	Pulse		*1									
BKCMP<>P	Pulse		*1									
BKCMP<=P	Pulse		*1									
BKCMP>=P	Pulse	Block data compare	*1									Section 25.3
DBKCMP=	Continuous		*1									000101120.0
DBKCMP>	Continuous		*1									
DBKCMP<	Continuous		*1									
DBKCMP<>	Continuous		*1									
DBKCMP<=	Continuous		*1									
DBKCMP>=	Continuous		*1									
DBKCMP=P	Pulse		*1									
DBKCMP>P	Pulse		*1									
DBKCMP <p< td=""><td>Pulse</td><td></td><td>*1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></p<>	Pulse		*1									
DBKCMP<>P	Pulse		*1									
DBKCMP<=P	Pulse		*1									
DBKCMP>=P	Pulse		*1									
Character String Con	trol		1	r	r	-	r	r	1	1	r	
STR	Continuous		*1									
STRP	Pulse	BIN to character string conversion	*1									Section 26.1
DSTR	Continuous		*1									
DSTRP	Pulse		*1									
VAL	Continuous		*1									
VALP	Pulse	Character string to BIN conversion	*1									Section 26.2
DVAL	Continuous	-	*1									
DVALP	Pulse		*1									
\$+	Continuous	Link character strings	√ ´									Section 26.3
\$+P	Pulse		✓									
	Continuous	Character string length detection	✓ 									Section 26.4
	Puise		✓ 						-			
	Continuous	Extracting character string data	✓ 						-			Section 26.5
	Puise		✓ 									
	Continuous	Extracting character string data	V									Section 26.6
	Puise		v (
	Bulac	Random selection of character	× ./									Section 26.7
	Continuous		* √									
	Dulea	strings	, ,									Section 26.8
INSTR	Continuous		*1									
	Pulee	Character string search	*1									Section 26.9
	Continuous		· ✓									
	Pulse	Character string transfer										Section 26.10
	1 0100	l							1			

*1. The instruction is provided in the FX3UC PLC Ver. 2.20 or later.

FXCPU Structured Programming Manual [Basic & Applied Instruction]

1

			Applicable PLCs										
	Reference	FX0(S)	FXON	FXU/FX20	FX1S	FX1N(C)	FX2N(C)	FX3S	FX3G(C)	FX3U(C)	Function	Execution condition	Instruction name
4				.,				_	_				Data Operation 3
										*1		Continuous	FDEL
	Section 27.1									*1	Deleting data from tables	Pulse	FDELP
										*1		Continuous	FINS
	Section 27.2									*1	Inserting data to tables	Pulse	FINSP
										~	Shift last data read	Continuous	POP
5	Section 27.3									~	[FILO control]	Pulse	POPP
stru	0 11 07 1									~		Continuous	SFR
ction	Section 27.4									~	Bit shift right with carry	Pulse	SFRP
,	0 // 07 5									~		Continuous	SFL
-	Section 27.5									~	Bit shift left with carry	Pulse	SFLP
4												·	Data Comparison
Ins					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		Continuous	LD=
plana					✓	\checkmark	✓	~	\checkmark	✓		Continuous	LD>
ation					~	\checkmark	~	~	~	✓		Continuous	LD<
ۍ ^ب					~	\checkmark	~	~	\checkmark	~		Continuous	LD<>
1					~	\checkmark	~	\checkmark	\checkmark	\checkmark		Continuous	LD<=
	0 // 00 /				~	\checkmark	~	\checkmark	\checkmark	\checkmark	· 	Continuous	LD>=
	Section 28.1				~	\checkmark	~	\checkmark	\checkmark	\checkmark	Load compare	Continuous	LDD=
:					~	\checkmark	~	\checkmark	\checkmark	~		Continuous	LDD>
					~	\checkmark	~	\checkmark	\checkmark	~		Continuous	LDD<
					~	\checkmark	~	\checkmark	\checkmark	~		Continuous	LDD<>
ſ					~	\checkmark	~	\checkmark	\checkmark	~		Continuous	LDD<=
=					✓	\checkmark	✓	~	√	~		Continuous	LD>=
nstru					✓	\checkmark	✓	~	√	~		Continuous	AND=
ction					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		Continuous	AND>
N S					~	\checkmark	~	\checkmark	\checkmark	\checkmark		Continuous	AND<
					√	\checkmark	√	√	√	~		Continuous	AND<>
1					√	\checkmark	√	√	√	~		Continuous	AND<=
P					√	\checkmark	√	√	√	~		Continuous	AND>=
rogra	Section 28.2				√	\checkmark	√	√	√	~	AND compare	Continuous	ANDD=
mF					√	\checkmark	√	√	√	~		Continuous	ANDD>
low)					√	\checkmark	√	√	√	~		Continuous	ANDD<
					√	\checkmark	√	√	√	~		Continuous	ANDD<>
5					✓	\checkmark	✓	\checkmark	\checkmark	~		Continuous	ANDD<=
C Mo					✓	\checkmark	✓	\checkmark	\checkmark	~		Continuous	ANDD>=
npar					✓	\checkmark	✓	\checkmark	\checkmark	~		Continuous	OR=
e)					✓	\checkmark	✓	~	~	✓		Continuous	OR>
					~	~	~	~	~	~		Continuous	OR<
(✓	\checkmark	✓	~	~	✓		Continuous	OR<>
					✓	\checkmark	✓	~	\checkmark	✓		Continuous	OR<=
Arith	0				~	\checkmark	~	~	\checkmark	✓		Continuous	OR>=
metic al Op	Section 28.3				~	\checkmark	~	\checkmark	\checkmark	\checkmark	OK compare	Continuous	ORD=
erati					~	\checkmark	~	~	~	✓		Continuous	ORD>
on)					✓	\checkmark	✓	\checkmark	\checkmark	~		Continuous	ORD<
1(~	\checkmark	~	~	~	✓		Continuous	ORD<>
<u>6</u>					~	~	~	~	~	~		Continuous	ORD<=
Nota hift (~	~	~	\checkmark	\checkmark	✓	1	Continuous	ORD>=

1. The instruction is provided in the FX3UC PLC Ver. 2.20 or later.

ructions and ation)

			Applicable PLCs									
Instruction name	Execution condition	Function	FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)	Reference
Data Table Operation	1											
LIMIT	Continuous		\checkmark									
LIMITP	Pulse		~									Castian 20.1
DLIMIT	Continuous		~									Section 29.1
DLIMITP	Pulse		~									
BAND	Continuous		~									
BANDP	Pulse	Dood bond control	~									Section 20.2
DBAND	Continuous		~									Section 29.2
DBANDP	Pulse		~									
ZONE	Continuous		~									
ZONEP	Pulse		~									Castian 20.2
DZONE	Continuous	Zone control	~									Section 29.3
DZONEP	Pulse		~									
SCL	Continuous		~									
SCLP	Pulse	Scaling	~									Section 20.4
DSCL	Continuous	(coordinate by point data)	~									Section 29.4
DSCLP	Pulse		~									
DABIN	Continuous		*1									
DABINP	Pulse		*1									Section 20 F
DDABIN	Continuous	Decimal ASCII to BIN conversion	*1									Section 29.5
DDABINP	Pulse		*1									
BINDA	Continuous		*1									
BINDAP	Pulse	PIN to desimal ASCII conversion	*1									Section 20 6
DBINDA	Continuous	Bin to decimal ASCII conversion	*1									Section 29.0
DBINDAP	Pulse		*1									
SCL2	Continuous		~									
SCL2P	Pulse	Scaling 2	~									Section 20.7
DSCL2	Continuous	(coordinate by X/Y data)	~									Section 29.7
DSCL2P	Pulse		~									
External Device Com	munication		1		1	1	1		1	1		
IVCK	Continuous	Inverter status check	~	*2	~							Section 30.1
IVDR	Continuous	Inverter drive	~	*2	\checkmark							Section 30.2
IVRD	Continuous	Inverter parameter read	~	*2	~							Section 30.3
IVWR	Continuous	Inverter parameter write	~	*2	~							Section 30.4
IVBWR	Continuous	Inverter parameter block write	~									Section 30.5
IVMC	Continuous	Inverter Multi Command	*3	*4	\checkmark							Section 30.6
ADPRW	Continuous	MODBUS Read / Write	*5	*6	\checkmark							Section 30.7
Data Transfer 3	1		1		1	1	1		1	1		
RBFM	Continuous	Divided BFM read	*1									Section 31.1
WBFM	Continuous	Divided BFM write	*1									Section 31.2
High Speed Processi	ng 2											
DHSCT	Continuous	High speed counter compare with data table	\checkmark									Section 32.1
*1.	The instruc	tion is provided in the FX3UC F		/er. 2	.20 or	later.						

*2. The instruction is provided in the FX3G PLC Ver. 1.10 or later.

*3. The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.70 or later.

*4. The instruction is provided in the FX3G PLC Ver. 1.40 or later.

*5. The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.40 or later.

*6. The instruction is provided in the FX3G PLC Ver. 1.30 or later.

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation of

5

	Applicable PLCs											
Instruction name	Execution condition	Function	FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)	Reference
Extension File Regis	ter Control											
LOADR	Continuous	Load from ER	~	\checkmark								Section 33.1
LOADRP	Pulse		\checkmark	\checkmark								0001011 00.1
SAVER	Continuous	Save to ER	~									Section 33.2
INITR	Continuous	Initialize B and EB	~									Section 22.2
INITRP	Pulse		~									Section 33.3
LOGR	Continuous	Logging D and ED	~									Section 22.4
LOGRP	Pulse	Logging R and ER	~									Section 33.4
RWER	Continuous	Dowrite to ED	*1	~								Section 22 F
RWERP	Pulse		*1	~								Section 33.5
INITER	Continuous	Initialize ED	*1									Castian 22.6
INITERP	Pulse		*1									Section 33.6
-X3U-CF-ADP		·										·
FLCRT	Continuous	File create / check	*2									Section 34.1
FLDEL	Continuous	File delete / CF card format	*2									Section 34.2
FLWR	Continuous	Data write	*2									Section 34.3
FLRD	Continuous	Data read	*2									Section 34.4
FLCMD	Continuous	CF-ADP command	*2									Section 34.5
FLSTRD	Continuous	CF-ADP status read	*2									Section 34.6

*1. The instruction is provided in the FX3UC PLC Ver. 1.30 or later.

*2. The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.61 or later.

8

AppliedInstructions (Move and Compare)

9

Applied Instructions (Arithmetic and Logical Operation)

10

blied Instructions otation and ift Operation)

7

3. Configuration of Instruction

This chapter explains the configuration of sequence instructions.

3.1 Expression and Operation Form of Sequence Instructions

Instructions and arguments

- Each instruction is given a specific name that indicates its contents. "SMOV" (shift move) is one of such examples.
- Each instruction consists of the arguments that indicate input and output data used in that particular instruction.

- (s) : This symbol indicates an argument called "source" that does not change its contents by the execution of an instruction.
- (d) : This symbol indicates an argument called "destination" that changes its contents by the execution of an instruction.
- m, n : Symbols "m" and "n" indicate an argument that belongs to neither the source nor the destination.

Applicable devices of arguments

- An input variable (label or device) specifies the applicable device of an argument.
- Bit devices such as X, Y, M and S may be handled.
- These bit devices may be combined to form KnX, KnY, KnM and KnS to be handled as numerical data. \rightarrow FX Structured Programming Manual [Device & Common]
- The current value register of data register D, timer T and counter C may be handled.
- When handling 32-bit data, a 16-bit data register D is a combination of data registers of two consecutive points.

For example, where data register D0 is defined by a label as the argument of a 32-bit instruction, the 32-bit data of (D1, D0) is handled. (D1 is high order 16 bits and D2 is low order 16 bits.)

Where the current value registers of $\bar{\mathsf{T}}$ and C are used as general data registers, they are handled in the same manner.

Instruction mode and Operation form

Instructions are divided into "16-bit instructions" and "32-bit instructions" depending on the size of values they handle. The instructions also have characteristics of either a "continuous execution" or "pulse execution" depending on the form of execution.

Some of the instructions have all these combinations.

1. 16-bit and 32-bit instructions

• An applied instruction that handles a numeric value is either 16 bits or 32 bits depending on the bit length of the numeric value data.

MOV Command 1 EN FNO -11 d D10 - D12 DMOV Command 2 EN ENO d s D22 D20

Instruction that transfers the D10 contents to D12

Instruction that transfers the contents of (D21, D20) to (D23, D22).

- · Where it is a 32-bit instruction, "D" is added to express as "DMOV".
- The specified device can be an even number or an odd number and is used in combination with the device of the next higher number. (In the case of word devices such as T, C and D) To avoid confusion, it is suggested to give an even number to the low order device specified by the argument of a 32-bit instruction.
- A 32-bit counter can be used as a 32-bit data register. 32-bit counters cannot be handled as target devices in 16-bit applied instructions.

2. Pulse execution and continuous execution instructions

Pulse operation

In an example shown on the right, when X000 changes from OFF to ON, the instruction is executed only once. No other execution takes place.

It is therefore suggested that the instructions of pulse operation be used if not executed all the time.

Symbol "P" indicates that the instruction is of pulse operation. The same is applied to DMOVP.

Continuous operation

The instruction in the figure on the right is of continuous operation. It is executed in each cycle of operation while X001 is ON.

MOVP

X000

Where continuous execution instructions such as INC and DEC are used, some instructions have the destination contents be changed in each cycle of operation.

In either cases, the instruction is not executed if the drive input X000 or X001 is OFF. The destination does not change either if the instruction is not specified otherwise.

uctions 9

0

3.2 Labels

Types of labels

Labels are either global labels or local labels.

- Global labels are available for use in program blocks and function blocks.
- · Local labels are available for use only in a declared program part.

Label classes

The label classes indicate how they are used in which program parts. The table below shows the label classes.

		Program p	parts available for use	
Label class	Descriptions	Program block	Function	Function block
VAR_GLOBAL	A common label that can be used in all program parts.	\checkmark		~
VAR_GLOBAL_CONSTANT	A common constant that can be used in all program parts.	\checkmark		~
VAR	A label used within declared program parts. It cannot be used in other program parts.	\checkmark	\checkmark	\checkmark
VAR_CONSTANT	A constant used within declared program parts. It cannot be used in other program parts.	\checkmark	\checkmark	\checkmark
VAR_INPUT	A label that receives values. It cannot be changed within program parts.		\checkmark	\checkmark
VAR_OUTPUT	A label for output from a function block.			\checkmark
VAR_IN_OUT	A local label that receives values and outputs from a program part.			\checkmark

Definition of labels

Before using a label, the label needs to be defined. An error is generated if attempting to convert (compile) a program where the label is not defined.

- Where defining a global label, the label name, class, data type and device are interrelated.
- Where defining a local label, the label name, class and data type are set.
 The user does not have to specify a device when using a local label. A device is allocated automatically during the compilation.

The following is an example of setting the label Var_dint1 and Var_dint2 of a DMOV instruction.

• When using as a global label:

Set the class, label name and data type and device or address.

1	🚡 Global Label Setting Global1											
		Class		Label Name	Data Type		Constant	Device	Address			
	1	VAR_GLOBAL	•	Var_dint1	Double Word[Signed]			D10	%MD0.10			
	2	VAR_GLOBAL	•	Var_dint2	Double Word[Signed]			D20	%MD0.20			
	3		Ŧ							L -		
4	([.] .	1		1	1			1	1	•		
С	System label is reserved to be registered. System label is reserved to be released. The system to the system											
l	To exe	cute the Reserve	vati	on to Register/F	Release for the system	n	Reservat	ion to Regis	ter System La	abel		
ļ	Please (* To ex	execute 'Reflec xecute Online P	t to rog) System Label (ram Change, ex	Database'. Jecute Online Program	n	Reservat	tion to Relea	ase System La	ibel		
	Change and save. Import System Label											
<	I			1111						>		

• When using as a local label: Set the class, label name and data type.

1	Loca	al Label Se	tti	ng POU_01 [PR	i]					×
Г		Class		Label Name	Data Type		Constant	Device	Address	
	1	VAR	•	Var_dint1	Double Word[Signed]		[
	2	VAR	•	Var_dint2	Double Word[Signed]	<u> </u>				Ι
	3		٠				1			Ι
	4		•							Ι
	5		•							-
4									•	

Expressing constants

The following describes the method of expression when setting constant to a label.

Type of constant	Method of expression	Example
Bit	Enter either "FALSE" or "TRUE", or either "0" or "1".	TRUE, FALSE
Binary number	Add "2#" before the binary number.	2#0010, 2#01101010
Octal number	Add "8#" before the octal number.	8#0, 8#337
Decimal number	Enter the decimal number directly. Or, add "K" before the decimal number	123, K123
Hexadecimal number	Add "16#" or "H" before the hexadecimal number.	16#FF, HFF
Real number	Enter the real number directly. Or, add "E" before the real number.	2.34, E2.34
Character string	Put the character string between single quotations (") or double quotations ("").	'ABC', "ABC"

Data type

The data type of label is either basic data type or universal data type.

• The table below lists the basic data types.

Data type	Description	Value range	Bit length
Bit	Boolean data	0(FALSE), 1(TRUE)	1 bit
Word [signed]	Integer	-32768 to 32767	16 bits
Double Word [signed]	Double precision integer	-2147483648 to 2147483647	32 bits
Word [unsigned]/Bit String [16-bit]	16-bit data	0 to 65535	16 bits
Double Word [unsigned]/Bit String [32-bit]	32-bit data	0 to 4294967295	32 bits
FLOAT (Single Precision)	Real number	E ±1.175495 ⁻³⁸ to E ±3.402823 ⁺³⁸ (Number of significant figures: 6)	32 bits
String	Character string	(50 characters maximum)	Variable
Time	Time value	T#-24d-0h31m23s648.00ms to T#24d20h31m23s647.00ms	32 bits

10

tion and Operation

• The universal data type is the data type of a label that puts together several basic data types. The data type name starts with "ANY".

*1 Refer to the following manual for details.

 \rightarrow Q/L/F Structured Programming Manual (Fundamentals)

1

Outline

2

3.3 Devices and Addresses

A device is expressed by a device or an address.

Device

The device is expressed by a device name and a device number.

Address

An address is expressed by a method defined by IEC61131-3. It is expressed as follows according to IEC61131-3.

Тор	1st ch pos	aracter: sition		2nd character: size	3rd character and onwards: classification	Number
	I	Input	(Omitted)	Bit	These are the numbers for	
	Q	Output	Х	Bit	detailed classification. This number is separated by "."	The number that indicates a
%	М	Internal	W	Word (16 bits)	(period) from subsequent	device number (decimal
			D	Double word (32 bits)	numbers. This number may be omitted.	number).

memory area

Position of memory area
 This is the first classification to identify the position of memory area either by input, output and internal where data is allocated.

X (X device)	:l (Input)
Y (Y device)	:Q (Output)
Device other than above	:M (Internal)

Size

The principle of expression method corresponding to device (method of expression for MELSEC) is as follows.

Bit device :X (Bit)

Word device :W (Word), D (Double word)

· Classification

This is the second classification to identify the types of device that cannot be classified only by the above position and size.

X or Y of a device does not classify.

Refer below for the expression corresponding to the device expression.

 \rightarrow Appendix A

3.4 EN and ENO

The execution control is available for an instruction with "EN".

- EN is for entering an execution condition of instruction.
- ENO is for outputting the state of execution of instruction.
- The table below shows the relationships between the EN and ENO and the contents of operation results.

EN	ENO	Operation results				
TRUE(Executing operation)	TRUE(Without operation error)	Operation output value				
	FALSE(With operation error)	Undefined value				
FALSE(Stopping operation)	FALSE	Undefined value				

In the instruction above, instruction MOV is executed only when X000 is TRUE.

MEMO

1

4. How to Read Explanation of Instructions

)	\longrightarrow	8.3	MOV /	м	ove	e																		
									E	(3U(C)	FX3G	(C)	FX35	E	X2N(C) E	(1N/C	E	K1S	FX	U/FX2C	FX0	1	FX0(S)
)								\rightarrow		0	0	(-)	0		0	/	0		0		0	0		0
		Outli	i ne This instr	ucti	on tr	ans	sfers	(copi	es) th	ie cor	itents	of	a dev	ice t	to and	othe	r dev	rice.						
		1.	Instruction	and	i op	era	Exer	ution	J		, ini	_		E	xpres	sion	in ead	ch lar	qua	qe			_	
			name	" °	perat	ion	fc	orm			Struc	ture	ed ladd	er/FB	3D					J -	ST			
)		\rightarrow	MOV		16 bit	ts	Cont	inuous			[N EN 5	MOV ENC				r C	/IOV(I Dr an	EN,s, assig	,d); jnmer	nt statem	ient		
			MOVP				16 bits Pulse					M EN	IOVP ENC				ľ	/IOVF Dran	P(EN, assig	s,d); jnmer	nt statem	ient		
			DMOV		32 bit	ts	Cont	inuous			[D EN	MOV ENC				[DMO∖ Dran	/(EN, assig	.s,d); jnmei	nt statem	ient		
			DMOVP		32 bi	ts	Pi	ulse				DN EN	MOVP ENC					OMO∖ Dr an	/P(El assig	N,s,d) jnmer	; nt statem	ient		
		2.	Set data	3																				
				Va	riable								Decori	ntion							0.11	ata type		
				va	riabio	9							Descri	ption	1					o	16-bit peration	6	32- pera	bit ation
			Input variable	E	EN			E	xecutio	on conc	lition of tran	efor	source							Bit	16	AND	(32	
		\rightarrow	Output	E	SNO			E	Execution state								_	Bit		741	52			
			variable	(D			Tr	ransfer destination device									ANY	16	AN	′32			
		3.	Applica	ble	dev	/ice	es																	
			Operand		Bit D)evi	ces					Wo S ¹	rd Devi vstem	ces Sp	ecial						O Real	thers Chara	cter	
			type	V V	Syste	em U	Jser		igit Sp	ecifica	tion	-	Úser	ŭ	Jnit	<u>.</u>	Index		Con	stant	Numbe	r Strin	g	Pointe
		\longrightarrow	S	<u>^</u>					•	•	•	•			▲ 2	•			•	•				r
			٩						•	٠	٠	•	• • •	1	▲2	• •	•	•						
)		Func 1.	 ▲: Refer to "Cautions". Function and operation explanation 16-bit operation(MOV, MOVP) The contents of the transfer source specified by s are transferred to the transfer destination specified by d. While the command input is OFF, the transfer destination specified by d does not change. When a constant (K) is specified as the transfer source specified by s, it is automatically converted into binary. Command input NOV S does not change. If Nov S does not change. If Nov S does not change. If Nov S does not change. If Nov S does not change. 																					
		Caut	ions																		_			
)		\rightarrow	 Instru To ex Some ▲1:T ▲2:T 	 Instructions of pulse operation type are not provided in the FX0, FX0s or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type. Some restrictions to applicable devices ▲1:The FX3G, FX3CC, FX3U and FX3UC PLCs only are applicable. 																				
	F	Prog	ram exa	m	oles	3			200	<i></i>		- 141												
		1	When re	had	ina	the	9 CU	rent	valu	ie of	a tir	ne	r and	CO	unte	r								
)		→".	[Structured	lado	der/F	EN s	MOV		D20	[ST MO	a ui] V(X00	1,TI	N0,D20);	(Cur The	rent ope	value	e of T is th	0) - e sa	→ (D: ame a	20) as a col	unter.		

The following shows one of the pages that explains the instructions.

* The above is different from the actual page, as it is provided for explanation only.

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation or Instructions

오,

5

Basic Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

Applied Instructions (Move and Compare)

9

edInstructions metic and al Operation)

0

- 1) Indicates the corresponding chapter, section, subsection, number and instruction name.
- 2) Indicates the PLCs that support the instruction.

ltem	Descriptions
0	Supported by PLCs from the first release.
Δ	The support conditions depend on the versions. "Cautions" explains the applicable versions.
×	This particular series PLCs do not support the instruction.

3) Indicates the data length, operation form and expression of each instruction.

Item	Descriptions
16 bits	An instruction of 16-bit data length
32 bits	An instruction of 32-bit data length
Continuous	This is a continuous execution instruction that is executed in each cycle of operation while the execution condition (EN) is being satisfied.
Pulse	This is a pulse execution instruction that is executed only when the execution condition (EN) changes from the state of not established to the state of established.
Structured ladder/ FBD	Indicates the instruction expression in the structured ladder language adopted as the representative.
ST	Indicates a ST language instruction.

Some PLCs do not support "16 bits / 32 bits" or "continuous / pulse" depending on their versions. Refer to "Cautions".

4) Indicates the names of the input and output variables of the instruction and the contents and data type of each variable.

Refer to the following manual for details of data type.

→ Q/L/F Structured Programming Manual (Fundamentals)

- 5) Applicable devices "•" indicates the devices that can be used in an instruction. Devices marked "A" have restrictions in use. Refer to "Cautions".
- 6) Function and operation explanation Explains the functions that the instruction is responsible for. This explanation uses an example of structured ladder language.
- 7) Summarizes the notes before using the instruction.
- 8) Program example

Explains a program example in each language. In program examples of the structured ladder/FBD language, the structured ladder language is adopted as the representative.

5. Basic Instruction

This chapter introduces the instructions for the structured project corresponding to the basic instructions for the simple project.

Instruction name	Function	Reference
LD	Initial logical operation of NO (normally open) contacts	Section 5.1
LDI	Initial logical operation of NC (normally closed) contact type	Section 5.1
AND	Serial connection of NO (normally open) contacts	Section 5.1
ANDI	Serial connection of NC (normally closed) contacts	Section 5.1
OR	Parallel connection of NO (normally open) contacts	Section 5.1
ORI	Parallel connection of NC (normally closed) contacts	Section 5.1
LDP	Initial logical operation of rising edge pulse	Section 5.2
LDF	Initial logical operation of falling/trailing edge pulse	Section 5.2
ANDP	Serial connection of rising edge pulse	Section 5.2
ANDF	Serial connection of falling/trailing edge pulse	Section 5.2
ORP	Parallel connection of rising edge pulse	Section 5.2
ORF	Parallel connection of falling/trailing edge pulse	Section 5.2
OUT	Final logical operation type coil drive (Excluding timers and counters)	Section 5.3
OUT_T	Final logical operation type coil drive (timers)	Section 5.4
OUT_C	Final logical operation type coil drive (16-bit counter)	Section 5.5
OUT_C_32	Final logical operation type coil drive (32-bit counter)	Section 5.5
AND()	Serial connection of multiple parallel circuits	Section 5.6
OR()	Parallel connection of multiple contact circuits	Section 5.6
MPS	Stores the current result of the internal PLC operations	Section 5.7
MRD	Reads the current result of the internal PLC operations	Section 5.7
MPP	Pops (recalls and removes) the currently stored result	Section 5.7
INV	Invert the current result of the internal PLC operations	Section 5.8
MEP	Conversion of operation result to leading edge pulse	Section 5.9
MEF	Conversion of operation result to trailing edge pulse	Section 5.9
SET	SET Bit device latch ON	Section 5.10
RST	RESET Bit device OFF	Section 5.10
PLS	Rising edge pulse	Section 5.11
PLF	Falling/trailing edge pulse	Section 5.11
MC	Denotes the start of a master control block	Section 5.12
MCR	Denotes the end of a master control block	Section 5.12
END	Program END, I/O refresh and Return to Step 0	Section 5.13
NOP	No operation or null step	Section 5.14

5.1 LD, LDI, AND, ANI, OR, ORI

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

The LD and LDI instructions are contacts connected to bus lines. The AND and ANI instructions connect one contact in series. The OR and ORI instructions connect one contact in parallel.

1. Format and operation, execution form

Instruction	Execution	Express	Expression in each language													
name	form	Structured ladder/FBD	ST													
LD	Continuous		To become an assignment statement, operator, control syntax and so forth.													
LDI	Continuous	OR HI 1 1 1 1 000	The ST language may not have the instructions (symbols) directly corresponding to the contacts of LD, AND and OR													
AND	Continuous		that are programmed in a simple project. The structured ladder shown on the left can be expressed as shown below.													
ANI	Continuous	X000 X002 Y002	(When configuring with assignment statements)													
OR	Continuous	ORI X001 X003 Y003	Y000:=(X000 OR X001) AND X002; Y001:=(X000 OR X001) AND X002 AND NOT X003; Y002:=(NOT X000 OR NOT X001) AND NOT X002:													
ORI	Continuous		Y003:=(NOT X000 OR NOT X001) AND NOT X002 AND X003;													

2. Set data

Var	iable	Description	Data type		
Input variable	-	Variable that are applicable to AND and OR input.	Bit		
Output variable	-	Result of operation of AND and OR.	Bit		

3. Applicable devices

	Bit Devices							5		Word Devices											Others					
Instruction	System User							ər	Digit Specification				S	System User			Special Unit	Index		Constant		Real Number	Character String	Pointer		
	Х	Y	М	Т	С	S	5	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	Е	"0"	Р	
LD	•	•	•	•				▲1												▲2						
LDI	•	•	•	•				▲1												▲2						
AND	•	•	•	•				▲1												▲2						
ANI	•	•	•	•				▲1												▲2						
OR	•	•	•	•				▲1												▲2						
ORI	•	•	•	•				▲1												▲2						

▲: Refer to "Cautions".

Jotions

9

Applied Instructions (Arithmetic and Logical Operation)

10

ation and toperation)

Function and operation explanation

1. LD (Initial logical operation of NO (normally open) contacts)

2. LDI (Initial logical operation of NC (normally closed) contact type)

[ST]

ON

ON

Y000:= NOT X000;

timing chart

Y000

3. AND (Serial connection of NO (normally open) contacts)

[Structured ladder/FBD]

[ST]

AND X002 X000 Y003 -()-

Y003:= X002 AND X000;

timing chart

2 Instruction List 3 Configuration of Instruction 4 How to Read Explanation or nstructions 오, 5 Basic Instruction 6 Step Ladder Instructions 7 Applied Instructions (Program Flow) 8 AppliedInstructions (Move and Compare) 9 Applied Instructions (Arithmetic and Logical Operation)

1

Outline

0

ation and t Operation) Instructions

7. Relationship with AND (...)

The parallel connection by OR or ORI instruction is connected to the preceding LD or LDI instruction in principle. The "AND (...) after" instruction, however, the parallel connection by OR or ORI instruction is connected to the second preceding LD or LDI instruction.

8. Indexing

Devices used in LD, LDI, AND, ANI, OR and ORI instructions can be indexed with index registers (V, Z). (State relays (S), special auxiliary relays (M), 32-bit counters (C) or "DD.b" cannot be indexed.) Applicable only to the FX3U and FX3UC PLCs.

[Structured ladder	/FBD]	[ST]	(Y), the value of an index register (V or Z) is converted into an octal number, and then
X000 X001V0	Y000 ()	Y000:= X000 OR X001V0;	added. Example: When the value of V0 is "10", the LD contact is set to ON (becomes conductive) or OFF (becomes nonconductive) by X013.

9. Bit specification of data register (D)

A bit in data register (D) can be specified as a device used in LD, LDI, AND, ANI, OR and ORI instructions. Applicable only to the FX3U and FX3UC PLCs.

[Structured ladder/FBD]	[ST]	When specifying a bit in data register, input "." after a data register (D) number, and then
X002 D0.3 Y003	Y003:= X002 AND D0.3;	Only 16-bit data resister is applicable. Specify a bit number as "0 1, 2,, 9, A, B,, F" from the least significant bit.
1		Example: In the example shown on the left,
		LD contact is set to ON (becomes
		conductive) of OFF (becomes
		nonconductive) by the bit 3 of DU.

Cautions

- 1) Some restrictions to applicable devices
 - ▲1: The FX₃U and FX₃UC PLCs only are applicable.
 - ▲2: Only the FX₃U and FX₃UC PLCs are capable of indexing applicable devices. The following devices cannot be indexed.
 - Special auxiliary relays (M)
 - 32-bit counters (C)
 - State (S)
 - Word bit specification "D□.b"

Errors

- When an I/O number used in LD, LDI, AND, ANI, OR or ORI instruction does not exist due to indexing, M8316 (Non-existing I/O specification error) turns ON. (Applicable to the FX3U and FX3UC PLCs only)
- 2) When the device number of a device (M, T or C) other than I/O does not exist due to indexing, an operation error (error code: 6706) occurs. (Applicable to the FX3U and FX3UC PLCs only)

5.2 LDP, LDF, ANDP, ANDF, ORP, ORF

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	×	×	×

Outline

Contact instructions LDP, ANDP, and ORP detect the rising edge, and become active during one operation cycle only at the rising edge of a specified bit device (that is, when the bit device turns ON from OFF). Contact instructions LDF, ANDF and ORF detect the falling edge, and become active during one operation cycle only at the falling edge of a specified bit device (that is, when the bit device turns OFF from ON).

1. Format and operation, execution form

Instruction	Execution	Expression in	each language
name	form	Structured ladder/FBD	ST
LDP	Pulse (detecting rising pulse)	LDP EN ENO s	LDP(EN,s);
LDF	Pulse (detecting falling pulse)	LDF EN ENO s	LDF(EN,s);
ANDP	Pulse (detecting rising pulse)	ANDP — EN ENO — s	ANDP(EN,s);
ANDF	Pulse (detecting falling pulse)	ANDF EN ENO s	ANDF(EN,s);
ORP	Pulse (detecting rising pulse)	ORP — EN ENO — s	ORP(EN,s);
ORF	Pulse (detecting falling pulse)	ORF EN ENO s	ORF(EN,s);

2. Set data

١	/ariable	Description	Data type						
Input	EN	Execution condition	LDP,LDF: Except LDP, LDF :	Always TRUE BOOL					
Valiable	S	Applicable devices	Bit						
Output variable	ENO	Execution state	Bit						

uctions

10

ied Instructions ation and t Operation)

3. Applicable devices

			В	lit	D	ev	ice	s		N					Nord Devices								Others					
Instruction		_	Sy	/s	te	m	Us	er	Dig	Digit Specification			S	System User			Special Unit	Index		Index Consta		stant	Real Number	Character String	Pointer			
	Х	Y	N	η.	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	К	Н	E	"0"	Р			
LDP	•	•			•	•	•	▲1																				
LDF	•	•			•	•	•	▲1																				
ANDP	•	•			•	•	•	▲1																				
ANDF	•	•			•	•	•	▲1																				
ORP	•	•		•	•	•	•	▲1																				
ORF	•	•		•	•	•	•	▲1																				

▲: Refer to "Cautions".

Function and operation explanation

1. LDP, ANDP, ORP (Initial logical operation of rising edge pulse, serial connection and parallel connection)

[Structured ladder/FBD] LDP ORP M0 ΕN ENO ENO ΕN () X000 X001 s s M8000 ANDP M1 ENO EN -()--RUN monitor X002 s

[ST]

M0:=ORP(LDP(TRUE,X000),X001); M1:= ANDP(M8000,X002);

timing chart

In the example shown above, M0 or M1 is ON during only one operation cycle when X000 to X002 turn ON from OFF.

2. LDF, ANDF, ORF (Initial logical operation of falling/trailing edge pulse, serial connection and parallel connection) [Structured ladder/FBD] [Structured ladder/FBD] [ST] [Structured ladder/FBD] [ST] [Structured ladder/FBD] [ST]

In the example shown above, M0 or M1 is ON during only one operation cycle when X000 to X002 turn OFF from ON.

3. Bit specification of data register (D)

A bit data register (D) can be specified as a device used in LDP, LDF, ANDP, ANDF, ORP and ORF instructions.

4. Output drive side

The following two circuits offer the same operation.

In each circuit, M6 is ON during only one operation cycle when X010 turns ON from OFF. <Rising edge detection> www.edu/cycle.com <Pulse instruction (applied instruction)>

In each circuit, MOV instruction is executed only once when X020 turns ON from OFF.

ctions

9

Applied Instructions (Arithmetic and Logical Operation)

0

blied Instructions otation and ift Operation)

1

Outline

2

Instruction List

3

5. Differences in the operation caused by auxiliary relay (M) numbers

Not supported by the FX1S, FX1N or FX1NC PLC.

When an auxiliary relay (M) is specified as a device in LDP, LDF, ANDP, ANDF, ORP and ORF instructions, the operation varies depending on the device number range as shown in the figure below.

<M0 to M2799, M3072 to M7679> (M0 to M2799 for the FX2N and FX2NC PLCs, M0 to M1535 for the FX3s PLC)

- After M0 is driven by X000, all contacts 1) to 4) corresponding to M0 are activated.
- The contacts 1) to 3) detect the rising edge of M0.
- Because of LD instruction, the contact 4) is conductive while M0 is ON.

<M2800 to M3071>

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation or nstructions

ç,

5

Basic Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

uctions

9

nied Instruction Inmetic and I Operation,

0

Move and Compare)

Cautions

1) When LDP, LDF, ANDP, ANDF, ORP or ORF instruction programmed in a same step is executed two or more times within one operation cycle, the operation is as follows.

Programs executed two or more times

- Program between FOR and NEXT instructions
- Program which executes a same subroutine program from two or more CALL instructions during one operation cycle.
- Program which jumps to a pointer number or ladder block label in a smaller ladder block number by CJ instruction.

Operation

- When a device turns ON from OFF
 - :LDP, ANDP or ORP instruction turns ON. 1st time
 - 2nd time and later : When the device status is same as the time when the instruction was executed last, the instruction turns OFF.
- When a device turns OFF from ON :LDF, ANDF or ORF instruction turns ON. 1st time 2nd time and later : When the device status is same as the time when the instruction was executed last, the instruction turns OFF.
- 2) When write during RUN is completed for a circuit including an instruction for falling edge pulse (LDF, ANDF, or ORF instruction), the instruction for falling edge pulse is not executed without regard to the ON/ OFF status of the target device of the instruction for falling edge pulse.

When write during RUN is completed for a circuit including an instruction for falling edge pulse (PLF instruction), the instruction for falling edge pulse is not executed without regard to the ON/OFF status of the operation condition device.

It is necessary to set to ON the target device or operation condition device once and then set it to OFF for executing the instruction for falling edge pulse.

3) When write during RUN is completed for a circuit including an instruction for rising edge pulse, the instruction for rising edge pulse is executed if a target device of the instruction for rising edge pulse or the operation condition device is ON.

Target instructions for rising edge pulse: LDP, ANDP, ORP and pulse operation type applied instructions (such as MOVP)

Contact ON/OFF status (while write during RUN is executed)	Instruction for rising edge pulse	Instruction for falling edge pulse
OFF	Not executed	Not executed
ON	Executed ^{*1}	Not executed

- PLS instruction is not executed. *1.
- 4) Some restrictions to applicable devices ▲1: The FX3U and FX3UC PLCs only are applicable.

5.3 OUT (Excluding timers and counters)

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

This instruction outputs the operation result up to the execution of the OUT instruction to the specified device.

1. Format and operation, execution form

Instruction	Execution	Expression in	each language
name	form	Structured ladder/FBD	ST
OUT	Continuous	X000 Y000 I () Or OUT I EN	OUT(EN,d); Or an assignment statement Example: OUT(X000,Y000); When using an assignment statement.
		d Y000	Y000:=X000;

2. Set data

١	/ariable	Description	Data type
Input variable	EN	Execution condition	Bit
Output	ENO	Execution state	Bit
variable	d	Target variable	ANY_SIMPLE

3. Applicable devices

			Bi	t C)ev	ice	S				1	No	Vord Devices							Others					
Instruction			Sy	ste	m	Us	er	Dig	Digit Specification			System User			n	Special Unit	Index		Cons	stant	Real Number	Character String	Pointer		
	X	Y	М	Т	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	v	Z	Modifier	κ	н	E	"0"	Р	
OUT		•	•			•	▲1												▲2						

▲: Refer to "Cautions".

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation nstructions

<u>o</u>

Read

5

Basic

Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

uctions

9

Applied Instructions (Arithmetic and Logical Operation)

0

blied Instructions otation and ift Operation)

Applied Instru (Move and Compare)

Function and operation explanation 1. When a bit device is used A device described in OUT instruction turns ON or OFF according to the driven contact status. Parallel OUT instructions can be used consecutively as many times as necessary. In the program example shown below, OUT M100 and OUT M101 are parallel. If two or more OUT instructions are executed for a same device number, however, the double output (double coil) operation is resulted. [Structured ladder/FBD] [ST] Drive contact of OUT instruction OUT(X000,Y000); OUT(NOT X001,M100); X000 OUT Y000 OUT(NOT X001,M101); -()-OUT X001 M100 -()--14 For assignment statement M101 OUT Y000:= X000; -()-M100:= NOT X001; M101:= NOT X001; timing chart ON ON X000

2. Indexing

Devices used in OUT instruction can be indexed with index registers (V and Z). (State relays (S), special auxiliary relays (M), or "DD.b" cannot be indexed.) Applicable only to the FX3U and FX3UC PLCs.

[Structured ladder/FBD]	[ST]	When a used devices is an input (X) or output (Y), the value of an index register (V
V000	OUT(X000,Y000Z0);	or Z) is converted into an octal number, and then added.
	For assignment statement Y000Z0:= X000;	Example: When the value of Z0 is "20", Y024 turns ON or OFF.

3. Bit specification of data register (D)

A bit in data register (D) can be specified as a device used in OUT instruction. Applicable only to the FX3U and FX3UC PLCs.

[Structured ladder/FBD]	[ST]	When specifying a bit in data register, input "." after a data register (D) number, and then
X000 D0.3	OUT(X000,D0.3); For assignment statement D0.3:= X000;	input a bit number (0 to F) consecutively. Only 16-bit data resister is applicable. Specify a bit number as "0 1, 2,, 9, A, B, , F" from the least significant bit. Example: In the example shown on the left, the bit 3 of D0 turns ON or OFF when X000 turns ON or OFF.

Cautions

- 1) Some restrictions to applicable devices
 - ▲1: The FX₃U and FX₃UC PLCs only are applicable.
 - ▲2: Only the FX₃U and FX₃UC PLCs are capable of indexing applicable devices. The following devices cannot be indexed.
 - Special auxiliary relays (M)
 - State (S)
 - Word bit specification "D□.b"
- 2) The following instructions are used to operate the timer and counter in a structured program. Note that they are not operable in the OUT instruction.

Instruction name	Reference
OUT_T	Section 5.4.1
OUT_C	Section 5.5.1
OUT_C_32	Section 5.5.1

Errors

- 1) When a Y number used in OUT instruction does not exist due to indexing, M8316 (Non-existing I/O specification error) turns ON. (Applicable to the FX3U and FX3UC PLCs only)
- 2) When the device number of a device (M,T,C)other than I/O does not exist due to indexing, an operation error (error code: 6706) occurs. (Applicable to the FX3U and FX3UC PLCs only.)

Program example

1. When using bit device

[Structured ladder/FBD]

2. When specifying bit of word device

[Structured ladder/FBD]

[ST]

OUT(X005,D0.5); OUT(X006,D0.6); OUT(X006,D0.7);

5.4.1 OUT_T

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

An output is generated when a set time expires.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
OUT_T	16 bits	Continuous	OUT_T EN ENO TCoil TValue	OUT_T(EN, TCoil, TValue);

2. Set data

١	/ariable	Description	Data type
Immunt	EN	Execution condition	Bit
input variable	TCoil	Target timer	Bit
Vallabio	TValue	Timer set value	ANY16
Output variable	ENO	Execution state	Bit

3. Applicable devices

			Bi	t D	ev	ice	es					Wo	ord	D	evic	es						Oth	iers	
Operand type		ę	Sy	ste	m	Us	er	Digi	it Spe	cifica	tion		Sy: U	ste se	m r	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	Х	Y	Μ	Т	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	к	Н	E	"0"	Р
TCoil				•																				
TValue														•	▲1				▲2	٠				

▲: Refer to "Cautions".

Function and operation explanation

1. OUT_T operation

 When the operation result up to the OUT_T instruction operation is ON, the timer coils is ON and counts until the set value is reached. When the set time expires (or reaches the set count), the contacts become as follows:

NO (normally open) contact	Timer is conductive.
NC (normally closed) contact	Timer is not conductive.

 When the operation result up to the OUT_T instruction operation turns OFF from ON, the timer parameters become as follows.

			Before	time-up	After t	ime-up	
Timer type	Timer coil	Current timer value	NO (normally open) contact	NC (normally closed) contact	NO (normally open) contact	NC (normally closed) contact	
100 ms timer 0.1 to 3276.7 seconds							
10 ms timer 0.01 to 327.67 seconds	OFF	0	Nonconductive	Conductive	Nonconductive	Conductive	
1 ms timer ^{*1} 0.001 to 32.767 seconds							
100 ms integrating timer ^{*2} 0.1 to 3276.7 seconds	OFF	Holding current	Nonconductive	Conductive	Nonconductive	Conductive	
1 ms integrating timer ^{*2} 0.001 to 32.767 seconds		value	Nonconductive	Conductive		Conductive	

- *1. Not supported by the FXos, FXo, FX1N, FX1NC, FXU, FX2C, FX2N or FX2NC PLC.
- *2. Not supported by the FX0S, FX0, FX0N or FX1S PLC.

2. Clearing integrating timer

After the set time expires, the current value of the integrating timer is cleared and the contacts are turned OFF by the RST.

3. Timer set value

The set value can be specified directly by a decimal number (K) or indirectly using a data register (D) or extension register (R).

Indirect setting by the extension register (R) is applicable only to the FX3U and FX3UC PLCs.

No negative numbers (-32768 to -1) can be set.

If the timer value is set to "0", the time expires at the same time as the OUT_T instruction activates.

4. OUT_T operation

The following processes take place when the OUT_T instruction activates.

- 1) The OUT_T instruction TC coil turns ON or OFF.
- 2) The OUT_T instruction TS contacts turn ON or OFF.
- 3) The OUT_T instruction TN current value is changed.

If the OUT_T instruction is skipped by an instruction such as JMP while the OUT_T instruction is ON, neither the current value is updated nor contacts are turned ON or OFF.

When one particular OUT_T instruction operates more than once within the same scan, the current value is updated as many times as the timer operates.

Cautions

- 1) When a timer device is specified in a program, use the following depending on the locations of use.
 - Used as contacts: TS
 - Used as a coil: TC
 - Used as a current value: TN
- Use the timer T192 to T199 within a subroutine or interrupt routine. This timer counts the time when executing a coil instruction or END instruction.
 When the set value is reached, the output contact operates when the coil instruction or the END instruction is executed.

A general purpose timer counts the time only when the coil instruction is executed. Such a timer does not operate normally because it does not count the time if used in a subroutine or an interrupt routine where the coil instruction is executed only under certain conditions.

- Note: If a 1 ms integrating timer is used in a subroutine or an interrupt routine, the output contact operates when the first coil instruction is executed after the set value is reached (FX1N, FX1NC, FXU, FX2C, FX2N, FX2NC, FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs)
- 4) Some restrictions to applicable devices

▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

▲2: The target device can be indexed only by the FX3U and FX3UC PLCs.

9

ied Instructions hmetic and cal Operation)

0

ation and Operation)

1

Outline

Program example

1. Program that turns ON Y010 and Y014 in 10 seconds after X000 turns ON.

[ST] OUT_T(X000,TC1,100); OUT(TS1,Y010); OUT(TS1,Y014);

2. Program that sets the BCD data of X010 to X01F to a timer.

3. Program that turns ON Y010 in 250 milliseconds after X000 turns ON.

[Structured ladder/FBD]

[ST]

[31]

OUT_T(X000,TC200,25); OUT(TS200,Y010);

5.5 Operating Counters

5.5.1 OUT_C, OUT_C_32

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

The counter starts counting when the condition turns ON from OFF. It generates an output when counting up to the set value.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST
OUT_C	16 bits	Continuous	OUT_C — EN ENO — CCoil — CValue	OUT_C(EN,CCoil,CValue);
OUT_C_32	32 bits	Continuous	OUT_C_32 EN ENO CCoil CValue	OUT_C_32(EN,CCoil,CValue);

2. Set data

V	/ariable	Description	Data	type
•	anabie	Description	16-bit operation	32-bit operation
land	EN	Execution condition	Bit	
input variable	CCoil	Target counter	Bit	
	CValue	Counter set value	ANY16	ANY32
Output variable	ENO	Execution state	Bit	

3. Applicable devices

			Bi	t D)ev	/ic	es					W	ord	D	evic	es						Oth	ers	
Operand type		ŝ	Sys	ste	m	U	ser	Dig	it Spe	cifica	tion		Sy: U	ste se	m r	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	Х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	к	н	E	"0"	Р
CCoil					•																			
CValue														•	▲1				▲2	•				

▲: Refer to "Cautions".

Function and operation explanation

1. OUT_C operation

 When the operation result up to the OUT_C instruction turns ON from OFF, the counter counts up the current value (count value) by +1. When the counter completes counting (the current value reaches the set value), the contact becomes as follows.

NO (normally open) contact	Conductive
NC (normally closed) contac	Nonconductive

2) The counter does not count if the operation result remains ON. (The count input does not need to be in the form of pulse.)

lied Instructions tation and ft Operation)

2. Counter reset

After completing to count, the count value and contact condition does not change until the RST instruction is executed.

3. Counter set value

The set value of the counter can be specified directly by a decimal number (K) or indirectly using a data register (D) or extension register (R). Indirect setting by the extension register (R) is applicable only to the FX3U and FX3UC PLCs. No negative numbers (-32768 to -1) can be set.

If set to "0", the same process as 1 takes place.

4. When using counter device

When a counter device is specified in a program, use the following depending on the locations of use.

- · Used as contacts: CS
- Used as a coil: CC
- · Used as a current value: CN

Cautions

- 1) Some restrictions to applicable devices
 - ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 - ▲2: Only the FX3U and FX3UC PLCs can index the target device. A 32-bit counter cannot be indexed.

Program example

X000

1. This program turns ON Y30 when X0 turns ON 10 times and resets the counter when X1 turns ON.

[Structured ladder/FBD]

ΕN **FNO** -11 CCoil CC10 -K10 CValue ----Y030 CS10 -11 -()-X001 RST ΕN ENO -11 d - CN10

OUT C

2. This program sets "10" to C10 when X0 turns ON and sets to "20" to C10 when X1 turns ON.

[Structured ladder/FBD]

[ST]

MOVP(X0 AND NOT X1,10,D0); MOVP(X1 AND NOT X0,20,D0); OUT_C(X3,CC10,D0); OUT(CS10,Y30);
1

5.6 AND(...), OR(...)

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

Use AND (...) instruction to connect a branch circuit (parallel circuit block) to the preceding circuit in series. Use OR (...) instruction to connect a series circuit block in parallel.

1. Format and operation, execution form

Instruction	Execution	Expression in e	each language
name	form	Structured ladder/FBD	ST
AND()	Continuous	X000 X002 Y000 I I () X001 X003	AND() The ladder diagram (or LD) is described as follows. Y000:=(X000 OR X001) AND(X002 OR X003);
OR()	Continuous	X000 X001 Y001 	OR() The ladder diagram (or LD) is described as follows. Y001:=(X000 AND X001) OR(X002 AND X003);

2. Applicable devices

		I	Bit I	Dev	/ice	es						Word Devices								Others				
Instruction		s	yst	em	Us	ser	Dig	it Spe	cifica	tion	;	System User		Special Unit	Index		Constant		Real Number	Character String	Pointer			
	X	Y	МТ	C	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	к	н	E	"0"	Р	
AND()																								
OR()																								

ied Instructions ation and t Operation)

Function and operation explanation

1. AND(...)(Serial connection of circuit blocks)

AND (...) is an independent instruction not associated with any device number in the same way as the OR (...) instruction described later.

When there are many parallel circuits, the AND (\dots) instruction can be used for each circuit block to connect them.

[Structured ladder/FBD]

OR instruction after AND (...) instruction

[ST]

Y007:= ((X000 OR X001) AND ((X002 AND X003) OR (NOT X004 AND X005) OR X006)) OR X003;

2. OR(...)(Parallel connection of circuit blocks)

OR (...) is an independent instruction not associated with any device number in the same way as the AND (...) instruction.

When there are many parallel circuits, the OR (...) instruction can be used for each circuit block to connect them.

[Structured ladder/FBD]

[ST]

Y007:=(X000 AND X001) OR (X002 AND X003) OR (NOT X004 AND X005);

1

Outline

2

Instruction List

5.7 MPS, MRD, MPP

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

These PLCs have 11 memories called "Stack" which store the intermediate result (ON or OFF) of operations.

1. Format and operation, execution form

Instruction	Execution	Expression in	each language
name	form	Structured ladder/FBD	ST
MPS	Continuous	MPS EN ENO	MPS(EN);
MRD	Continuous	MRD EN ENO	MRD(EN);
MPP	Continuous	MPP EN ENO	MPP(EN);

2. Set data

١	/ariable	Description	Data type				
Input variable	EN	Execution condition	MPS: MRD, MPP:	Bit Always TRUE			
Output variable	ENO	Execution state	Bit				

3. Applicable devices

	Bit Devices						Word Devices										Others					
Instruction	System User		System User Digit Specification				tion	System User			m r	Special Unit		Index		Constant		Real Number	Character String	Pointer		
	ΧY	МТ	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	к	Н	Е	"0"	Р
MPS																						
MRD		There are no applicable devices.																				
MPP																						

nstructions

10

ation and Operation) nstructions

Function and operation explanation

These instructions are convenient in programming branched multi-output circuits.

1. MPS, MRD, MPP (Stack push down, stack read and stack popup)

[Structured ladder/FBD]

[ST] Y002:= X005 AND MPS(X004); Y003:= MRD(TRUE) AND X006; Y004:= MRD(TRUE); Y005:= MPP(TRUE) AND X007;

- 1) Use MPS instruction to store the intermediate result of operation, and then drive the output Y002.
- Use MRD instruction to read the stored data, and then drive the output Y003. MRD instruction can be programmed as many times as necessary.
- In the final output circuit, use MPP instruction instead of MRD instruction. MPP instruction reads the stored data described above, and then resets it.

Error

MPS instruction can be used two or more times. However, the difference between the number of MPS instructions and the number of MPP instructions should be 11 or less, and should be 0 at the end.

Caution

When a circuit is programmed as shown on the left, it is compiled in fact as the program on the right that does not use MPS, MRD or MPP instruction.

Program example

1. Program example 1 (One stack) Only one stack is used in this example.

[Structured ladder/FBD]

[ST]

Y000:= MPS(X000 AND X001) AND X002; Y001:= MPP(TRUE);

Y002:= MPS(X003) AND X004; Y003:= MPP(TRUE) AND X005;

Y004:= MPS(X006) AND X007; Y005:= MRD(TRUE) AND X010; Y006:= MRD(TRUE) AND X011; Y007:= MPP(TRUE) AND X012;

2. Program example 2 (One stack with AND (...) and OR (...) instructions)

[Structured ladder/FBD]

[ST]

Y000:= MPS(X000) AND (X001 OR X002); Y001:= MRD(TRUE) AND ((X003 AND X004) OR (X005 AND X006));

Y002:= MPP(TRUE) AND X007;

Y003:= Y002 AND (X010 OR X011);

7

Applied Instructions (Program Flow)

3. Program example 3 (Two stacks)

[Structured ladder/FBD]

X000	MPS EN ENO	X001	MPS EN ENO	X002	Y000 —()–
	MPP EN ENO	X003			Y001 ()_
	MPP EN ENO	X004	MPS EN ENO	X005	Y002 —()–
	MPP EN ENO		X006		Y003 ()-

[ST]

Y000:= (MPS(X000) AND MPS(X001)) AND X002; Y001:= MPP(TRUE) AND X003; Y002:= (MPP(TRUE) AND MPS(X004)) AND X005; Y003:= MPP(TRUE) AND X006;

4. Program example 4 (Four stacks)

[Structured ladder/FBD]

ŀ	X000	M EN	PS ENO	X001	M EN	PS ENO	X002	M EN	PS ENO	X003	N EN	IPS ENO	X004	Y000 —()–
		M EN	PP ENO											Y001 ()-
		M EN	PP ENO											Y002 ()-
		M EN	PP ENO											Y003 ()-
		M EN	PP ENO											Y004 ()_

[ST]

Y000:= (((MPS(X000) AND MPS(X001)) AND MPS(X002)) AND MPS(X003)) AND X004;

Y001:= MPP(TRUE);

Y002:= MPP(TRUE);

Y003:= MPP(TRUE);

Y004:= MPP(TRUE);

[Structured ladder/FBD]

12:= Y003 AND X002; 11:= Y002 AND X003; 10:= Y001 AND X004;
0

In programming a circuit on the upper side, it is necessary to use MPS instruction three times. By changing the circuit on the upper side into the circuit on the lower side, the same contents can be programmed easily without MPS instruction.

5.8 INV

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	×	×	×

Outline

INV instruction inverts the operation result up to just before INV instruction.

1. Format and operation, execution form

Instruction	Execution	Expression in each language								
name	form	Structured ladder/FBD	ST							
INV	Continuous	EN ENO	INV(EN);							

2. Set data

· ·	Variable	Description	Data type
Input variable	EN	Execution condition	Bit
Output variable	ENO	Execution state	Bit

3. Applicable devices

		В	it C)ev	ice	es	Word Devices													Oth	hers					
Instruction		Sy	/ste	em	Us	ser	Dig	it Spe	cifica	tion		Sy: U	ste se	m r	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer			
	x	Y	ΛТ	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	к	Н	E	"0"	Р			
INV											Th	ere	e ai	re no	There are no applicable devices.											

Function and operation explanation

1. INV(inverts the result of operations)

In the figure above, Y000 turns ON when X000 is OFF, and Y000 turns OFF when X000 is ON. INV instruction can be used in a same position as serial contact instructions (AND, ANI, ANDP and ANDF). Different from LD, LDI, LDP and LDF instructions shown in the list, INV instruction cannot execute connection to bus lines. Different from OR, ORI, ORP and ORF instructions, INV instruction cannot be used independently in parallel to a contact instruction. 1

Outline

2

Instruction List

3

2. Operation range of INV instruction

When INV instruction is used in a complicated circuit containing ORB and ANB instructions, the operation range of INV instruction is as shown in the figure below:

INV instruction inverts the operation result after LD, LDI, LDP or LDF instruction located before INV instruction.

Accordingly, if INV instructions are used inside ORB and ANB instructions, blocks after LD, LDI, LDP or LDF instruction seen from each INV instruction are regarded as the target of INV operation.

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
Δ	0	0	×	×	×	×	×	×

Outline

MEP and MEF commands are instructions that change the operation results to pulses so that device numbers do not have to be specified.

1) MEP

The operation results up to the MEP instruction become conductive when the driving contacts turn ON from OFF.

The use of MEP instructions simplifies the process of changing driving contacts to pulses when multiple contact points connect in a series.

2) MEF

The operation results up to the MEF instruction become conductive when the driving contacts turn OFF from ON.

The use of MEF instructions simplifies the process of changing driving contacts to pulses when multiple contact points connect in a series.

1. Format and operation, execution form

Instruction	Execution	Expression in ea	ach language
name	form	Structured ladder/FBD	ST
MEP	Pulse	MEP EN ENO	MEP(EN);
MEF	Pulse	MEF EN ENO	MEF(EN);

2. Set data

,	Variable	Description	Data type
Input variable	EN	Execution condition	Bit
Output variable	ENO	Execution state	Bit

3. Applicable devices

		E	Bit [De	vice	es					W	ord	De	evic	es				Others				
Instruction		s	yst	en	ı Us	ser	Dig	it Spe	cifica	tion		Sys U	ste sei	m r	Special Unit		I	Index	Con	stant	Real Number	Character String	Pointer
	Х	Y	мт	. c	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	к	н	E	"0"	Р
MEP											Th	aro	ard	- no	applicable	h c	ovi	COE E					
MEF]										There are no applicable devices.s						003.3						

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation o Instructions

잌

5

Basic Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

AppliedInstructions (Move and Compare)

9

79

Function and operation explanation

1. MEP(ON during rising edge of driving contacts results)

2. MEF(ON during falling edge of driving contacts results)

Cautions

- 1) MEP and MEF instructions are provided in the FX3U and FX3UC PLCs Ver. 2.30 or later.
- MEP and MEF instructions may not operate normally if the indexed contact is modified and changed to pulses by sub-routine programs, the FOR and NEXT instructions, etc.
- As the MEP and MEF instructions operate using the operation results immediately before them, use at the list program as the AND instruction.
 The MEP and MEE instructions connect he used at the list program as LD or OD.

The MEP and MEF instructions cannot be used at the list program as LD or OR.

- 4) Caution on writing during RUN
 - a) Pulse command during rising edge of operation (MEP instruction) results After writing to the circuit with MEP instructions during RUN, the MEP instruction result turns ON (conductive) while the operation results up to the MEP instruction are ON.
 - b) Pulse instruction during falling edge of operation (MEF command) results After writing to the circuit with MEF instructions during RUN, the MEF instruction result turns OFF (nonconductive), regardless of the operation results up to the MEF instruction. The operation results of MEF instruction turns ON (conductive) when the operation results up to the MEF instruction turn OFF.

Operation Results up to MEP/MEF Instruction (while writing is excuted during RUN)	MEP	MEF
OFF	OFF (non-conductive)	OFF (non-conductive)
ON	ON (conductive)	OFF (non-conductive)

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation of Instructions

5

Basic Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

Applied Instructions **9** Move and Compare)

vlied Instructions 'nmetic and al Operation)

0

ation and Operation)

5.10 SET, RST

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

- Setting a bit device (SET instruction [holding operation]) When the command input turns ON, SET instruction sets to ON an output relay (Y), auxiliary relay (M), state relay (S) and bit specification of word device. Even if the command input turns OFF after that, the device which was set to ON by SET instruction remains ON.
- Resetting a bit device (RST instruction [resetting folding operation]) RST instruction resets an output relay (Y), auxiliary relay (M), state relay (S), timer (T), counter (C) or bit specification of a word device. Use the RST instruction to reset (reset to OFF) a device which was set to ON by SET instruction.
- 3) Clearing the current value of a word device (RST instruction [Clearing current value and resister]) RST instruction clears the current value data of a timer (T), counter (C), data register (D), extension register or (R)index register (V) (Z). (The same result can be obtained by MOV instruction which transfers the constant K0.) RST instruction can be used also to reset the current value and return the contact of retentive type timers.

SET and RST instructions can be used for a same device as many times as necessary in an arbitrary order.

1. Format and operation, execution form

Instruction	Execution	Expression in ea	ach language
name	form	Structured ladder/FBD	ST
SET	Continuous	X000 SET I EN Or d X000 Y000 *1 (S)	SET(EN,d); Example: SET(X000,Y000);
RST	Continuous	X001 RST I EN Or	RST(EN,d); Example: RST(X001,Y000);

*1. This symbol is applicable to the bit type data only.

2. Set data

١	/ariable	Description		Data type
Input variable	EN	Execution condition	Bit	
Output	ENO	Execution state	Bit	
variable	d	Applicable device or variable	SET RST	Bit ANY_SIMPLE

3. Applicable devices

			Bi	t C)ev	vio	ce	s					W	orc	I D	evic	es					Others				
Instruction		System User							Dig	it Spe	ecification		System User		Special Unit	pecial Unit Index		Con	stant	Real Number	Character String	Pointer				
	Х	Y	Μ	Т	С	;	5	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	к	н	Е	"0"	Р	
SET		•	•			•		▲1												▲3						
RST		•	•	•			D	▲1					•	•	•	▲2		•	•	▲3						

▲: Refer to "Cautions".

Function and operation explanation

SET instruction drives the coil for an output relay (Y), auxiliary relay (M), state relay (S) and bit specification of data register (D).

1. When using a bit device

SET instructions located in parallel can be used consecutively as many times as necessary. In the program example shown below, RST (X1001, Y000) after SET (X000, Y000) corresponds to this usage.

1 Outline 2 Instruction List 3 Configuration of Instruction 4 How to Read nstructions Read ç, 5 Basic Instruction 6 Step Ladder Instructions 7 Applied Instructions (Program Flow)

8

uctions 9

Applied Instru (Move and Compare)

rpuled Instruction rithmetic and ral Operation,

0

led Instructions tation and t Operation)

2. When using word device (timer or counter)

Use RST instruction to reset a counter or retentive type timer.

1) Program example of an internal counter

C0 up-counts the number of turning ON from OFF at X011. When the counting result reaches the set value K10, the output contact C0 is activated. Even if X011 changes from OFF to ON after that, the current value of the counter remains unchanged and the output contact remains activated.

For clearing the counter and returning the output contact, X010 is set to ON.

In case of latched (battery backed) type counters, the current value and the operation status and reset status of the output contact are latched even after power failure.

2) Program example of a high speed counter

For one-phase one-input counters, use special auxiliary relays for specifying the counting direction.

X010 in ON status: specifies down counting.

X010 in OFF status: Specifies up counting

When X011 turns ON, the output contact of the counter $C \triangle \triangle \triangle$ is returned and the current value of the counter is reset to "0".

In counters with reset input, the same situation is achieved by interrupt operation when the corresponding reset input turns ON, but any program is not required for this operation.

When X012 turns ON, turning ON/OFF of a counting input X000 to X005 determined according to the counter number is counted.

In counters having start input, counting is started only after the corresponding start input turns ON.

When the current value of a counter increases and reaches the set value (K or contents of D), the output contact is set. When the current value decreases and reaches the set value, the output contact is reset.

As a contact driving the counting coil of a high speed counter, program a contact which is normally ON when high speed counting is executed.

If an input relay (X000 to X005) assigned for high speed counters is used for driving the counting coil, accurate counting cannot be achieved.

3) Caution on using RST instruction for a jumped program, subroutine program or interrupt program When RST instruction for a timer or counter is executed in a jumped program, subroutine program or interrupt program, the timer or counter may be kept in the reset status and the timer or counter may be disabled.

For details, refer to the following sections.

 \rightarrow For a jumped program, refer to section 7.1. \rightarrow For a subroutine program, refer to section 7.2.

 \rightarrow For an interrupt program, refer to section 7.3.

3. Indexing

Devices used in SET and RST instructions can be indexed with index registers (V, Z). (State relays (S), special auxiliary relays (M), 32-bit counters, "D \Box .b" and word devices cannot be indexed.) This is applicable only to the FX3U and FX3UC PLCs.

When a used device is an input (X) or output (Y), the value of an index register (V, Z) is converted into octal, and then added. Example: When Z0 is "20", Y024 turns ON or

OFF.

4. Bit specification of a data register (D)

A bit data register (D) can be specified as a device used in SET or RST instruction. This is applicable only to the FX3U and FX3UC PLCs.

SET(X000,D0.3);

RST(X001,D0.3);

[Structured ladder/FBD]

[ST]

When specifying a bit in data register, input "." after a data register (D) number, and then input a bit number (0 to F) consecutively.
Only 16-bit data registers are available.
Specify a bit number as "0, 1,2, ..., 9, A, B, ..., F" from the least significant bit.
Example: In the example shown on the left, when X000 turns ON once, the bit 3 of D0 turns ON. When X001 turns ON,

the bit 3 of D0 turns OFF.

Cautions

- 1) Some restrictions to applicable devices
 - ▲1: FX3U and FX3UC PLCs only are applicable.
 - ▲2: FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 - ▲3: Only the FX3U and FX3UC PLCs are capable of indexing applicable devices. The following devices cannot be indexed.
 - Special auxiliary relays (M)
 - 32-bit counters (C)
 - State (S)
 - Word device
 - Word bit specification "D□.b"
- 2) When SET and RST instructions are executed for an output relay (Y) in a same operation, the result of the instruction located nearest the END instruction (which specifies the end of program) is output.
- 3) When using the retentive type timers of the FX1N, FX1NC, FX2N and FX2NC, be sure to create a program where the RST instruction resets the retentive type timers to be used. If no such a reset circuit by RST is present in the program, the timers remain in the state of reset, possibly causing the timers not to operate.

Error

- 1) When an I/O number used in SET or RST instruction does not exist due to indexing, M8316 (non-existing I/O specification error) turns ON. (Applicable only to the FX₃U and FX₃UC PLCs.)
- When the device number of a device (M, T or C) other than I/O used in SET or RST instruction does not exist due to indexing, an operation error (error code: 6706) occurs. (Applicable only to the FX3U and FX3UC PLCs.)

5.11 PLS, PLF

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

When PLS instruction is executed, an applicable device is activated during only one operation cycle after a drive input turns ON.

When PLF instruction is executed, an applicable device is activated during only one operation cycle after a drive input turns OFF.

For example, when PLC mode is changed in the way "RUN \rightarrow STOP \rightarrow RUN while a drive input remains ON, "PLS(**, M0) operates, but "PLS (**, M600) (backed up by the battery)" does not operate (when the PLC mode switches from STOP to RUN) because the status of M600 is latched even while the PLC is in the STOP mode.

1. Format and operation, execution form

Instruction	Execution	Expression in e	ach language
name	form	Structured ladder/FBD	ST
PLS	Pulse	- EN ENO- d-	PLS(EN,d);
PLF	Pulse	– EN ENO – d –	PLF(EN,d);

2. Set data

١	/ariable	Description	Data type		
Input variable	EN	Execution condition	Bit		
Output	ENO	Execution state	Bit		
variable	d	Applicable device or variable	Bit		

3. Applicable devices

Instruction	Bit Devices						s		Word Devices									Others							
	System User						er		Digit Specification			System User			m	Special Unit	Index		Constant		Real Number	Character String	Pointer		
	х	Y	М	Т	C	s	5 0	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	к	н	E	"0"	Р
PLS		•	▲1																	▲2					
PLF		•	▲1																	▲2					

▲: Refer to "Cautions".

Function and operation explanation

ΕN

ENO

d-M1

1. PLS (rising edge differential output)

	[Structured ladder/FBD]	[ST]	timing chart	
	X000 PLS EN ENO d N	PLS(X000, M0);	$\times 000 $	ON ON during one
	In the figure above, M0 is ON o	during only one operatio	n cycle when X000 chang	ges from OFF to ON.
2.	PLF (falling edge different	tial output)		
	[Structured ladder/FBD]	[\$1]	timing chart	
	X000 PLF	PLF(X000, M1);	X000	ON

In the figure above, M1 is ON during only one operation cycle when X000 changes from ON to OFF.

1

Outline

2

Instruction List

7

Applied Instructions (Program Flow)

8

uctions

9

inetic and al Operation

0

ation and toperation)

ppliedInstruct Move and Compare)

ON during one

PLF instruction M 1 operation cycle

3. Output drive side

The following two circuits cause a same operation.

In each case, M0 is ON during only one operation cycle when X000 changes from OFF to ON.

<< Pulse operation type applied instruction>>

In each case, MOV instruction is executed only once when X000 changes from OFF to ON.

Cautions

 When write during RUN is completed for a circuit including an instruction for falling edge pulse (LDF, ANDF or ORF instruction), the instruction is not executed without regard to the ON/OFF status of the target device of the instruction for falling edge pulse.

When write during RUN is completed for a circuit including an instruction for falling edge pulse (PLF instruction), the instruction is not executed without regard to the ON/OFF status of the operation condition device.

It is necessary to set to ON the target device or operation condition device once and then set it to OFF for executing the instruction for falling edge pulse.

2) When write during RUN is completed for a circuit including an instruction for rising edge pulse, the instruction is executed if a target device of the instruction for rising edge pulse or the operation condition device is ON.

Target instructions for rising edge pulse: LDP, ANDP, ORP, and pulse operation type applied instructions (such as MOVP)

Contact ON/OFF status (while write during RUN is executed)	Instruction for rising edge pulse	Instruction for falling edge pulse
OFF	Not executed	Not executed
ON	Executed ^{*1}	Not executed

- *1. PLS instruction is not executed.
- 3) Some restrictions to applicable devices
 - ▲1: Excluding special auxiliary relays (M)
 - ▲2: Only the FX3U and FX3UC PLCs are capable of indexing applicable devices. The following devices cannot be indexed.
 - Special auxiliary relays (M)

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

When MC instruction is executed, instructions from MC to MCR are executed. Thereby, efficient ladder switching sequence programs can be created.

1. Format and operation, execution form

Instruction	Execution	Expression in e	ach language
name	form	Structured ladder/FBD	ST
MC	Continuous	MC — EN ENO — n d	MC(EN,n,d);
MCR	Continuous	— EN ENO— — n	MCR(EN,n);

2. Set data

V	/ariable	Description	Data type				
	EN	Execution condition	MC: MCR:	Bit Always TRUE			
Input variable	n	Nesting level (0 to 7) When adopting a nesting structure, use it in order of $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$. If not adopting a nesting structure, it is always "0".	ANY16				
Output	ENO	Execution state	Bit				
variable	d	Device number to be turned ON when executing the MC instruction.	Bit				

3. Applicable devices

Instruction		Bit Devices					;	Word Devices									Others								
	System User					r	Digit Specification			System User			n	Special Unit	Index		Constant		Real Number	Character String	Pointer				
	х	Y	М	Т	0	0	5	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	к	н	E	"0"	Р
MC		•	▲1																						
MCR	There are no applicable devices.																								

▲: Refer to "Cautions".

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation of Instructions

5

Basic Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

AppliedInstructions (Move and Compare)

9

Applied Instructions (Arithmetic and Logical Operation)

10

nstructions

87

Function and operation explanation

When MC instruction is executed, instructions from MC to MCR are executed. When MC instruction is not executed, the operation with the contact OFF is executed.

In the program example below, the instructions from MC to MCR are executed as they are while the input X000 is ON. However, while the input X000 is OFF, each drive device offers the following operation.

Timers (except retentive type timers) and devices driven by OUT instruction: Turn OFF

Retentive type timers, counters and devices driven by SET/RST instruction : Hold the current status.

[Structured ladder/FBD]

Caution

- Some restrictions to applicable devices
 ▲1: Excluding special auxiliary relays (M)
- 2) Use MC instruction and MCR instruction at a same nesting level as a pair.
- 3) Do not attach a contact before MCR instruction. (Always make MCR instruction "TRUE".)
- 4) When not adopting the nesting structure
 Use the nesting level "0" for creating a program.
 MC instruction can use the same nesting level "0" as many times as needed by changing the device (Y or
 M) number specified by
 .
- 5) When adopting the nesting structure Increase the nesting level in the way " $0 \rightarrow 1 \rightarrow ... \rightarrow 6 \rightarrow 7$ ".

 \rightarrow Refer to a program example for the details.

6) The device specified by d remains ON while MC instruction is executed. If the same device number is used in another instruction, it results in the double coil operation in the same way as OUT instruction.

Program examples

1. When the nesting structure is not adopted.

When not adopting the nesting structure, use nesting level "0" again to program.

There is no limitation in the number of nesting level "0". Only in the nesting structure, increase the nesting level $0 \rightarrow 1 \dots 6 \rightarrow 7$ as shown in the example 2 on the next page.

[ST]

MC(X000,0,M100); Y000:= X001; Y001:= X002; MCR(TRUE,0); MC(X003,0,M150); Y002:= X004; Y003:= X005; MCR(TRUE,0); 1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation of Instructions

5

Basic Instruction

6

2. When the nesting structure is adopted.

When using MC instructions inside MC instruction, increase the nesting level "N" in turn in the way "N0 \rightarrow N1 \rightarrow N2 \rightarrow N3 \rightarrow N4 \rightarrow N5 \rightarrow N6 \rightarrow N7".

For returning from the nesting structure, reset the nesting levels from the highest one in turn using MCR instruction in the way "N7 \rightarrow N6 \rightarrow N5 \rightarrow N4 \rightarrow N3 \rightarrow N2 \rightarrow N1 \rightarrow N0".

For example, if "MCR N5" is programmed without programming "MCR N6" and "MCR N7", the nesting level is returned to 5 at one time.

Available nesting levels are from N0 to N7 (eight layers).

[Structured ladder/FBD]

5.13 END

EV211/C)	EV2C(C)	EVac	EVON(C)	EVAN(C)	EV40	EVU/EVac	EVAN	EV0(C)
FA3U(C)	FA3G(C)	FX35	FA2N(C)	FAIN(C)	FA15	FAU/FA2C	FAUN	FA0(3)
0	0	0	0	0	0	0	0	0

Outline

END instruction specifies the end of a program.

(Do not write the END instruction in the middle of a program.)

END instruction for ending a program and input/output processing and returning to 0 step is automatically written at the end of the program. It cannot be programmed into program structural elements (POU).

Function and operation explanation

PLCs repeat "input processing \rightarrow program execution \rightarrow output processing". When END instruction is written at the end of a program, PLCs immediately execute the output processing without executing steps after END instruction.

If END instruction is not written at the end of a program, PLCs execute the program until the final step, and then execute the output processing.

At the first execution after the PLC mode was changed from STOP to RUN, PLCs start from END instruction. When END instruction is executed, the watchdog timer (which checks to see if the operation cycle is too long) is refreshed.

Cautions

Do not write END instruction in the middle of a program.

NOP (for simple project only) 5.14

	EV2U(C)	EV2C(C)	EV26	EV2N(C)	EV4N(C)	EV40	EVU/EV2C	EVON	EV0(S)
	FA30(C)	FA3G(C)	LV22	FAZN(C)	FAIN(C)	FA13	FAU/FA2C	FAUN	FA0(3)
_	×	×	×	×	×	×	×	×	×

This instruction is available for use only in the simple project. It cannot be programmed in the structured project.

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation or Instructions

ਰ੍ਰ

5

Basic Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

uctions 9

Applied Instruc (Move and Compare)

ed Instructions Imetic and al Operation)

0

ation and Operation)

6. Step Ladder Instructions

6.1 Step Ladder

This chapter introduces the instructions of structured project that correspond to the MELSEC-LD step ladder instructions.

6.1.1 Outline

In programs using step ladder instructions, a state relay S is assigned to each process based on machine operations, and input condition and output control are programmed as sequences connected to the state output.

6.1.2 Function and operation explanation

In step ladder program, a state S is regarded as one control process, and a sequence of input condition and output control are programmed in a state relay.

Because the preceding process is not performed any more when the program execution proceeds to the next process, a machine can be controlled using simple sequences for each process.

1. Operation of instruction

In a step ladder program, each process performed by the machine is expressed by a state relay. A state relay consists of a drive coil and contact (STL output) in the same way as other relays. Use SET or OUT instruction to drive a coil, and use STL instruction for a contact.

- When a state relay turns ON, a connected circuit (internal circuit) is activated by way of an STL output. When a state relay turns OFF, a connected internal circuit is deactivated by way of an STL output. After one operation cycle, non-driving of an instruction (jump status) is not available.
- When a condition (transfer condition) provided between state relays is satisfied, the next state relay turns ON, and the state relay which has been ON so far turns OFF (transfer operation).
 In the state relay transfer process, the both state relays are ON only instantaneously (during one operation cycle).

In the next operation cycle after the ON status was transferred the former state is reset to OFF. When the transfer state relay S is used in a contact instruction, however, the contact image is executed in the OFF status immediately after the transfer condition is satisfied.

· One state relay number can be used only once.

*1. Output coils can be used again in different state relays.

2. Primary knowledge for creating programs

· List of sequence instructions available between STL instruction and RET instruction

			Instruction		
State r	elay	LD/LDI/LDP/LDF AND/ANI/ANDP/ANDF, OR/ORI/ORP/ORF, OUT, SET/RST, PLS/PLF	ANB/ORB/MPS/MRD/ MPP	MC/MCR	
Initial/general state relay	,	Available	Available ^{*1}	Not available	
Branch/recombination	Drive processing	Available	Available ^{*1}	Not available	
state relay	Transfer processing	Available	Not available	Not available	

- STL instruction cannot be used in interrupt program and subroutine programs.

- It is not prohibited to use jump instructions in state relays. But it is not recommended to use jump instructions because complicated movements will be resulted.

*1. MPS instruction cannot be used immediately after an STL instruction, even in a drive processing circuit.

7

Applied Instructions (Program Flow)

8

AppliedInstructions (Move and Compare)

9

Applied Instructions (Arithmetic and Logical Operation)

10

plied Instructions otation and hift Operation)

(Rot: Shift

nstructions

1

· Special auxiliary relays

For efficiently creating step ladder programs, it is necessary to use some special auxiliary relays. The table below shows major ones.

Device number	Name	Function and application
M8000	RUN monitor	This relay is normally ON while the PLC is in the RUN mode. Use this relay as the program input condition requiring the normally driven status or for indicating the PLC operation status.
M8002	Initial pulse	This relay turns ON and remains ON only instantaneously (during one operation cycle) when the PLC mode is changed from STOP to RUN. Use this relay for the initial setting of a program or for setting the initial state relay.
M8040	STL transfer disable	When this relay is set to ON, transfer of the ON status is disabled among all state relays. Because programs in state relays are operating even in the transfer disabled status, output coils do not turn OFF automatically.
M8046*1	STL state ON	Use this relay to prevent simultaneous startup of another flow or as a process ON/OFF flag. When M8047 is OFF, M8046 is normally OFF. When M8047 is ON, M8046 operates as follows: FX3S PLC When at least one among the state relays S0 to S255 is ON: ON When all of the state relays S0 to S255 are OFF: OFF FX3G/FX3GC/FX3U/FX3UC PLCs When at least one among the state relays S0 to S899 and S1000 to S4095 is ON: ON When all of the state relays S0 to S899 and S1000 to S4095 is ON: ON
M8047 ^{*1}	Enable STL monitoring	When this relay is driven, the device number of a state relay in the ON status having the smallest device number among S0 to S255 (FX3S PLC), S0 to S899 and S1000 to S4095 (FX3G/FX3GC/FX3U/FX3UC PLCs) is stored to D8040, and the state relay number in the ON status having the next smallest device number is stored to D8041. In this way, up to eight state relays in the ON status are stored in registers up to D8047.

*1. Processed when END instruction is executed.

Block

When there are relay ladder blocks and step ladder blocks, put RET instruction at the end of each step ladder program. A PLC starts the step ladder processing by STL instruction, and returns to the relay ladder processing from the step ladder processing by RET instruction. However, when consecutively programming a step ladder in a different flow (when there is no relay ladder before the step ladder in the different flow), RET instruction between flows can be omitted, and RET instruction can be programmed only at the end of the last flow.

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation of Instructions

ç,

5

Basic Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

Applied Instructions (Move and Compare)

9

Applied Instructions (Arithmetic and Logical Operation)

0

it Operation)

· Output driving method

It is required to include a LD or LDI instruction before the last OUT instruction in a state relay. Change such a circuit as shown below.

State relay transfer method •

Each OUT and SET instruction in state relays automatically resets the transfer source, and has the selfholding function.

OUT instructions can be used only for transfer to a separate state relay in an SFC program.

3. Program with state relays in branches and recombination

· Example of selective branch

Do not use MPS, MRD, MPP, AND (...) and OR (...) instructions in a transfer processing program with branches and recombination.

Even in a load driving circuit, MPS instructions cannot be used immediately after STL instructions. In the same way as programs for general state relays, program the drive processing first, and then program the transfer processing.

Continuously program all transfer processing.

• Example of selective recombination Do not use MPS, MRD, MPP, AND (...) and OR (...) instructions in a transfer processing program with branches and recombination.

Even in a load driving circuit, MPS instructions cannot be used immediately after STL instructions. Pay attention to the programming order so that a branch line does not cross a recombination line.

Before recombination, program the drive processing of state relays first. After that, program only the transfer processing to recombination state relays continuously. This rule should be observed to enable inverse conversion into an SFC program.

· Example of parallel branch

Do not use MPS, MRD, MPP, AND (...) and OR (...) instructions in a transfer processing program with branches and recombination.

Even in a load driving circuit, MPS instructions cannot be used immediately after STL instructions. In the same way as programs for general state relays, program the drive processing first, and then program the transfer processing.

Continuously program all transfer processing.

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation o nstructions

5

Basic Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

Applied Instructions (Move and Compare)

9

Applied Instructions (Arithmetic and Logical Operation)

0

tation and ft Operation)

오,

Example of parallel recombination ٠ Do not use MPS, MRD, MPP, AND (...) and OR (...) instructions in a transfer processing program with branches and recombination. Even in a load driving circuit, MPS instructions cannot be used immediately after STL instructions.

Pay attention to the programming order so that a branch line does not cross a recombination line.

Before recombination, program the drive processing of state relays first. After that, program only the transfer processing to recombination state relays continuously.

- Composition of branches and recombination ٠ When a recombination line is directly connected to a branch line (not by way of a state relay as shown below), it is recommended to provide a dummy state relay between the lines. Create step ladder programs as shown below.
- 1) Selective recombination and selective branch

2) Parallel recombination and parallel branch

3) Selective recombination and parallel branch

4) Parallel recombination and selective branch

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation or nstructions

ç,

5

Basic

6.1.3 Program examples

Examples of single flows

1. Example of flicker circuit

- When the PLC mode is changed from STOP to RUN, the state relay S3 is driven by the initial pulse (M8002).
- The state relay S3 outputs Y000. One second later, the ON status transfers to the state relay S20. •

Step

• The state relay S20 outputs Y001. 1.5 seconds later, the ON status returns to the state relay S3.

[ST]

SET(M8002,S3); STL(TRUE, S3); Y000:=TRUE; OUT T(TRUE, TC0,K10); SET(TS0, S20); STL(TRUE, S20); Y001:=TRUE OUT_T(TRUE, TC1, K15); S3:=TS1; RET(TRUE);

9

Applied Instructions (Arithmetic and Logical Operation)

1 0

blied Instructions otation and ift Operation)

Shift

6.2 STL

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

In programs using step ladder instructions, a state relay State S is assigned to each process based on machine operations, and input condition and output control are programmed as sequences connected to the state output.

STL instruction for step ladder programs is expressed as follows in each language.

1. Format and operation, execution form

Instruction	Operation	Execution	n Expression in each language									
name	Operation	form	Structured ladder/FBD	ST								
STL	16 bits	Continuous	STL EN ENO s	STL(EN,s);								

2. Set data

١	/ariable	Description	Data type
Input variable	EN	Execution condition	Always TRUE
Output	S	Target device or variable	Bit
variable	ENO	Execution state	Bit

3. Applicable devices

	Bit Devices					S		Word Devices											Others					
Operand type	and Sys		System User					Digit Specification			System User		Special Unit		Index		Con	stant	Real Number	Character String	Pointer			
	Х	Y	М	т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	к	н	Е	"0"	Р
S						•																		

4. Caution

Refer to the cautions in the items below for expressing step ladders in a structured project (Structured ladder/ FBD, ST).

 \rightarrow Section 6.3 RET

6.3 RET

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

RET instruction for step ladder programs is expressed as follows in each language.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language									
name	operation	form	Structured ladder/FBD	ST								
RET	16 bits	Continuous	RET EN ENO	RET(EN);								

2. Set data

,	Variable	Description	Data type
Input variable	EN	Execution condition	Always TRUE
Output variable	ENO	Execution state	Bit

3. Applicable devices

	Bit Devices					es		Word Devices										Others					
Operand type	System User			ser	Dig	Digit Specification				System User		Special Unit		Index		Constant		Real Number	Character String	Pointer			
	X	Y	M	Г	cs	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	к	Н	E	"0"	Р
-		No target device is available.																					

nstructions

Applied Instructions (Arithmetic and Logical Operation)

10

ied Instructions ation and t Operation)

4. Caution

The following examples show how MELSEC-LD step ladders are expressed in the structured programs.

Reference: MELSEC-LD step ladder expression

- When expressing step ladder (STL) instructions in the coil format. (Same as that for GX Developer)
- 2) When expressing step ladder (STL) instructions in the contact format.

Expressing step ladder in structured program

1) Structured ladder/FBD

2) ST

SET(M8002, S0); STL(TRUE, S0); Y000:=TRUE; SET(X000, S20); STL(TRUE, S20); S0:=X001; RET(TRUE);

7. Applied Instructions (Program Flow)

This chapter introduces the instructions mainly related to control flow of sequence programs such as conditional program execution and priority processing.

Instruction name	Function	Reference
CJ	Conditional lump	Section 7.1
CJP		
CALL		Section 7.2
CALLP		Section 7.2
SRET	Subroutine Return	Section 7.3
IRET	Interrupt Return	Section 7.4
DI	Disable Interrupt	Section 7.5
El	Enable Interrupt	Section 7.6
FEND	Main Routine Program End	Section 7.7
WDT	Watchdog Timer Refresh	Section 7.8
FOR	Start a FOR/NEXT Loop	Section 7.9
NEXT	End a FOR/NEXT Loop	Section 7.10

9

Applied Instructions (Arithmetic and Logical Operation)

10

lied Instructions tation and ft Operation)

7.1 CJ / Conditional Jump

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

CJ or CJP instruction jumps to the specified pointer number or ladder block label. The sequence program steps between CJ or CJP instruction and the pointer are not executed.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
CJ	16 bits	Continuous	CJ EN ENO P	Syntax such as condition sentence is used. Refer to the following manual for syntaxes. $\rightarrow O/I / E$ Structured
CJP	16 bits	Pulse	CJP EN ENO p	Programming Manual (Fundamentals)

2. Input and output data types

١	/ariable	Description	Data type			
Input variable	EN	Execution condition	Bit			
	P	Pointer number or ladder block label for the jump destination	ANY16			
Output variable	ENO	Execution state	Bit			

3. Applicable devices

	Bit Devices							Word Devices										Others						
Operand type	System User							Digit Specification				System User			n	Special Unit	nit Index		Constant		Real Number	Character String	Pointer	
	X	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	к	н	Е	"0"	Р
P																			•					•

1

Outline

2

Instruction List

3

Configuration of

How to Read

ਰ Read

5

Basic Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

Applied Instructions (Move and Compare)

9

Applied Instructions (Arithmetic and Logical Operation)

0

Instruction

Function and operation explanation

1. 16-bit operation(CJ, CJP) While the command input is ON, CJ or CJP instruction executes a program with a specified pointer number or ladder block label. 1) In the case of CJ instruction User program CJ Command ON Command EN ENO Jumps to the pointer P10 input p while the command is ON. 1 Executed in every scan CJ User program Which is skipped and is not executed when the command turns ON. P10: User program 2) In the case of CJP instruction User program CJP ON Command Command EN ENO -11 Jumps to the pointer only in one P1 operation while the command is ON. P10 input CJP User program Executed in one scan Which is skipped and is not executed in one operation cycle when the command turns ON. P10: User program

Cautions

- 1) Instructions of pulse operation type are not provided in the FX0S, FX0 or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 2) Set a pointer number or ladder block label for the jump destination in the ladder block header . Add ":" to the entered pointer number or ladder block label.

3) A pointer number or ladder block label can be programmed in a smaller number step than CJ instruction. However, note that a watchdog timer error occurs when the scan time exceeds 200 ms (default setting).

4) When the pointer number or ladder block label specified by p is same and there is one jump destination, the following operation is caused.

When X020 turns ON, the program execution jumps from CJ instruction corresponding to X020 to the pointer P9. When X020 turns OFF and X021 turns ON, the program execution jumps from CJ instruction corresponding to X021 to the pointer P9.

5) When a pointer number or ladder block label (including pointer number or ladder block label for CALL instructions described later) is used two or more times, an error is caused.

- 6) The pointer P63 specifies jump to END step. The pointer P63 needs not to be programmed.
- 7) Any pointer number or ladder block label cannot be shared by CALL instruction and CJ instruction.

8) Because M8000 is normally ON while a PLC is operating, unconditional jump is specified when M8000 is used in the following example.

- 9) The operation of the CJ instruction and contact coils are described later.
- 10) The relationships between the master control instructions and jump instructions are described later.
- 11) The jumping ranges of CJ instruction is different according to the pointer type specified by P.

Pointer type	Jumping range
Pointer number	Pointer numbers within the same program file
Ladder block label	Ladder block labels within the same POU

Program examples

In one operation cycle after X023 changes to ON from OFF, CJ P7 instruction becomes valid. By using this method, jump can be executed after all outputs between CJ P7 instruction and the pointer P7 turn OFF.

CJ instruction and operations of contact and coil

In the program example shown below, when X000 turns ON, the program execution jumps from CJ instruction in the first circuit to the pointer P8. While X000 is OFF, jump is executed. The program is sequentially executed from first step, and jumps from 11th circuit to the pointer P9. The jumped instruction is not executed.

1. Circuit example 1 for explain operations

- Double coil operation of output Y001 While X000 is OFF, output Y001 is activated by X001. While X000 is ON, output Y001 is activated by X012. Even in a program divided by conditional jumps, if a same coil (Y000 in this case) is programmed two or more times within the jump area or outside the jump area, such a coil is handled as double coil.
- When the reset (RST) instruction for the retentive type timer (T246) is located outside jump area: Even if the counting coil (T246) is jumped, reset (return of the contact and clearing of the current value) is valid.
- When the reset (RST) instruction for the counter (C0) is located outside the jump area:
 Even if the counting coil is jumped, reset (return of the contact and clearing of the current value) is valid.
- Operation of the routine timers: A routine timer continues its operation even if it is jumped after the coil is driven, and the output contact is activated.
- Operation of the high speed counters: A high speed counter continues its operation even if it is jumped after the coil is driven, and the output contact is activated.

When each input changes during jump in the program shown on the left, each coil executes the following operation:

Classification	Contact status before	Coil operation during
	jump	jump
Y, M, S	X001, X002, X003 OFF	Y001, M1, S1 OFF
(Y001, M1, S1)	X001, X002, X003 ON	Y001, M1, S1 ON
10 ms timer and	X004 OFF	Timer is not activated.
100 ms timer (T0)	X004 ON	Counting is paused (and is restarted after X000 turns OFF).
1 ms timer	X005 OFF X006 OFF	Timer is not activated. The deactivation status is reset when X013 turns ON.
(T246)	X005 OFF X006 ON	Counting is continued (and the contact is activated after X000 turns OFF).
Counter (CO)	X007 OFF X010 OFF	Countint is not activated. The deactivation status is reset when X013 turns ON.
	X007 OFF X010 ON	Counting is paused (and is restarted after X000 turns OFF).
	X011 OFF	Instruction is not executed
Instruction (MOV)	X011 ON	during jump. But MTR, HSCS, HSCR, HSZ, SPD, PLSY and PWM instructions continue their operations.

2. Circuit example 2 for explaining operations (when only an RST instruction for timer or counter is jumped)

When X011 turns ON while the RST instruction for the counter C0 is operating (X010 is ON), the program execution jumps past the RST instruction due to the CJ instruction. In this jump status, the counter C0 remains reset. Accordingly, the current value of C0 remains "0" even if X012 turns ON. To clear this reset status, it is necessary to turn OFF the RST instruction for counter C0. (Refer to the program shown below.)

Timing chart

Program example for activating a timer and counter even during a jump

0

olied Instructions otation and ift Operation)

1

Outline

2

Instruction List

3

Configuration of Instruction

4

Timing chart

Г

Relationship between master control instruction and jump instruction

The figure below shows the contents of operation and the relationship between the master control instruction. Avoid using 2), 4) and 5) because the operation will be complicated.

I		1) Jump from outside MC to outside MC is available	
	CJP1	arbitrarily. 2) Jump from outside MC to incide MC	
	MC N 0 M 0	Jump is executed regardless of the MC	
	P 1	e operation. Even if M0 is OFF, M0 is regarded as ON after P1. ≥ MCR N 0 5) Jump from inside	le
		other MC	
0		, 3) Jump from inside MC to MC N 0 M 2	
conti	CJP2	Jump is disabled while	
laster	P 2		
2			
		4) sump from inside MC to outside MC ↓	
	CJP3	M0 is OFF. Jump is enabled while M1 is ON.	
	MCR N 0	M0 is ON, but MCR is invalid. M0 is ON, but MCR is invalid.	
	P 3		
	P 0		

7.2 CALL / Call Subroutine

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	×	×

Outline

This instruction calls and executes a program which should be processed commonly in a sequence program. This instruction saves the number of program steps, and achieves efficient program design.

For creating a subroutine program, FEND and SRET instructions are required.

A similar processing is available by creating a function block and read it out from the program block. Refer to the following manual for creating function blocks.

\rightarrow GX Works2 Version 1 Operating Manual (Structured Project) \rightarrow Q/L/F Structured Programming Manual (Fundamentals)

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
CALL	16 bits	Continuous	CALL EN ENO p	Use a subroutine program by reading out the
CALLP		Pulse	CALLP — EN ENO — p	function block made of other program parts.

2. Set data

Va	riable	Description	Data type
Input	EN	Execution condition	Bit
variable	P	Pointer number or ladder block label of subroutine program to be executed.	ANY16
Output variable	ENO	Execution state	Bit

3. Applicable devices

		l	Bit Devices					Word Devices											Others				
Operand type		S	yst	em	ı Us	er	Dig	igit Specific		ication		iys Us	ter ser	n	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	X	Y	М	C	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	к	Н	E	"0"	Р
p																•					•		

0

ation and Operation)

Function and operation explanation

1. 16-bit operation

While the command input is ON, CALL instruction is executed and the program execution jumps to a step with a specified pointer number or ladder block label. Then, the corresponding subroutine program is executed. When SRET instruction is executed, the program execution returns to the step after CALL instruction.

- At the end of the main program, put FEND instruction.
- · Put a pointer p for CALL instruction after FEND instruction.

Cautions

- 1) Instructions of pulse operation type are not provided in the FX0, FX0s or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- Enter a pointer number or ladder block label for specifying the jump destination to the ladder block header in the ladder block regarded as the jump destination. Add ":" to an entered pointer.
- To use the subroutine call, follow the steps below. Name the task "MELSEC_MAIN". Using a different task name prompts an error because the "one set in the program block" by FEND instruction and the "one finally added to the program block during compiling" become redundant.

Be sure to program in combination with the SRET and FEND functions.

 \rightarrow Refer to Section 7.3 for SRET. \rightarrow Refer to Section 7.7 for FEND.

4) In CALL instructions, a same number can be used two or more times in pointer number or ladder block label.

However, do not use a pointer number or ladder block label and number used in another instruction (CJ).

5) Cautions about the use in subroutines or interrupt routines are described later.

Program examples

1. Example of fundamental use (no nesting)

2. Example of multiple CALL instructions in subroutines (multiple nesting)

CALL instruction can be used up to 4 times in subroutine programs. Nesting of up to five layers is allowed.

1

Outline

2

Instruction List

3

Cautions on subroutines and interrupt routines

This section explains cautions on creating programs in subroutines and interrupt routines. The explanation below is given for subroutines, but the situation also applies to interrupt routines.

1. When using timers in subroutines (or interrupt routines)

Use retentive type timers T192 to T199 in subroutines.

These timers execute counting when the coil instruction or END instruction is executed.

After a timer reaches the set value, the output contact is activated when the coil instruction or END instruction is executed.

Because general timers execute counting only when the coil instruction is executed, they do not execute counting if they are used in subroutines in which the coil instruction is executed only under some conditions.

2. When using retentive type 1 ms timers in subroutines (or interrupt routines)

If a retentive type 1 ms timer is used in a subroutine, note that the output contact is activated when the first coil instruction (or subroutine) is executed after the timer reaches its set value.

3. Countermeasures against latches of devices used in subroutines (or interrupt routines)

Devices which were set to ON in a subroutine are latched in the ON status even after the subroutine is finished. (Refer to the program described later.)

When RST instruction for a timer or counter is executed, the reset status of the timer or counter is latched also.

For turning OFF such a device latched in the ON status or for canceling such a timer or counter latched in the reset status, reset such a device in the main program after the routine is finished, or program a sequence for resetting such a device or for deactivating RST instruction in the routine. (Refer to the program described later.)

1) Example in which outputs are latched

In the following program example, the counter C0 is provided to count X001. When X000 is input, the subroutine P0 is executed only in one scan, and then the counter is reset and Y007 is output.

· Program examples

- 2) Example for resetting held outputs (countermeasures)
- Program examples

7.3 SRET / Subroutine Return

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	×	×

Outline

This instruction returns the program execution from a subroutine to the main program.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
SRET	16 bits	Continuous	SRET EN ENO	Use a subroutine program by reading out the function block made of other program parts.

2. Set data

١	Variable	Description	Data type
Input variable	EN	Execution condition	Always TRUE
Output variable	ENO	Execution state	Bit

3. Applicable devices

			Bit [De	evice	s		Word Devices											Others				
Operand type	System User						Dig	Digit Specification					terr ser	1	Special Unit	Index			Constant		Real Number	Character String	Pointer
	XYM					D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	v	z	Modifier	к	н	Е	"0"	Р
-		No target device is available.																					

Function and operation explanation

When CALL instruction in the main program is executed, the program execution jumps to a subroutine. SRET instruction returns the program execution to the main routine.

 \rightarrow Refer to Section 7.2.

1

Outline

2

Instruction List

3

Configuration of Instruction

> -xnlan;

> > 5

Basic Instruction

7.4 IRET / Interrupt Return

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

This instruction returns the program execution from an interrupt routine to the main program.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language
name	operation	form	Structured ladder/FBD	ST
IRET	16 bits	Continuous	EN ENO	IRET(EN);

2. Input and output data types

· · ·	Variable	Description	Data type
Input variable	EN	Execution condition	Always TRUE
Output variable	ENO	Execution state	Bit

3. Applicable devices

			В	it I	De	vice)S		Word Devices												Others					
Operand type	System User			er	Digit Specification			System User		Special Unit	Index		Constant		Real Number	Character String	Pointer									
	х	Y	N	I T	C	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	к	н	Е	"0"	Р		
-		No target device is available.																								

Function and operation explanation

When an interrupt (input, timer or counter) is generated while the main program is executed, the program execution jumps to an interrupt (I) routine.

 $\ensuremath{\mathsf{IRET}}$ instruction returns the program execution to the main routine.

The table below shows the three types of jump to an interrupt routine.

Function	Description
Input interrupt	Executes the interrupt processing when an input(X) signal turns ON or OFF.
Timer interrupt	Executes the interrupt processing at a specified time interval (constant cycle).
Counter interrupt *1	Executes the interrupt processing when a high speed counter reaches its set value.

*1. This function is provided only in the FX3U, FX3UC and FX2C PLCs Ver. 3.07 or later.

 \rightarrow For the interrupt function, refer to Chapter 35.

 \rightarrow For the interrupt pointer, refer to Chapter 35.

Cautions

- 1) Create a task for the interrupt program and the main program.
- 2) Use "Event" to specify the interrupt pointer to be used for the task for the interrupt program.

Property			
Details Comment			
Attributes			
Event I101]←+	 Set an interrupt pointer
Interval 0			
Priority 31			
Data Name Task_01			
Title Interrupt	program		
Timer/O	utput Control		
Last Change 4/20/2012	9:50:55 AM		
	ОК	Cancel	

3) IRET instruction needs not to be programmed because the IRET instruction is automatically added during the compilation at the end of the program block that is registered in the task for the interrupt program.

4) The program block registered in the task for the main program requires the function El instruction (interrupt enabled). Program the function DI instruction (interrupt disabled) as necessary.

8

AppliedInstructions (Move and Compare)

9

Applied Instructions (Arithmetic and Logical Operation)

0

tion and

Program examples

7.5 DI / Disable Interrupt

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

This instruction disables interrupts after interrupts were enabled by EI instruction.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language
name	operation	form	Structured ladder/FBD	ST
DI	16 bits	Continuous	DI EN ENO	DI(EN);

2. Set data

· · ·	Variable	Description	Data type
Input variable	EN	Execution condition	Always TRUE
Output variable	ENO	Execution state	Bit

3. Applicable devices

		Bit	De	vice	s		Word Devices											Others					
Operand type	System User			er	Digit Specification			System User			Special Unit	Index		Constant		Real Number	Character String	Pointer					
	ΧY	М	Г	cs	D□.b	KnX	KnY	KnM	KnS	Т	С	DF	U⊡\G⊡	۷	Z	Modifier	κ	н	E	"0"	Р		
-		No target device is available.																					

Function and operation explanation

DI instruction is the independent type, and does not require command (drive) contact.

Cautions

Interrupts (requests) generated after DI instruction are processed after EI instruction is executed.

7.6 El / Enable Interrupt

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

Interrupts are usually disabled in PLCs. This instruction enables interrupts in PLCs. Use this instruction for using the input interrupt, timer interrupt and counter interrupt functions.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
EI	16 bits	Continuous	EI EN ENO	EI(EN);

2. Set data

`	Variable	Description	Data type
Input variable	EN	Input condition	Always TRUE
Output variable	ENO	Input status	Bit

3. Applicable devices

	Bit D	Word Devices											Others							
Operand type	Syste	em Us	er	Dig	it Spe	cifica	tion	S	ys Us	terr ser	n	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	ХҮМТ	C S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	κ	Н	Е	"0"	Р
-	No target device is available.																			

Function and operation explanation

El instruction is the independent type, and does not require command (drive) contact.

7

Applied Instructions (Program Flow)

8

Applied Instructions (Move and Compare)

9

ithmetic and (the structions)

0

ltion and Operation

nstructions

1

Outline

2

Instruction List

Cautions

1) Refer to the following items for the cautions on the interrupt program.

\rightarrow Refer to Section 7.4.

2) Use the EI instruction as follows when the FXU, FX2C, FX2N, FX2NC, FX3U and FX3UC PLCs use the pulse catch function. The IE instruction does not need to be programmed when the FX0S, FX0, FX0N, FX1S, FX1N, FX1NC, FX3S, FX3G or FX3GC PLC uses the pulse catch function. For the details of special auxiliary relays and other devices used with the pulse catch function, refer to the following manual.

\rightarrow FX Structured Programming Manual [Device & Common]

*1. A special auxiliary relay for the X000 pulse catch function used in the FX1S, FX1N, FX1NC, FXU, FX2C, FX2N, FX2NC, FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs. The special auxiliary relay depends on the PLC used and input number. For the pulse catch function, refer to Chapter 35.

7.7 FEND / Main Routine Program End

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

This instruction indicates the end of the main program.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language									
name	operation	form	Structured ladder/FBD	ST								
FEND	16 bits	Continuous	FEND EN ENO	FEND(EN);								

2. Set data

`	Variable	Description	Data type
Input variable	EN	Input condition	Always TRUE
Output variable	ENO	Input status	Bit

3. Applicable devices

	Bit Devices					Word Devices										Others					
Operand type	Sys	System User			Digit Specification			S	System User		Special Unit	Index		Constant		Real Number	Character String	Pointer			
	XYM	Т	c s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	κ	Н	E	"0"	Ρ
-		No target device is available.																			

Function and operation explanation

When FEND instruction is executed, output processing, input processing and watchdog timer refresh are executed, and then the program execution returns to the step 0.

FEND instruction is required in creating subroutine programs and interrupt programs.

1. In the case of CJ instruction

*1. The function FEND instruction is added automatically during compilation, and does not require to be programmed. Refer to "Cautions". 9

Applied Instructions (Arithmetic and Logical Operation)

0

lied Instructions tation and ft Operation)

1

Outline

2

2. In the case of CALL instruction

*1. If task names other than "MELSEC_MAIN" are used, FEND instruction is added automatically, and cause an error. Refer to item 6 of "Cautions".

Cautions

 The function FEND instruction is usually added automatically during compilation. It is not necessary to program the FEND instruction in the program block except when creating subroutine program and interrupt routine program. As for the subroutine programs, refer to the following.

 \rightarrow Refer to Section 7.2.

- 2) When FEND instruction is programmed two or more times, put a subroutine program or interrupt routine program after the last FEND instruction.
- When CALL or CALLP instruction is used, put a label after FEND instruction. And the SRET instruction is required in every case.
- 4) When CALL or CALLP instruction is used, if FEND instruction is executed after CALL or CALLP instruction was executed and before SRET instruction is executed, an error is caused.
- 5) When FOR instruction is used, if FEND instruction is executed after FOR instruction was executed and before NEXT instruction is executed, an error is caused.
- 6) When CALL instruction is used, set the registered task name to "MELSEC_MAIN". Any other task names add FEND instruction automatically at the end of the program block (*1 in "2. In the case of CALL instruction") during compilation, and cause an error during writing to the PLC (due to already existing FEND instruction located at the end of the main program (*2 in "2. In the case of CALL instruction").

It is not possible to use CALL instruction in multiple tasks. Use function blocks.

WDT / Watchdog Timer Refresh 7.8

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

This instruction refreshes the watchdog timer in a sequence program.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
WDT	16 bits	Continuous	WDT EN ENO	WDT(EN);
WDTP		Pulse	WDTP EN ENO	WDTP(EN);

2. Set data

١	/ariable	Description	Data type
Input variable	EN	Execution condition	Bit
Output variable	ENO	Execution state	Bit

3. Applicable devices

	Bit	Devic	es	Word Devices											Others				
Operand type	System User		Dig	Digit Specification			S	yste Use	em r	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer	
	ХҮМТ	r c s	D□.b	KnX	KnY	KnM	KnS	Т	C	R	U□\G□	۷	Ζ	Modifier	к	н	Е	"0"	Р
-		No target device is available.																	

Function and operation explanation

When the operation cycle (time until END or FEND instruction is executed after the step 0) of a PLC exceeds 200 ms, a watchdog timer error (indicating abnormal operation) occurs. The CPU error LED lights, and the PLC stops. When the operation cycle is long, insert WDT instruction in the middle of the program to avoid the watchdog timer error.

Related device

Device	Name	Description
D8000	Watchdog timer time	Up to 32767 ms can be set in units of ms (initial value: 200 ms).

1

Outline

2

Instruction List

3

nstructions

Cautions

- 1) Instructions of pulse operation type are not provided in the FX0s, FX0 or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- A watchdog timer error may occur in the following cases. To avoid the error, input a program shown below near the head step to extend the watchdog timer time, or shift FROM/TO instruction execution timing.
 - Caution when many special extension devices are connected.
 - In such configuration that many special extension devices (such as positioning units, cam switches, analog units and link units) are connected, the buffer memory initialization time may become longer, thus the operation time may become longer, and a watchdog timer error may occur.
 - Caution when many FROM/TO instructions are driven at one time. When many FROM/TO instructions are executed or when many buffer memories are transferred, the operation time may become longer, and a watchdog timer error may occur.
 - Caution when there are many high speed counters (software counters).
 When many high speed counters are provided and high frequency are counted at one time, the operation time may become longer, and a watchdog timer error may occur.
- 3) The watchdog timer time can be changed.

By overwriting the contents of D8000 (watchdog timer time), the watchdog timer detection time (initial value: 200 ms) can be changed.

By inputting the program shown below, the sequence program after this insertion is monitored by a new watchdog timer time.

Program examples

1. When the operation cycle is long and causes an error

For example, by dividing a program whose operation cycle is 240 ms into two portions and inserting WDT instruction between them, the operation cycle becomes less than 200 ms in both the former half portion and the latter half portion.

2. When a pointer number or ladder block label of CJ instruction is located in a step number smaller than the step number of CJ instruction

Put WDT instruction after the pointer number or ladder block label.

If an input relay (X) is used as the command contact, input refresh is disabled, so the program execution cannot be returned from the area between Pn and CJ. As the command contact, use such device that can be set to OFF in a program being jumped.

3. When FOR/NEXT instruction is repeated many times Put WDT instruction between FOR and NEXT.

K3000	FOR EN ENO 00 n
	Program
	WDT EN ENO
	NEXT EN ENO

7.9 FOR / Start a FOR/NEXT Loop

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

FOR instruction specifies the number of repetition of the loop between FOR and NEXT instructions.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language											
name	operation	form	Structured ladder/FBD	ST										
FOR	16 bits	Continuous	FOR EN ENO n	Syntax such as condition sentence is used. Refer to the following manual for syntaxes. → Q/L/F Structured Programming Manual (Fundamentals)										

2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Always TRUE
variable	n	Number of repetition of the loop between FOR and NEXT instructions	ANY16
Output variable	ENO	Execution state	Bit

3. Applicable devices

			Bi	it D)ev	ice	S					W	orc	I D		Others								
Operand type	System User				er	Digit Specification				System User			em r	Special Unit	Special Unit Index		Con	stant	Real Number	Character String	Pointer			
	х	Y	Μ	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
n								•	•	•	•	•	•	•	▲ 1	▲2	•	•	•	•	•			

▲: Refer to "Cautions".

Function and operation explanation

 \rightarrow Refer to Section 7.10 for details.

Related instruction

FOR instruction and NEXT instruction are set as a pair in programming.

Cautions

- 1) Some restrictions to applicable devices
 - ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

▲2: The FX₃U and FX₃UC PLCs only are applicable.

7.10 NEXT / End a FOR/NEXT Loop

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

FOR instruction specifies the number of repetition of the loop between FOR and NEXT instructions.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language										
name	operation	form	Structured ladder/FBD	ST									
NEXT	16 bits	Continuous	EN ENO	Syntax such as condition sentence is used. Refer to the following manual for syntaxes. → Q/L/F Structured Programming Manual (Fundamentals)									

2. Set data

١	Variable	Description	Data type
Input variable	EN	Execution condition	Always TRUE
Output variable	ENO	Execution state	Bit

3. Applicable devices

			Bit	D	evi	ces	5		Word Devices													Others					
Operand type			Sys	ste	m l	lse	ər	Digit Specification					System User			Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer			
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	к	н	Е	"0"	Р			
-	No target device is available.																										

Function and operation explanation

The loop between FOR and NEXT instruction is repeated "n" times (which is specified by the input variable (n)).

After the loop is repeated by the specified number of times, steps after NEXT instruction are executed.

Related instruction

NEXT instruction and FOR instruction are set as a pair in programming.

0

Cautions

FOR-NEXT loop can be nested up to 5 levels.

Error

- When FOR-NEXT loop is repeated many times, the operation cycle (D8010) is too long, and a watchdog timer error may occur. In such a case, change the watchdog timer time or reset the watchdog timer.
 → For details on changing and resetting the watchdog timer, refer to Section 7.8.
- 2) The following programs are regarded as errors.

When NEXT instruction is located before FOR instruction When NEXT instruction does not exist

When number of FOR instructions is not equivalent to the number of NEXT instructions.

When NEXT instruction exits after FEND instruction.

131

Program examples

1. Program example with three FOR-NEXT loops

7 Applied Instructions (Program Flow) 7.10 NEXT / End a FOR/NEXT Loop

1

Outline

2

Instruction List

3

4

5

Basic Instruction

6

7

Applied Instructions (Program Flow)

8

Applied Instructions (Move and Compare)

9

Applied Instructions (Arithmetic and Logical Operation)

10

plied Instructions otation and ift Operation)

Shift 25

8. Applied Instructions (Move and Compare)

This chapter introduces fundamental data processing instructions such as data transfer and data comparison which are regarded as most important in applied instructions.

Instruction name	Function	Reference	
CMP			
CMPP	Compare	Section 9 1	
DCMP	Compare	Section 8.1	
DCMPP			
ZCP			
ZCPP	Zana Compara	Section 9.2	
DZCP		Section 6.2	
DZCPP			
MOV			
MOVP	Maura	Continu 0.2	
DMOV	Move	Section 8.3	
DMOVP			
SMOV		Section 9.4	
SMOVP	Shift Move	Section 8.4	
CML			
CMLP			
DCML	Complement	Section 8.5	
DCMLP			
BMOV	Dirak Maur		
BMOVP	BIOCK MOVE	Section 8.6	
FMOV			
FMOVP			
DFMOV		Section 8.7	
DFMOVP			
XCH			
XCHP	-		
DXCH	Exchange	Section 8.8	
DXCHP			
BCD			
BCDP	Conversion to Dinany Coded Desired	Contine 8.0	
DBCD	Conversion to Binary Coded Decimal	Section 8.9	
DBCDP	1		
BIN			
BINP		Section 9.40	
DBIN			
DBINP			

8.1 **CMP / Compare**

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

This instruction compares two values, and outputs the result (smaller, equal or larger) to bit devices (3 points).

\rightarrow For the contact comparison instruction, refer to Chapter 28. \rightarrow For floating point comparison, refer to Section 18.1.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ich language		
name	operation	form	Structured ladder/FBD	ST		
CMP	16 bits	Continuous	CMP EN ENO s1 d s2	CMP(EN,s1,s2,d);		
CMPP	16 bits	Pulse	CMPP EN ENO s1 d s2	CMPP(EN,s1,s2,d);		
DCMP	32 bits	Continuous	DCMP EN ENO s1 d s2	DCMP(EN,s1,s2,d);		
DCMPP	32 bits	Pulse	DCMPP — EN ENO — s1 d — s2	DCMPP(EN,s1,s2,d);		

2. Set data

			Data type				
`	Variable	Description	16-bit operation	32-bit operation			
	EN	Execution condition	Bit				
Input variable	<u>(s1)</u>	Data or device number handled as comparison value	ANY16	ANY32			
	<u>(s2)</u>	Data or device number handled as comparison source	ANY16	ANY32			
Output	ENO	Execution state	Bit				
variable	d	Head bit device to which comparison result is output.	ARRAY [02] OF	Bit			

3. Applicable devices

							-																			
			Bi	t D)ev	ice	S					W	ore	d D	evic	es				Others						
Operand type	System User Digit Spe		cifica	tion	Syste Use			m r	Special Unit	Index		ndex	Constant		Real Number	Character String	Pointer									
	Х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	к	н	Е	"0"	Р		
(s1)								•	•	•	•	•	•	•	▲2	▲3	•	•	•	•	•					
<u>(s2</u>)								•	•	٠	•	•	●	•	▲2	▲3	•	•	•	٠	•					
d		•	•			•	▲1												•							

▲: Refer to "Cautions".

-ogical

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation of uctions

Function and operation explanation

1. 16-bit operation(CMP, CMPP)

The comparison value specified by $\underline{s1}$ and the comparison source specified by $\underline{s2}$ are compared with each other. According to the result (smaller, equal or larger), any of the three points of the devices specified by $\underline{c1}$ turns on.

- The source data specified by s1 and s2 are handled as BIN (binary) values.
- Comparison is executed algebraically. Example: -10 < 2

Even if the command input turns OFF and CMP instruction is not executed,

d to d +2 latch the status just before the command input turns OFF from ON.

2. 32-bit operation(DCMP, DCMPP)

The comparison value specified by $\underline{s1}$ and the comparison source specified by $\underline{s2}$ are compared with each other. According to the result (smaller, equal or larger), any of the three points of the devices specified by $\underline{c1}$ turns on.

- The source data specified by $\underline{s1}$ and $\underline{s2}$ are handled as BIN (binary) values.
- Comparison is executed algebraically. Example: -125400 < 22466

Even if the command input turns OFF and DCMP instruction is not executed, (\underline{d}) to (\underline{d}) +2 latch the status just before the command input turns OFF from ON.

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation o Instructions

오,

5

Basic

Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

uctions

9

Applied Instructions (Arithmetic and Logical Operation)

1 0

blied Instructions otation and ift Operation)

Applied Instru (Move and Compare)

Cautions

- 1) Some restrictions to applicable devices ▲1:The FX3U and FX3UC PLCs only are applicable. Not indexed (V,Z). ▲2:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable. ▲3:The FX3U and FX3UC PLCs only are applicable.
- 2) Instructions of pulse operation type are not provided in the FX0, FX0s or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 3) From the device specified as ____, three devices are occupied. Be sure not to use those devices in another control.

Program examples

1. When comparing present value of a counter

[Structured ladder/FBD]

CMP(X000, K100, CN20, M0); Y000:=X000 AND M0; Y001:=X000 AND M1: Y002:=X000 AND M2;

If it is necessary to clear the comparison result when the instruction is not executed, add the following contents under the above program.

RST(NOT X000, M0);

RST(NOT X000, M1);

RST(NOT X000, M2);

[ST]

1) RST

[Structured ladder/FBD]

2) ZRST

[Structured ladder/FBD]

[ST]

ZRST(NOT X000, M0, M2);

8.2 ZCP / Zone Compare

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)	
0	0	0	0	0	0	0	0	0	

Outline

This instruction compares two values (zone) with the comparison source, and outputs the result (upper, equal or lower) to bit devices (3 points).

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language										
name	Operation	form	Structured ladder/FBD	ST									
ZCP	16 bits	Continuous	ZCP EN ENO s1 d s2 s3	ZCP(EN,s1,s2,s3,d);									
ZCPP	16 bits	Pulse	ZCPP – EN ENO – s1 d – s2 – s3	ZCPP(EN,s1,s2,s3,d);									
DZCP	32 bits	Continuous	DZCP EN ENO s1 d s2 s3	DZCP(EN,s1,s2,s3,d);									
DZCPP	32 bits	Pulse	DZCPP EN ENO - s1 d - s2 - s3	DZCPP(EN,s1,s2,s3,d);									

2. Set data

			Data type					
	Variable	Description	16-bit operation	32-bit operation				
	EN	Execution condition	Bit	Bit				
Input	(s1)	Data or device handled as lower comparison value	ANY16	ANY32				
variable	<u>(s2</u>)	Data or device handled as upper comparison value	ANY16	ANY32				
	<u>(s3)</u>	Data or device number handled as comparison source	ANY16	ANY32				
Output	ENO	Execution state	Bit					
variable	d	Head bit device to which comparison result is output.	ARRAY [02] OF Bit					

3. Applicable devices

Operand type	Bit Devices								Word Devices													Others				
	System User						er	Digit Specification				System User			Special Unit	Index		Constant		Real Number	Character String	Pointer				
	Х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	к	Н	E	"0"	Р		
<u>(s1</u>)								•	•	•	•	•	•	•	▲2	▲3	•	•	•	•	•					
<u>(s2</u>)								•	•	•	•	•	•	•	▲2	▲3	•	•	•	•	•					
<u>(s3)</u>								•	•	•	•	•	•	•	▲2	▲3	•	•	•	•	•					
d		•	•			•	▲1												•							

▲: Refer to "Cautions".

Function and operation explanation

1. 16-bit operation(ZCP, ZCPP)

The lower comparison value specified by $\underline{s1}$ and the upper comparison value specified by $\underline{s2}$ are compared with the contents of the comparison source specified by $\underline{s3}$. According to the result (smaller, within zone or larger), any of the three points of the devices specified by \underline{d} turns ON.

• Comparison is executed algebraically. Example: -10 < 2 < 10

Even if the command input turns OFF and ZCP instruction is not executed, (\underline{d}) to (\underline{d}) +2 latch the status just before the command input turns OFF from ON.

2. 32-bit operation(DZCP, DZCPP)

The lower comparison value specified by $\underline{s1}$ and the upper comparison value specified by $\underline{s2}$ are compared with the contents of the comparison source specified by $\underline{s3}$. According to the result (smaller, within zone or larger), any of the three points of the devices specified by \underline{d} turns ON.

Comparison is executed algebraically. Example: -125400 < 22466 < 1015444

Even if the command input turns OFF and DZCP instruction is not executed, (\underline{d}) to (\underline{d}) +2 latch the status just before the command input turns OFF from ON. nstructions

Applied Instructions (Program Flow)

8

uctions

9

ilied Instructions thmetic and fical Operation)

0

lied Instructions tation and ft Operation)

Applied Instru (Move and Compare)

Cautions

- Some restrictions to applicable devices

 ▲1:The FX3U and FX3UC PLCs only are applicable. Not indexed (V,Z).
 ▲2:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 ▲3:The FX3U and FX3UC PLCs only are applicable.
- 2) Instructions of pulse operation type are not provided in the FX0, FX0s or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 3) From the device specified as ____, three devices are occupied. Be sure not to use those devices in another control.
- 4) The lower comparison value specified by s1 should be smaller than the upper comparison value specified by s2.
- When the lower comparison value $\underline{s1}$ is smaller than the upper comparison value $\underline{s2}$

• When the lower comparison value $\underline{s1}$ is larger than the upper comparison value $\underline{s2}$

8.3 **MOV / Move**

FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0
	FX3G(C)	FX3G(C) FX3S O O	FX3G(C) FX3S FX2N(C) O O O	FX3G(C) FX3S FX2N(C) FX1N(C) O O O O	FX3G(C) FX3s FX2N(C) FX1N(C) FX1s O O O O O	FX3G(C) FX3S FX2N(C) FX1N(C) FX1S FXU/FX2C O O O O O O	FX3G(C) FX3S FX2N(C) FX1N(C) FX1S FXU/FX2C FX0N O O O O O O O

Outline

This instruction transfers (copies) the contents of a device to another device.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	each language					
name	operation	form	Structured ladder/FBD	ST					
MOV	16 bits	Continuous	MOV — EN ENO — s d	MOV(EN,s,d); Or an assignment statement					
MOVP	16 bits	Pulse	MOVP — EN ENO — s d	MOVP(EN,s,d); Or an assignment statement					
DMOV	32 bits	Continuous	DMOV — EN ENO — s d	DMOV(EN,s,d); Or an assignment statement					
DMOVP	32 bits	Pulse	EN ENO s d	DMOVP(EN,s,d); Or an assignment statement					

2. Set data

			Data type				
`	Variable	Description	16-bit operation	32-bit operation			
Input	EN	Execution condition	Bit				
variable	S	Data or device of transfer source	ANY16	ANY32			
Output	ENO	Execution state	Bit				
variable	d	Transfer destination device	ANY16	ANY32			

3. Applicable devices

Operand type		l	Bit	De	vice	s		Word Devices														Others				
	System User						Dig	Digit Specification				System User				Special li Unit li		Index		Constant		Real Number	Character String	Pointer		
	X	Υ	М	гс	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R		U□\G□	۷	z	Modifier	к	н	Е	"0"	Р		
S							•	•	•	•	•	•	•	▲1	I	▲2	•	•	•	•	•					
d								•	•	•	•	•	•	▲1	I	▲2	•	•	•							

▲: Refer to "Cautions".

9

Applied In (Arithme

Instructions Operation

10

ation and Operation) nstructions

ICTIONS

Function and operation explanation

1. 16-bit operation(MOV, MOVP)

The contents of the transfer source specified by $\underline{\ }$ are transferred to the transfer destination specified by $\underline{\ }$.

- While the command input is OFF, the transfer destination specified by does not change.
- When a constant (K) is specified as the transfer source specified by (s), it is automatically converted into binary.

When specifying digits of a bit device (K1X000 \rightarrow K1Y000)

The bit device transfers a maximum of 16 points (multiple of 4).

When a word device is specified

The word device transfers 1 point.

2. 32-bit operation(DMOV, DMOVP)

The contents of the transfer source specified by s are transferred to the transfer destination specified by (d).

- While the command input is OFF, the transfer destination specified by does not change. •
- When a constant (K) is specified as the transfer source specified by (s), it is automatically converted into ٠ binary.

When specifying digits of a bit device (K8X000 \rightarrow K8Y000)

The bit device transfers a maximum of 32 points (multiple of 4).

Cautions

- 1) Instructions of pulse operation type are not provided in the FX0S, FX0 or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 2) Some restrictions to applicable devices ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable. ▲2:The FX3U and FX3UC PLCs only are applicable.

nstructions

0

tation and ft Operation)

Program examples

1. When reading the current value of a timer and counter

MOV(X001,TN0,D20); (Current value

(Current value of T0) \rightarrow (D20) The operation is the same as a counter.

2. When indirectly specifying the set value of a timer or counter

[ST]

As the set value of the timer T20, two values can be specified by turning ON or OFF the switch X002. For specifying more than three set values, more than one switch is required.

[Structured ladder/FBD]

MOV(X002, K100, D10); MOV(NOT X002, K50, D10); OUT_T(M0, TC20, D10);

3. When transferring a bit device

The program written by basic instructions shown below can be expressed using MOV instruction.

4. When transferring 32-bit data

Be sure to use DMOV instruction for transferring an applied instruction (such as MUL) whose operation result is output in 32 bits, and for transferring a 32-bit numeric value or transferring the current value of a high speed counter (C235 to C255) which is a 32-bit device.

[Structured ladder/FBD]

[ST] DMOV(X000, D0, D10); DMOV(X001, CN235, D20);
8.4 **SMOV / Shift Move**

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	×	×	0	×	×

Outline

This instruction distributes and composes data in units of digit (4 bits).

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language
name	Operation	form	Structured ladder/FBD	ST
SMOV	16 bits	Continuous	SMOV — EN ENO — s d — m1 — m2 — n	SMOV(EN,s,m1,m2,n,d);
SMOVP	16 bits	Pulse	SMOVP — EN ENO — s d — m1 — m2 — n	SMOVP(EN,s,m1,m2,n,d);

2. Set data

,	Variable	Description	Data type
	EN	Execution condition	Bit
	S	Word device storing data whose digits will be moved.	ANY16
Input variable	(m1)	Head digit position to be moved	ANY16
, and a lot	(m2)	Number of digits to be moved	ANY16
	n	Head digit position of movement destination	ANY16
Output	ENO	Execution state	Bit
variable	d	Word device storing data whose digits are moved	ANY16

3. Applicable devices

			Bi	t D	ev	ice	s					W	or	d C	Devi	ce	es						Oth	ners	
Operand type		ę	Sys	ste	m	Us	ser	Dig	it Spe	ecifica	tion		Sy U	ste Ise	em er		Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	х	Υ	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R		U□\G□	۷	z	Modifier	к	н	Е	"0"	Р
S								٠	٠	٠	٠	•	•	•	•	1	▲2	•	•	•					
(m1)																					•	٠			
(m2)																					•	٠			
n																					•	•			
d									•	•	٠	•	•	C) (1	▲2	•	•	•					

▲: Refer to "Cautions".

nstr Jotions 1

ation and Operation) nstructions

1. 16-bit operation(SMOV, SMOVP)

The contents of the transfer source specified by \underline{s} and transfer destination specified by \underline{d} are converted into 4-digit BCD (0000 to 9999) respectively. "m2" digits starting from "m1"th digit are transferred (composed) to the transfer destination specified by \underline{d} starting from "n"th digit, converted into binary, and then stored to the transfer destination specified by \underline{d} .

- While the command input is OFF, the transfer destination specified by does not change.
- When the command input turns ON, the data of the transfer source specified by <u>s</u> and unspecified digits in the transfer destination specified by <u>d</u> do not change.

2. Extension function

When M8168 is set to ON first and then SMOV instruction is executed, conversion from binary to BCD is not executed.

Data is moved in units of 4 bits.

Cautions

- 1) Some restrictions to applicable devices
 - ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 ▲2:The FX3U and FX3UC PLCs only are applicable.

Program examples

The data on three-digit digital switches are composed, and stored as binary data to D2.

Data on three digital switches connected to non-consecutive input terminals are composed.

2 Instruction List 3 Configuration of Instruction 4 How to Read Explanation of Instructions 5 Basic Instruction 6 Step Ladder Instructions 7 Applied Instructions (Program Flow) 8 Applied Instructions (Move and Compare) 9 Applied Instructions (Arithmetic and Logical Operation) 10 Shift Rop plied Instructions otation and hift Operation)

1

Outline

8.5 CML / Complement

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	×	×	0	×	×

Outline

This instruction inverts data in units of bit, and then transfers (copies) the inverted data.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
CML	16 bits	Continuous	CML EN ENO s d	CML(EN,s,d);
CMLP	16 bits	Pulse	CMLP EN ENO s d	CMLP(EN,s,d);
DCML	32 bits	Continuous	DCML EN ENO s d	DCML(EN,s,d);
DCMLP	32 bits	Pulse	DCMLP EN ENO s d	DCMLP(EN,s,d);

2. Set data

			Data	type
ľ	Variable	Description	16-bit operation	32-bit operation
Input	EN	Execution condition	Bit	
variable	S	Data to be inverted or word device storing the data	ANY16	ANY32
Output	ENO	Execution state	Bit	•
variable	d	Destination word device storing inverted data	ANY16	ANY32

3. Applicable devices

			Bit	De	evi	се	S					W	or	d [Dev	vic	es						Oth	ners	
Operand type	System User				er	Digit Specification					System User			Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer			
	X Y M T C S D⊡.b		D⊡.b KnX KnY KnM KnS T C D R U⊡\G⊡ V Z Moo		Modifier	к	н	Е	"0"	Р															
S								•	•	•	•	•	•	•		▲1	▲2	•	•	•	•	•			
d									•	•	٠	•	•	•		▲1	▲2	•	•	•					

▲: Refer to "Cautions".

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation of Instructions

ç,

5

Basic Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

ctions 9

AppliedInstru (Move and Compare)

ned Instructic Inmetic and Internation

0

ation and Operation)

Function and operation explanation

1. 16-bit operation(CML, CMLP)

Each bit of a device specified by s is inverted (from 0 to 1 or from 1 to 0), and then transferred to the device specified by \bigcirc .

- When a constant (K) is specified as s, it is automatically converted into binary.
- This operation is useful when a logically inverted output is required as an output from a PLC. ٠

Inverted data is transferred.

2. 32-bit operation(DCML, DCMLP)

Each bit of a device specified by s is inverted (from 0 to 1 or from 1 to 0), and then transferred to the device specified by \bigcirc .

- When a constant (K) is specified as s, it is automatically converted into binary.
- This operation is useful when a logically inverted output is required as an output from a PLC.

Inverted data is transferred.

Cautions

- 1) Some restrictions to applicable devices
 - ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 - ▲2:The FX3U and FX3UC PLCs only are applicable.

Program examples

1. When receiving an inverted input

The sequence program can be written by CML instruction.

2. When four bits are specified for a device with digit specification

8.6 **BMOV / Block Move**

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	×

Outline

This instruction transfers (copies) a specified number of data at one time.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
BMOV	16 bits	Continuous	BMOV EN ENO s d n	BMOV(EN,s,n,d);
BMOVP	16 bits	Pulse	BMOVP EN ENO s d n	BMOVP(EN,s,n,d);

2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	S	Transfer source device	ANY16
	n	Number of transferred points (including file registers)	ANY16
Output	ENO	Execution state	Bit
variable	d	Transfer destination device	ANY16

3. Applicable devices

			Bit	De	evio	ce	s					W	or	d D)evic	es						Oth	ers	
Operand type		System User Digit Specifica				cifica	tion		Sy U	ste Ise	em er	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer				
	X	Υ	M	Г	C	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	к	Н	E	"0"	Р
S								•	•	•	•	•	•	•	▲ 1	▲2			•					
n														•						•	٠			
d									•	•	•	•	•	•	▲ 1	▲2			•					

▲: Refer to "Cautions".

1

Outline

BMOV instruction transfers "n" points of data from the device specified by \bigcirc to the device specified by \bigcirc at one time.

• If the device number range is exceeded, data is transferred within the possible range.

1. Transfer is enabled even if the transfer number range is overlapped.

To prevent overwriting before transfer of source data, data is automatically transferred in the order "1) \rightarrow 2) \rightarrow 3)" according to the number overlap status.

2. Extension function (bi-directional transfer function)

By controlling the direction inverse flag M8024^{*1} for BMOV instruction, data can be transferred in two directions in one program.

*1. M8024 is cleared when the PLC mode is changed from RUN to STOP.

Cautions

1) The FX0N, FXU and FX2C PLCs handle file registers as follows.

	BMOV in	struction
	Read	Write
FX0N	~	
FXU FX2C	~	\checkmark
FXU (V2.30 or earlier)	~	

- Instructions of pulse operation type are not provided in the FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 3) When specifying digits of bit devices, specify a same number of digits for <u>s</u> and <u>d</u>.

4) Some restrictions to applicable devices

▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable. ▲2:The FX3U and FX3UC PLCs only are applicable.

1

Outline

Function of transfer between file registers and data registers

BMOV instruction has a special function to file registers (D1000 and later). The maximum number of file register differs from one PLC to another. This explanation here uses the FX3U and FX3UC PLCs as examples. For the details of the file registers, refer to the following manual.

→ FX Structured Programming Manual [Device & Common]

1. What are file registers

By parameter setting, D1000 to D7999 can be handled as file registers, and written to and read from the program memory area.

- Outline of setting File registers (D1000 to D7999) do not exist in the initial status. They are valid only when some number of file registers are secured by parameter setting in a programming tool.
- 2) Number of file registers

In parameter setting, set 500 file registers as 1 block.

1 to 14 blocks (each of which has 500 file registers) can be set.

1 block occupies 500 steps in the program memory area.

3) Difference between BMOV instruction and other instructions

The table below shows the difference between BMOV instruction and other instructions with regard to file registers (D1000 and later).

Instruction	Contents of transfer	Remarks
BMOV	Can read from and write to the file register area [A] inside the program memory.	-
Other applied instructions than BMOV	Can read from and write to the data register area [B] inside the image memory in the same way as general data registers.	Because the data register area [B] is provided inside the system RAM in PLCs, its contents can be arbitrarily changed without regard to the optional memory format.

When power is turned ON, data registers set as file registers are automatically copied from the file register area [A] to the data register area [B].

Remaining area can be used as data register for general purpose.

2. Cautions on use

- 1) When updating the contents of a file register with a same number (same-number update mode), make sure that the file register number is equivalent between <u>s</u> and <u>d</u>.
- 2) When using file registers in the same-number update mode, make sure that the number of transfer points specified by "n" does not exceed the file register area.
- 3) If the file register area is exceeded while file registers are used in the same-number update mode, an operation error (M8067) is caused and the instruction is not executed.
- In the case of indexing (in the same-number update mode)
 When s and d are modified with index, the instruction is executed if the actual device number is within the file register area and the number of transfer points does not exceed the file register area.

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation or

오,

5

Basic Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

ctions

9

AppliedInstru (Move and Compare)

nstructions

5) Handling of flash memory

<In FX3U, FX3UC PLCs>

When changing the contents of file registers secured inside the flash memory, observe the following condition:

- Set the protect switch to OFF in the optional memory.
- When writing data using a continuous operation type instruction in a program, data is written to the flash memory in every operation cycle of the PLC. To prevent this, as the flash memory has a limit to the number of times of writing operations, be sure to use a pulse operation type instruction (BMOVP) so that the number of times of writing is reduced.
- It takes 66 to 132 ms to write data of one serial block (500 points) to the flash memory. Execution of the program is paused during this period. Because the watchdog timer is not refreshed at this time, it is necessary to take proper countermeasures such as inserting the WDT instruction into the sequence program.
- Do not turn OFF the power while the contents of file registers are changed. If the power is turned OFF during the change, the data stored in file registers may be filled with unexpected values, or a parameter error may occur.
- 6) Write to the EEPROM
 - <In FX3S, FX3G, FX3GC PLCs>
 - It takes 80 ms to write data in one continuous block (500 points) to the EEPROM.
 - Note that execution of the program is paused during this period, but the watchdog timer is automatically refreshed.
 - <In FX1S, FX1N, FX1NC, FX2N and FX2NC PLCs>
 - It takes 10 ms to write data in one point to the EEPROM. Note that execution of the program is paused during this period, and the watchdog timer is automatically refreshed.
 - <In FXON PLCs>
 - Write to the EEPROM using peripheral equipment.
- 7) File register operation

File registers are secured inside the built-in memory or memory cassette. Different from general data registers, file registers can be read and written directly only by peripheral equipment or BMOV instruction.

8) If a file register is not specified as the destination in BMOV instruction, the file register is not accessed. a) Outline of memory operation

b) Program examples

When X000 is set to ON, the data register area [B] is read.

BMOVP(X000, D1100, K400, D200);

A file register can be specified as ____. But if a same number with _____ is specified, the same-number register update mode is selected.

[ST]

However, even if a file register having different number is specified for <u>s</u> and <u>d</u> respectively, data cannot be transferred from the file register area to another file register area. In such a case, read the contents of a file register specified as (s) in the same-number register update mode to the data register area [B] once, and then write the data.

8.7 FMOV / Fill Move

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	×	×	0	×	×

Outline

This instruction transfers same data to specified number of devices.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
FMOV	16 bits	Continuous	FMOV EN ENO s d n	FMOV(EN,s,n,d);
FMOVP	16 bits	Pulse	FMOVP EN ENO s d n	FMOVP(EN,s,n,d);
DFMOV	32 bits	Continuous	DFMOV EN ENO s d n	DFMOV(EN,s,n,d);
DFMOVP	32 bits	Pulse	DFMOVP – EN ENO – s d – n	DFMOVP(EN,s,n,d);

2. Set data

			Data type				
`	Variable	Description	16-bit operation	32-bit operation			
	EN	Execution condition	Bit				
Input variable	S	Transfer source data or device storing data	ANY16	ANY32			
	n	Number of transfer points	ANY16				
Output	ENO	Execution state	Bit				
variable	d	Head word device of transfer destination (Same data is transferred from the transfer source at one time.)	ANY16	ANY32			

3. Applicable devices

			Bit	D	ev	ice	S		Word Devices								Others							
Operand type		;	Sys	ste	m	Us	er	Dig	it Spe	ecifica	tion		Sy U	ste Ise	em r	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	X	Y	Μ	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	к	н	Е	"0"	Р
S								•	•	•	•	•	•	•	▲1	▲2	•	•	•	•	•			
n																				•	•			
d									•	٠	٠	•	•	•	▲ 1	▲2			•					

▲: Refer to "Cautions".

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation o

오,

5

Basic

Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

ictions

9

Applied Instructions (Arithmetic and Logical Operation)

1 0

it Operation)

Applied Instru (Move and Compare)

nstructions

Function and operation explanation

1. 16-bit operation(FMOV, FMOVP)

The data or contents of a device specified by s are transferred to "n" devices starting from a device specified by \bigcirc .

- The contents will be same among all of "n" devices.
- If the number of points specified by "n" exceeds the device number range, data is transferred within the • possible range.
- While the command input is OFF, the transfer destination specified by d does not change.
- While the command input is ON, the data of the transfer source specified by s does not change.
- When a constant (K) is specified as the transfer source specified by (s), it is automatically converted into binary.

2. 32-bit operation(DFMOV, DFMOVP)

The contents of the transfer source specified by s are transferred to "n" 32-bit devices starting from the device specified by \bigcirc .

- The contents will be the same among all of "n" 32-bit devices.
- If the number of points specified by "n" exceeds the device number range, data is transferred within the ٠ possible range.
- While the command input is OFF, the transfer destination specified by (d) does not change.
- While the command input is ON, the data of the transfer source specified by s does not change.
- When a constant (K) is specified as the transfer source specified by (s), it is automatically converted into binary.

Cautions

- 1) 32-bit instructions are not provided in the FXU PLC Ver. 2.30 or earlier.
- 2) Some restrictions to applicable devices ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable. ▲2:The FX₃U and FX₃UC PLCs only are applicable.

Program examples

1. When writing specified data to two or more devices

XCH / Exchange 8.8

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	0	×	×

Outline

This instruction exchanges data between two devices.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
хсн	16 bits	Continuous	XCH — EN ENO d1 d2 —	XCH(EN,d1,d2);
ХСНР	16 bits	Pulse	XCHP — EN ENO 	XCHP(EN,d1,d2);
DXCH	32 bits	Continuous	DXCH EN ENO d1 d2	DXCH(EN,d1,d2);
DXCHP	32 bits	Pulse	DXCHP — EN ENO d1 d2 —	DXCHP(EN,d1,d2);

2. Set data

			Data	type
١	/ariable	Description	16-bit operation	32-bit operation
Input variable	EN	Execution condition	Bit	
	ENO	Execution state	Bit	
Output variable	<u>d1</u>	Device storing data to be exchanged.	ANY16	ANY32
	(d2)	Device storing data to be exchanged.	ANY16	ANY32

3. Applicable devices

			Bit	De	vice	s		v					Word Devices									Oth	ers	
Operand type		S	Syst	en	າ ປະ	er	Dig	it Spe	cifica	tion		Sy U	ste se	em er		Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	X	Y	м	Г	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	2	U□\G□	۷	Z	Modifier	к	Н	E	"0"	Р
<u>d1</u>)								•	•	•	•	•	•		1	▲1	•	•	•					
(d2)								•	•	•	•	•	•	•	1	▲1	•	•	•					

▲: Refer to "Cautions".

Jotions

10

ied Instructions ation and t Operation)

1. 16-bit operation(XCH, XCHP)

Data is exchanged between the device specified by $\underline{d1}$ and the device specified by $\underline{d2}$.

2. 32-bit operation(DXCH, DXCHP)

Data is exchanged between the device specified by $\underline{d1}$ and the device specified by $\underline{d2}$.

Extension function

When the instruction is executed while M8160 is ON, high-order 8 bits (byte) and low-order 8 bits (byte) of a word device are exchanged each other.

(The FXU PLC of V2.30 or earlier does not support the extension function.)

This is the same operation as SWAP instruction, so use SWAP instruction for newly programming.

In the case of 32-bit operation, high-order 8 bits (byte) and low-order 8 bits (byte) of a word device are changed.

Cautions

1) Some restrictions to applicable devices

▲1:The FX₃U and FX₃UC PLCs only are applicable.

Error

An operation error occurs in the following case. The error flag M8067 turns ON, and the error code is stored in D8067.

• When M8160 is ON, and the device numbers specified by <u>d1</u> and <u>d2</u> are different.

8.9 BCD / Conversion to Binary Coded Decimal

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

This instruction converts binary (BIN) data into binary-coded decimal (BCD) data. Binary data is used in operations in PLCs. Use this instruction to display numeric values on the sevensegment display unit equipped with BCD decoder.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
BCD	16 bits	Continuous	BCD — EN ENO — s d	BCD(EN,s,d);
BCDP	16 bits	Pulse	BCDP EN ENO s d	BCDP(EN,s,d);
DBCD	32 bits	Continuous	DBCD EN ENO s d	DBCD(EN,s,d);
DBCDP	32 bits	Pulse	DBCDP EN ENO s d	DBCDP(EN,s,d);

2. Set data

			Data	type
,	/ariable	Description	16-bit operation	32-bit operation
Input	EN	Execution condition	Bit	
variable	S	Word device storing the conversion source (binary) data	ANY16	ANY32
Output	ENO	Execution state	Bit	
variable	d	Word device of the conversion destination (binary-coded decimal) data	ANY16	ANY32

3. Applicable devices

	Bit Devices								Word Devices										Others					
Operand type		S	yst	em	ı U	sei	r	Dig	it Spe	ecifica	tion		Sy U	ste se	em r	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	X	Y	M	ГС	5	SC	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	к	Н	E	"0"	Р
S								•	•	•	•	•	•	•	▲1	▲2	•	•	•					
d									•	•	•	•	•	•	▲ 1	▲2	•	•	•					

▲: Refer to "Cautions".

9

0

tion and Operation

1. 16-bit operation(BCD, BCDP)

This instruction converts the binary (BIN) data specified by \underline{s} into binary-coded decimal (BCD) data, and transfers the converted BCD data to the device specified by \underline{d} .

- The data of the device specified by s can be converted if it is within the range from K0 to K9999 (BCD).
- The table below shows digit specification for the devices specified by s and respectively.

2. 32-bit operation(DBCD, DBCDP)

This instruction converts the binary (BIN) data specified by \underline{s} into binary-coded decimal (BCD) data, and transfers the converted BCD data to the device specified by \underline{d} .

- The data of the device specified by s can be converted if it is within the range from K0 to K99999999 (BCD).
- The table below shows digit specification for the devices specified by s and respectively.

[+1,]	Number of digits	Data range
K1Y000	1	0 to 9
K2Y000	2	00 to 99
K3Y000	3	000 to 999
K4Y000	4	0000 to 9999
K5Y000	5	00000 to 99999
K6Y000	6	000000 to 999999
K7Y000	7	0000000 to 9999999
K8Y000	8	00000000 to 99999999

1 Extension function(FXU and FX2C PLCs) Outline The FXU PLC of V2.30 or earlier does not support the extension function. When executing the instruction with M8023 ON, conversion takes place from binary float to decimal float. X000 M8023 -() H۲ 2 DBCD Instruction List Binary float value D1 D0 ΕN ENO D0 d - D2 Variable M8000 M8023 Decimal float value D3 D2 3 -1/--()-For the float conversion, only data register (D) is applicable as the device for (s) and (d). Configuration of Instruction Related instruction Instruction Function BIN Converts binary-coded decimal (BCD) data into binary (BIN) data 4 How to Read Explanation o Cautions 1) Instructions of pulse operation type are not provided in the FX0, FX0s or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type. <u>o</u> 2) Because conversion between binary-coded decimal data and binary data is automatically executed in 5 SEGL and ARWS instructions, BCD instruction is not required. 3) Binary data is used in all operations in PLCs including arithmetic operations (+, -, × and +), increment and Basic Instruction decrement instructions. When receiving the digital switch information in the binary-coded decimal (BCD) format into a PLC, use BIN instruction for converting BCD data into binary data. · When outputting data to the seven-segment display unit handling binary-coded decimal (BCD) data, use 6 BCD instruction for converting binary data into BCD data. Step Ladder Instructions 4) Some restrictions to applicable devices ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable. ▲2:The FX₃U and FX₃UC PLCs only are applicable. Error 7 In BCD or BCDP (16-bit type) instructions, an operation error occurs when the (s) value is outside the range Applied Instructions (Program Flow) from 0 to 9,999. In DBCD or DBCDP (32-bit type) instructions, an operation error occurs when the s value is outside the range from 0 to 99,999,999. 8 dInstruc /e and npare)

ctions 9

0

Program examples

1. When the seven-segment display unit has 1 digit

2. When the seven-segment display unit has 2 to 4 digits

3. When the seven-segment display unit has 5 to 8 digits

[Structured ladder/FBD]

[ST]

DBCD (X000, D0, K5Y000);

8.10 BIN / Conversion to Binary

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

This instruction converts binary-coded decimal (BCD) data into binary (BIN) data. Use this instruction to convert a binary-coded decimal (BCD) value such as a value set by a digital switch into binary (BIN) data and to receive the converted binary data so that the data can be handled in operations in PLCs.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language
name	Operation	form	Structured ladder/FBD	ST
BIN	16 bits	Continuous	BIN EN ENO s d	BIN(EN,s,d);
BINP	16 bits	Pulse	BINP EN ENO s d	BINP(EN,s,d);
DBIN	32 bits	Continuous	DBIN EN ENO s d	DBIN(EN,s,d);
DBINP	32 bits	Pulse	BINP EN ENO s d	DBINP(EN,s,d);

2. Set data

			Data type				
١	/ariable	Description	16-bit operation	32-bit operation			
Input	EN	Execution condition	Bit				
variable	S	Word device storing the conversion source (binary-coded decimal) data	ANY16	ANY32			
Output	ENO	Execution state	Bit				
variable	d	Word device of the conversion destination (binary)	ANY16	ANY32			

3. Applicable devices

	Bit Devices						S		Word Devices										Others					
Operand type		s	Sys	te	m	Us	er	Dig	it Spe	cifica	tion		Sy U	ste se	m r	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	к	н	E	"0"	Р
S								•	•	٠	•	•	•	•	▲ 1	▲2	•	•	•					
d									•	•	•	•	•	•	▲ 1	▲2	•	•	•					

▲: Refer to "Cautions".

etic a

0

ltion and Operation

1. 16-bit operation(BIN, BINP)

This instruction converts the binary-coded decimal (BCD) data specified by \underline{s} into binary (BIN) data, and transfers the converted binary data to the device specified by \underline{d} .

- The data of the device specified by s can be converted if it is within the range from 0 to 9999 (BCD).
- The table below shows digit specification for the devices specified by <u>s</u> and <u>d</u>.

K1X000	1	0 to 9
K2X000	2	00 to 99
K3X000	3	000 to 999
K4X000	4	0000 to 9999

2. 32-bit operation(DBIN, DBINP)

This instruction converts the binary-coded decimal (BCD) data specified by s into binary (BIN) data, and transfers the converted binary data to the device specified by d.

- The data of the device specified by s can be converted if it is within the range from 0 to 99999999 (BCD).
- The table below shows digit specification for the devices specified by s and .

s+1, s	Number of digits	Data range
K1X000	1	0 to 9
K2X000	2	00 to 99
K3X000	3	000 to 999
K4X000	4	0000 to 9999
K5X000	5	00000 to 99999
K6X000	6	000000 to 999999
K7X000	7	0000000 to 9999999
K8X000	8	00000000 to 99999999

Extension function(FXU and FX2C PLCs)

The FXU PLC of V2.30 or earlier does not support the extension function. When executing the instruction with M8023 ON, conversion takes place from binary-coded decimal float to binary float.

For the float conversion, only data register (D) is applicable as the device for s and d.

Related instruction

Instruction	Function
BCD	Converts binary (BIN) data into binary-coded decimal (BCD) data.

Cautions

- 1) Instructions of pulse operation type are not provided in the FX0s, FX0 or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 2) Because conversion between binary-coded decimal data and binary data is automatically executed in DSW, BIN instruction is not required.
- 3) Binary data is used in all operations in PLCs including arithmetic operations (+, -, × and +), increment and decrement instructions.
- When receiving the digital switch information in the binary-coded decimal (BCD) format into a PLC, use BIN instruction for converting BCD data into binary data.
- · When outputting data to the seven-segment display unit handling binary-coded decimal (BCD) data, use BCD instruction for converting binary data into BCD data.
- 4) Some restrictions to applicable devices ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable. ▲2:The FX3U and FX3UC PLCs only are applicable.

Error

When the data of specified by s is not binary-coded decimal (BCD), M8067 (operation error) turns ON. But M8068 (operation error latch) does not turn ON.

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation o

<u>o</u>

5

Program examples

1. When the digital switch has 1 digit

[ST]

MOV (X000, K1X000, D0);

2. When the digital switch has 2 to 4 digits

[ST]

BIN (X000, K2X000, D0);

3. When the digital switch has 5 to 8 digits

[ST]

DBIN (X000, K5X000, D0);

9. Applied Instructions (Arithmetic and Logical Operation)

This chapter introduces the instructions for arithmetic operations and logical operations of numeric data.

Instruction name	Function	Reference
ADDP		
DADD	Addition	Section 9.1
DADDP		
SUBP		
DSUB	Subtraction	Section 9.2
DSUBP		
MULP		
DMUL	Multiplication	Section 9.3
DMULP		
DIVP		
DDIV	Division	Section 9.4
DDIVP		
INC		
INCP		0
DINC		Section 9.5
DINCP		
DEC		
DECP		
DDEC		Section 9.6
DDECP		
WAND		
WANDP		0
DAND		Section 9.7
DANDP		
WOR		
WORP		Contine 0.0
DOR		Section 9.8
DORP		
WXOR		
WXORP		Section 0.0
DXOR		Section 9.9
DXORP	1	
NEG		
NEGP		Contine 0.10
DNEG		Section 9.10
DNEGP	1	

1

Outline

10

ied Instructions ation and t Operation)

9.1 ADDP / Addition

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

This instruction executes addition by two values to obtain the result (A + B = C) \rightarrow For the floating point addition instruction [DEADD], refer to Section 18.8.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
-	16 bits	Continuous	Use application functions (ADD(_E)) for 16-bit operators for details, refer to the following manual. \rightarrow FX Structured Pr	eration and continuous execution. rogramming Manual [Application Functions]
ADDP	16 bits	Pulse	ADDP — EN ENO — s1 d — s2	ADDP(EN,s1,s2,d);
DADD	32 bits	Continuous	DADD — EN ENO — s1 d — s2	DADD(EN,s1,s2,d);
DADDP	32 bits	Pulse	DADDP — EN ENO — s1 d — s2	DADDP(EN,s1,s2,d);

2. Set data

			Data	type
,	Variable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input variable	(s1)	Data for addition or word device storing data	ANY16	ANY32
	<u>(s2</u>)	Data for addition or word device storing data	ANY16	ANY32
Output	ENO	Execution state	Bit	
variable	d	Word device storing the addition result	ANY16	ANY32

3. Applicable devices

			Bi	t C)e\	/ice	es					W	or	d C)evid	es				Others				
Operand type	System User			Dig	igit Specification				System User		Special Unit	Index		Constant		Real Number	Character String	Pointer						
	X	Y	М	т	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	к	н	Е	"0"	Р
<u>(s1</u>)								•	•	•	•	•	•	•	▲1	▲2	•	•	•	•	•			
<u>(s2</u>)								•	•	•	•	•	•	•	▲1	▲2	•	•	•	•	•			
d									•	٠	•	•	•	•	▲1	▲2	•	•	•					

▲: Refer to "Cautions".

1. 16-bit operation(ADDP)

The data specified by $\underline{s1}$ and $\underline{s2}$ are added in the binary format, and the addition result is transferred to the device specified by \underline{d} .

- The most significant bit of each data indicates the sign (positive: 0 or negative: 1), and data is added algebraically. 5+(-8)=-3
- When a constant (K) is specified in $\underline{s1}$ or $\underline{s2}$, it is automatically converted into the binary format.

2. 32-bit operation(DADD, DADDP)

The data specified by $\underline{s1}$ and $\underline{s2}$ are added in the binary format, and the addition result is transferred to the device specified by \underline{d} .

- The most significant bit of each data indicates the sign (positive: 0 or negative: 1), and data is added algebraically.
 5,500+(-8,540)=-3,040
- When a constant (K) is specified in <u>s1</u> or <u>s2</u>, it is automatically converted into the binary format.

Related device

1. Relationship between the flag operation and the sign

		\rightarrow For the flag operations, refer to Section 1.3.4.
Device	Name	Description
M8020	Zero	ON : When the operation result is 0 OFF : When the operation result is not 0
M8021	Borrow	 ON : When the operation result is less than -32,768 (in 16-bit operation) or -2,147,483,648 (in 32-bit operation), the borrow flag operates. OFF : When the operation result is not less than -32,768 (in 16-bit operation) or -2,147,483,648 (in 32-bit operation)
M8022	Carry	 ON : When the operation result is more than 32,767 (in 16-bit operation) or 2,147,483,647 (in 32-bit operation), the carry flag operates. OFF : When the operation result is not more than 32,767 (in 16-bit operation) or 2,147,483,647(in 32-bit operation)

ation and Operation)

Extension function(FXU and FX2C PLCs)

The FXu PLC of V2.30 or earlier does not support the extension function. When executing an instruction with M8023 ON, a binary float operation takes place. In this case, K, H and D are valid as the object device for $\underline{s1}$ and $\underline{s2}$ and D is valid for \underline{d} . The source data needs to be converted into binary float value in advance by FLT instruction. Note, however, that constants K and H are automatically converted into binary float values.

Cautions

- 1) Instructions of pulse operation type are not provided in the FX0, FX0s or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 2) When using a 32-bit operation instruction (DADD or DADDP) and specifying word devices, a 16-bit word device on the low-order side is specified first, and a word device with the subsequent device number is automatically set for the high-order 16 bits.

To prevent number overlap, it is recommended to always specify an even number, for example.

 The same device number can be specified for both the source and the destination. In this case, note that the addition result changes in every operation cycle if a continuous operation type instruction (ADD or DADD) is used.

4) Some restrictions to applicable devices
 ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 ▲2:The FX3U and FX3UC PLCs only are applicable.

Program examples

 Difference between ADDP and INCP instruction caused by a program for adding "+1". When ADDP instruction is executed, "1" is added to the contents of D0 every time X001 turns ON from OFF. ADDP instruction is similar to INCP instruction described later except the contents shown in the table below.

			ADDP/DADD/DADDP	INC/INCP/DINC/DINCP
Fla	g (zero, borr	ow, carry)	Operates	Does not operate
sult	16-bit	s+(+1)=d	$+32,767 \rightarrow 0 \rightarrow +1 \rightarrow +2 \rightarrow$	+32,767 → -32,768 → -32,767
n resu	operation	<u>s</u> +(-1)= <u>d</u>	$\leftarrow -2 \leftarrow -1 \leftarrow 0 \leftarrow -32,768$	-
eratic	32-bit	s+(+1)=d	$+2,147,483,647 \rightarrow 0 \rightarrow +1 \rightarrow +2 \rightarrow$	$+2,147,483,647 \rightarrow -2,147,483,648 \rightarrow -2,147,483,647$
ð	operation	<u>s</u> +(-1)= <u>d</u>	← -2 ← -1 ←0 ← -2,147,483,648	-

9.2 SUBP / Subtraction

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

This instruction executes subtraction using two values to obtain the result (A -B = C). \rightarrow For the floating point subtraction instruction [DESUB], refer to Section 18.9.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
-	16 bits	Continuous	Use application functions (SUB(_E)) for 16-bit operators for details, refer to the following manual. \rightarrow FX Structured Provide the following	ration and continuous execution. rogramming Manual [Application Functions]
SUBP	16 bits	Pulse	SUBP — EN ENO — s1 d — s2	SUBP(EN,s1,s2,d);
DSUB	32 bits	Continuous	DSUB — EN ENO — s1 d — s2	DSUB(EN,s1,s2,d);
DSUBP	32 bits	Pulse	DSUBP — EN ENO — s1 d — s2	DSUBP(EN,s1,s2,d);

2. Set data

			Data	type
١	/ariable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input variable	(s1)	Data for subtraction or word device storing data	ANY16	ANY32
	<u>(s2</u>)	Data for subtraction or word device storing data	ANY16	ANY32
Output	ENO	Execution state	Bit	
variable	d	Word device storing the subtraction result	ANY16	ANY32

3. Applicable devices

			Bit	D	ev	ice	s					W	or	d D	evio	es				Others						
Operand type	System User			Dig	jit Specification				System User		Special Unit	Index		Constant		Real Number	Character String	Pointer								
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	к	н	Е	"0"	Р		
<u>(s1</u>)								•	•	•	•	•	•	•	▲1	▲2	•	•	•	•	•					
<u>(s2</u>)								•	•	•	•	•	•	•	▲1	▲2	•	•	•	٠	•					
d									•	•	٠	•	•	•	▲1	▲2	•	•	•							

▲: Refer to "Cautions".

10

tion and Operation

1. 16-bit operation(SUBP)

The data specified by $\underline{s2}$ is subtracted from the data specified by $\underline{s1}$ in the binary format, and the subtraction result is transferred to $\underline{c1}$.

• The most significant bit of each piece of data indicates the sign (positive: 0 or negative: 1), and data is subtracted algebraically.

(5-(-8)=13)

• When a constant (K) is specified in $\underline{s1}$ or $\underline{s2}$, it is automatically converted into the binary format.

2. 32-bit operation(DSUB, DSUBP)

The data specified by $\underline{s2}$ is subtracted from the data specified by $\underline{s1}$ in the binary format, and the subtraction result is transferred to \underline{d} .

- The most significant bit of each piece of data indicates the sign (positive: 0 or negative: 1), and data is subtracted algebraically. (5,500-(-8,540)=14,040)
- When a constant (K) is specified in $\underline{s1}$ or $\underline{s2}$, it is automatically converted into the binary format.

Extension function(FXU and FX2C PLCs)

The FXu PLC of V2.30 or earlier does not support the extension function. When executing an instruction with M8023 ON, a binary float operation takes place. In this case, K, H and D are valid as the object device for $\underline{s1}$ and $\underline{s2}$ and D is valid for \underline{d} . The source data needs to be converted into binary float value in advance by FLT instruction. Note, however, that constants K and H are automatically converted into binary float values.

Related device

1. Relationship between the flag operation and the sign

\rightarrow For the flag operations, refer to Section 1.3.4.

Device	Name	Description
M8020	Zero	ON : When the operation result is 0 OFF : When the operation result is not 0
M8021	Borrow	 ON : When the operation result is less than -32,768 (in 16-bit operation) or -2,147,483,648 (in 32-bit operation), the borrow flag operates. OFF : When the operation result is not less than -32,768 (in 16-bit operation) or -2,147,483,648 (in 32-bit operation)
M8022	Carry	 ON : When the operation result is more than 32,767 (in 16-bit operation) or 2,147,483,647 (in 32-bit operation), the carry flag operates. OFF : When the operation result is not more than 32,767 (in 16-bit operation) or 2,147,483,647(in 32-bit operation)

1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation o nstructions

5

Basic Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

edInstruct ove and ompare)

ictions

9

lied Instructions thmetic and ical Operation)

0

<u>o</u>

Cautions

- 1) Instructions of pulse operation type are not provided in the FX0, FX0s or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 2) When using a 32-bit operation instruction (DSUB or DSUBP) and specifying word devices, a 16-bit word device on the low-order side is specified first, and a word device with the subsequent device number is automatically set for the high-order 16 bits.

To prevent number overlap, it is recommended to always specify an even number, for example.

3) The same device number can be specified for both the source and the destination. In this case, note that the addition result changes in every operation cycle if a continuous operation type instruction (DSUB) is used.

4) Some restrictions to applicable devices ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable. \triangle 2:The FX_{3U} and FX_{3UC} PLCs only are applicable.

Program examples

1. Difference between SUBP and DECP instruction caused by a program for subtracting "1" "1" is subtracted from the contents of D0 every time X001 turns ON from OFF.

SUB instruction is similar to DECP instruction described later except the contents shown in the table below.

			SUBP/DSUB/DSUBP instructions	DEC/DECP/DDEC/DDECP instructions
Fla	g (zero, borr	ow, carry)	Operates	Does not operate
sult	16-bit	<u>s</u> -(+1)= d	$\leftarrow -2 \leftarrow -1 \leftarrow 0 \leftarrow -32,768$	$-32,768 \rightarrow +32,767 \rightarrow +32,766$
on rest	operation	(s)-(-1)= (d)	$+32,767 \rightarrow 0 \rightarrow +1 \rightarrow +2 \rightarrow$	-
eratic	32-bit	<u>s</u> -(+1)= <u>d</u>	← -2 ← -1 ←0 ← -2,147,483,648	$\textbf{-2,147,483,648} \rightarrow \textbf{+2,147,483,647} \rightarrow \textbf{+2,147,483,646}$
ð	operation	<u>s</u> -(-1)= <u>d</u>	+2,147,483,647 \rightarrow 0 \rightarrow +1 \rightarrow +2 \rightarrow	-

[Structured ladder/FBD]

Operation and

9.3 MULP / Multiplication

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)	
0	0	0	0	0	0	0	0	0	

Outline

This instruction executes multiplication by two values to obtain the result (A \times B = C). \rightarrow For the floating point multiplication instruction [DEMUL], refer to Section 18.10.

1. Format and operation, execution form

Instruction	Operation	ach language		
name	operation	form	Structured ladder/FBD	ST
-	16 bits	Continuous	Use application functions (MUL(_E)) for 16-bit operators for details, refer to the following manual. \rightarrow FX Structured Provide the following	eration and continuous execution. rogramming Manual [Application Functions]
MULP	16 bits	Pulse	MULP — EN ENO — s1 d — s2	MULP(EN,s1,s2,d);
DMUL	32 bits	Continuous	DMUL =N ENO =s1 d =s2	DMUL(EN,s1,s2,d);
DMULP	32 bits	Pulse	DMULP = EN ENO - s1 d - s2	DMULP(EN,s1,s2,d);

2. Set data

			Data	type
١	/ariable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input variable	<u>(s1)</u>	Data for multiplication or word device storing the multiplication data	ANY16	ANY32
Valiable	<u>(s2</u>)	Data for multiplication or word device storing the multiplication data	ANY16	ANY32
Output	ENO	Execution state	Bit	
Output variable	d	Head word device storing the multiplication result	ANY32	ARRAY [12] OF ANY32

3. Applicable devices

			Bit	De	vic	es					W	lor	d D	Devi	ces						Oth	ners	
Operand type System Use		ser	Digit Specification						ste Ise	m r	Special Unit	Index			Constant		Real Number	Character String	Pointer				
	X	Y	M.	г	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	Е	"0"	Р
<u>(s1</u>)							•	•	•	•	•	•	•	▲1	▲2		٠	•	•	•			
<u>(s2</u>)							٠	•	٠	•	•	•	•	▲1	▲2		٠	•	•	•			
d								•	•	•	•	•	•	▲1	▲2		▲ 3	•					

▲: Refer to "Cautions".

1. 16-bit operation(MULP)

The data specified by $\underline{s1}$ is multiplied by data specified by $\underline{s2}$ in the binary format, and the multiplication result is transferred to 32-bit (double word) device specified by \underline{d} .

MULP Command input ENO BIN EN BIN BIN Multiplication s1 d Device storing $(\underbrace{\mathtt{s1}}) \times (\underbrace{\mathtt{s2}}) \to (\underbrace{\mathtt{d}} + 1, \underbrace{\mathtt{d}})$ data 1 Multiplication data 2 the multiplication s2 16 bits 16 bits 32 bits result

- The most significant bit of each piece of data indicates the sign (positive: 0 or negative: 1), and data is multiplied algebraically. (5×(-8)=-40)
- When a constant (K) is specified in s1 or s2, it is automatically converted into the binary format.
- When a digit (K1 to K8) is specified for the device specified by ____: A digit can be specified in the range from K1 to K8.

For example, when K2 is specified	, only low-order 8 bits can l	be obtained out of the product ((32 bits).
-----------------------------------	-------------------------------	----------------------------------	------------

Commar	nd input MULP											
	$K_{53} = 1$ $d = K_{2}Y_{000}$											
1	K15 — S2											
(<u>s1</u>)	K53(H0035)											
	x											
<u>s2</u>	K15(H000F)											
	When command contact turns ON											
	K795(H031B)											
	Sign bit (0=Positive 1=Negative)											
	Y027 Y026 Y025 ··· Y013 Y012 Y011 Y010 Y007 Y006 Y005 Y004 Y003 Y002 Y001 Y000											
d	0 0 0 … 0 0 1 1 0 0 1 1 0 1 1											

Not output

Operation result is output to K2Y000

1

Outline

2

Instruction List

3

Configuration of Instruction

4

2. 32-bit operation(DMUL, DMULP)

The data specified by $\underline{s1}$ is multiplied by the data specified by $\underline{s2}$ in the binary format, and the multiplication result is transferred to 64-bit \underline{d} (four word devices).

- The most significant bit of each piece of data indicates the sign (positive: 0 or negative: 1), and data is multiplied algebraically. (5,500×(-8,540)=-46,970,000)
- When a constant (K) is specified in s1 or s2, it is automatically converted into the binary format.
- When a digit (K1 to K8) is specified for the device specified by ____, the result is obtained only for loworder 32 bits, and is not obtained for high-order 32 bits.

Transfer the data to word devices once, then execute the operation.

Extension function(FXU and FX2C PLCs)

The FXu PLC of V2.30 or earlier does not support the extension function. When executing an instruction with M8023 ON, a binary float operation takes place, for example, $(D1, D0) \times (D3, D2) = (D5, D4)$. In this case, K, H and D are valid as the object device for <u>s1</u> and <u>s2</u> and D is valid for <u>d</u>.

The source data needs to be converted into binary float value in advance by FLT instruction. Note, however, that constants K and H are automatically converted into binary float values.

Related device

1. Relationship between the flag operation and the sign

Device	Name	Description
M8304 ^{*1}	Zero	ON : When the operation result is 0 OFF : When the operation result is not 0

*1. Supported only by FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs. Available in the FX3U and FX3UC PLCs of Ver. 2.30 or later.

Cautions

1) Some restrictions to applicable devices

▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

▲2:The FX3U and FX3UC PLCs only are applicable.

▲3:Available only for a 16-bit operation. Not available for a 32-bit operation.

- Instructions of pulse operation type are not provided in the FXos, FXo or FXoN PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 4) In monitoring the operation results by a programming tool, 64-bit data as the operation results cannot be monitored at one time even if a word device is used.

In such a case, the FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs can use floating point operation.

 \rightarrow For the floating point operation, refer to Chapter 18.

Program examples

1. 16-bit operation

[Structured ladder/FBD]

$$(D \ 0) \times (D \ 2) \times (D \ 5, D \ 4)$$

8 9 72

[ST]

MULP(X000, D0, D2, D4);

2. 32-bit operation

[Structured ladder/FBD]

X001			DMUL				
—-II	D0	EN	ENO		(D 1,D 0) > 1 756	(D 3,D 2)	\rightarrow (D 7,D 6,D 5,D 4) 574 212
	D0 — D2 —	s1 s2	u	— D4	1,700	021	074,212

[ST]

DMUL(X001, D0, D2, D4);

Function changes according to versions

	Con	npatible vers	ions		ltom	Eunction summary
FX3S	FX3G	FX3GC	FX3U	FX3UC	item	i unction summary
Ver. 1.00 or later	Ver. 1.00 or later	Ver. 1.40 or later	Ver. 2.30 or later	Ver. 2.30 or later	Zero flag	Turns the special device M8304 ON when the operation result of MUL instruction is 0.

9

Applied Instructions (Arithmetic and Logical Operation)

10

ied Instructions tation and t Operation)

1

Outline

2

Instruction List

3

9.4 DIVP / Division

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

This instruction executes division by two values to obtain the result [A \div B =C...(remainder)]. \rightarrow For the floating point division instruction [DEDIV], refer to Section 18.11.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
-	16 bits	Continuous	Use application functions (DIV(_E))) for 16-bit oper For details, refer to the following manual. \rightarrow FX Structured Pr	ration and continuous execution. rogramming Manual [Application Functions]
DIVP	16 bits	Pulse	DIVP — EN ENO — s1 d — s2	DIVP(EN,s1,s2,d);
DDIV	32 bits	Continuous	DDIV — EN ENO — s1 d — s2	DDIV(EN,s1,s2,d);
DDIVP	32 bits	Pulse	DDIVP — EN ENO — s1 d — s2	DDIVP(EN,s1,s2,d);

2. Set data

			Data	type		
۱. ۱	/ariable	Description 16-bit operation				
	EN	Execution condition	Bit			
Input variable	<u>(s1)</u>	Data for division or word device storing the data (dividend).	ANY16	ANY32		
	<u>(s2</u>)	Data for division or word device storing the data (divisor).	ANY16	ANY32		
Output	ENO	Execution state	Bit			
Vutput variable	d	Head word device storing the division result (quotient and remainder)	ARRAY [01] OF ANY16	ARRAY [01] OF ANY32		

3. Applicable devices

	Bit Devices											W	/or	d I	Dev	vic	ces					Others			
Operand type		System User							it Spe	ecifica	tion		Sy U	ste Ise	em r		Special Unit		h	ndex	Constant Real Character Number String			Pointer	
	X	Y	M	Т	C	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	٢	U□\G□	۷	Ζ	Modifier	к	н	Е	"0"	Р
<u>(s1</u>)								٠	•	•	•	•	•	•		.1	▲2		٠	•	•	•			
(s2)								•	٠	•	٠	•	•	•		.1	▲2		٠	•	•	•			
d									•	•	•	•	•	•		.1	▲2		▲3	•					

▲: Refer to "Cautions".
1. 16-bit operation(DIVP)

The contents specified by $\underline{s1}$ indicates the dividend, the contents specified by $\underline{s2}$ indicates the divisor, the quotient and remainder are transferred to the device specified by \underline{d} .

Command input		DIVP					
	EN	ENO		Dividend	Divisor	Quotient	Remainder
Division data 1-	s1	d	— Device storing	BIN	BIN	BIN	BIN
Division data 2-	s2	-	the division	(<u>(s1</u>)) ÷	- ((<u>s2</u>)) -	→ (<u>d</u>)…	(<u>d</u>)+1)
			result	16 bits	16 bits	16 bits	16 bits

- The most significant bit of each data indicates the sign (positive: 0 or negative: 1), and data is divided algebraically, for example, 36 ÷ (-5) = -7 (quotient) and 1 (remainder).
- Two devices in total starting from d are occupied to store the operation result (quotient and remainder). Make sure that these two devices are not used for other control.
- When a constant (K) is specified in s1 or s2, it is automatically converted into the binary format.

2. 32-bit operation(DDIV, DDIVP)

The contents specified by $\underline{s1}$ indicates the dividend, the contents specified by $\underline{s2}$ indicates the divisor, the quotient and remainder are transferred to the device specified by \underline{d} .

	Command input		DDIV		Dividond	Divisor	Quationt	Pomaindor
		ΕN	ENO		Dividend	DIVISUI	Quotient	
				D · · · ·	BIN	BIN	BIN	BIN
I	Division data 1—	S1	d	— Device storing	[(s1)+1,(s1)]	+[(s2)+1,(s2)] -	$\rightarrow [(d)+1, (d)] \cdots$	$\cdot [(d)+3, (d)+2]$
	Division data 2—	s2		the division				
		-		result	32 bits	32 bits	32 bits	32 bits
	Division data 2—	s2		the division result	[(<u>s1</u>)+1, (<u>s1</u>)] ÷ 32 bits	- [(<u>s2</u>)+1,(<u>s2</u>)] - 32 bits	$\rightarrow [\underline{(d)} + 1, \underline{(d)}]$ 32 bits	32 bits

- Four devices in total starting from d are occupied to store the operation result (quotient and remainder). Make sure that these four devices are not used for other control.
- The most significant bit of each data indicates the sign (positive: 0 or negative: 1), and data is divided algebraically, for example, 5,500 ÷ (-540) = -10 (quotient) and 100 (remainder).
- When a constant (K) is specified in $\underline{s1}$ or $\underline{s2}$, it is automatically converted into the binary format.

Extension function(FXU and FX2C PLCs)

The FXU PLC of V2.30 or earlier does not support the extension function.

When executing an instruction with M8023 ON, a binary float operation takes place, for example, $(D1, D0) \div (D3, D2) = (D5, D4)$.

In this case, K, H and D are valid as the object device for $\underline{s1}$ and $\underline{s2}$ and D is valid for \underline{d} .

The source data needs to be converted into binary float value in advance by FLT instruction.

Note, however, that constants K and H are automatically converted into binary float values.

Related device

Device	Name	Description
M8304 ^{*1}	Zero	ON : When the operation result is 0 OFF : When the operation result is not 0
M8306 ^{*1}	Carry	 ON : When the operation result is more than 32,767 (in 16-bit operation) or 2,147,483,647 (in 32-bit operation), the carry flag operates. OFF : When the operation result is not more than 32,767 (in 16-bit operation) or 2,147,483,647(in 32-bit operation)

*1. Supported only by FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs. Available in the FX3U and FX3UC PLCs of Ver. 2.30 or later. 7

Applied Instructions (Program Flow)

8

edInstruc ve and mpare)

uctions

9

่งlied Instructions ^งhmetic and งI Operation)

0

nstructions

Cautions

- 1) Some restrictions to applicable devices
 - ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 - ▲2:The FX3U and FX3UC PLCs only are applicable.
 - ▲3:Available only for a 16-bit operation. Not available for a 32-bit operation.
- 2) Instructions of pulse operation type are not provided in the FX0s, FX0 or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 3) The most significant bit of the quotient and remainder indicates the sign (positive: 0 or negative: 1).
- 4) The quotient is negative when either the dividend or divisor is negative. The remainder is negative when the dividend is negative.
- 5) The remainder is not obtained when a bit device is specified with digit specification for the device specified by <u>d</u>.
- 6) In a 32-bit operation (by DDIV or DDIVP), Z cannot be specified as the device specified by d.

Program examples

1. 16-bit operation

[Structured ladder/FBD]

[ST]

DIVP(X000,D0,D2,D4);

2. 32-bit operation

[Structured ladder/FBD]

[ST]

DDIV(X001, D0, D2, D4);

Function changes according to versions

	Com	patible vers	sions		Itom	Function summary					
FX3S	FX3G	FX3GC	FX3U	FX3UC	nem	r unction summary					
					Zero flag	Turns M8304 ON when the operation result of DIV instruction is 0.					
Ver. 1.00 or later	Ver. 1.00 or later	Ver. 1.40 or later	Ver. 2.30 or later	Ver. 2.30 or later	Carry flag	 Turns M8306 ON when the operation result of DIV instruction overflows. 16-bit operation : Only when the maximum negative value (-32,768) is divided by "-1". 32-bit operation : Only when the maximum negative value (-2,147,483,648) is divided by "-1". 					

9.5 INC / Increment

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

This instruction increments the data of a specified device by "1" (+1 addition).

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
INC	16 bits	Continuous	EN ENO	INC(EN,d);
INCP	16 bits	Pulse	INCP EN ENO 	INCP(EN,d);
DINC	32 bits	Continuous	EN ENO	DINC(EN,d);
DINCP	32 bits	Pulse	DINCP EN ENO d	DINCP(EN,d);

2. Set data

			Data type					
``	/ariable	Description	16-bit operation	32-bit operation				
Input variable	EN	Execution condition	Bit					
Output	ENO	Execution state	Bit					
variable	D	Word device storing data to be incremented by "1"	ANY16	ANY32				

3. Applicable devices

		E	Bit	Dev	ice	s		Word Devices											Others				
Operand type		s	yst	em	Us	er	Digit Specification					System User			Special Unit	Index			Constant		Real Number	Character String	Pointer
	х	K Y M T C S D⊡.b KnX KnY KnM KnS T C D R		U□\G□	V Z Modifier		κ	н	E	"0"	Р												
d				•	•	•	•	•	•	▲1	▲2	•	•	•									

▲: Refer to "Cautions".

Function and operation explanation

1. 16-bit operation(INC, INCP)

The contents of the device specified by \bigcirc is incremented by "1", and the increment result is transferred to \bigcirc .

2. 32-bit operation(DINC, DINCP)

The contents of the device specified by \bigcirc is incremented by "1", and the increment result is transferred to \bigcirc .

1 Outline 2 Instruction List 3 Configuration of Instruction 4 X V đ 5 Basic Instruction 6 Step Ladder Instructions 7 Applied Instructions (Program Flow) 8 Applied Instructions (Move and Compare)

and

Cautions

- 1) Instructions of pulse operation type are not provided in the FX0S, FX0 or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 2) Note that data is incremented in every operation cycle in a continuous operation type instruction.
- 3) In a 16-bit operation, when "+32,767" is incremented by "1", the result is "-32,768". Flags (zero, borrow and carry) are not activated at this time.
- 4) In a 32-bit operation, when "+2,147,483,647" is incremented by "1", the result is "-2,147,483,648". Flags (zero, borrow and carry) are not activated at this time.
- 5) Some restrictions to applicable devices
 ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 ▲2:The FX3U and FX3UC PLCs only are applicable.

Program examples

[Structured ladder/FBD]

[ST]

MOVP(X010 OR M1, K0, Z); BCDP(X011, CN0Z, K4Y000); INCP(X011, Z); CMPP(X011, K10, Z, M0);

9.6 DEC / Decrement

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

Outline

This instruction decrements the data of a specified device by "1" (-1 addition).

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
DEC	16 bits	Continuous	EN ENO	DEC(EN,d);
DECP	16 bits	Pulse	EN ENO d	DECP(EN,d);
DDEC	32 bits	Continuous	DDEC EN ENO d	DDEC(EN,d);
DDECP	32 bits	Pulse	DDECP EN ENO d	DDECP(EN,d);

2. Set data

			Data type					
```	/ariable	Description	16-bit operation	32-bit operation				
Input variable	EN	Execution condition	Bit					
Output	ENO	Execution state	Bit					
variable	d	Device storing data to be decremented by "1"	ANY16	ANY32				

#### 3. Applicable devices

			Bi	t D	evi	ice	S		Word Devices											Others				
Operand type	System User					Us	er	Digit Specification					System User			Special Unit	Special Index		Constant		Real Number	Character String	Pointer	
	Х	Y	Μ	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U 🗆 \G 🗆	۷	Z	Modifier	к	н	E	"0"	Р
d								▲2	•	•	•													

▲: Refer to "Cautions".

## Function and operation explanation

#### 1. 16-bit operation(DEC, DECP)

The contents of the device specified by  $\bigcirc$  are decremented by "1", and the decremented result is transferred to the device specified by  $\bigcirc$ .



#### 2. 32-bit operation(DDEC, DDECP)

The contents of the device specified by  $\bigcirc$  are decremented by "1", and the decremented result is transferred to the device specified by  $\bigcirc$ .

Command input DDEC  $[d+1,d] - 1 \rightarrow [d+1,d]$ EN ENO d "1" decrement data

Outline 2 Instruction List 3 Configuration of Instruction 4 How to Read Explanation Read 5 Basic Instruction 6 Step Ladder Instructions 7 Applied Instructions (Program Flow) 8 AppliedInstructions (Move and Compare)

9

Applied Instructions (Arithmetic and Logical Operation)

10

ation and Operation)

1

#### Cautions

- 1) Instructions of pulse operation type are not provided in the FX0s, FX0 or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 2) In a 16-bit operation, when "+32,767" is incremented by "1", the result is "-32,768". Flags (zero, borrow and carry) are not activated at this time.
- 3) In a 32-bit operation, when "+2,147,483,647" is incremented by "1", the result is "-2,147,483,648". Flags (zero, borrow and carry) are not activated at this time.
- 4) Some restrictions to applicable devices
   ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
   ▲2:The FX3U and FX3UC PLCs only are applicable.

# 9.7 WAND / Logical Word AND

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)
0	0	0	0	0	0	0	0	0

#### Outline

This instruction executes the logical product (AND) operation of two numeric values.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
WAND	16 bits	Continuous	WAND EN ENO s1 d1 s2	WAND(EN,s1,s2,d1);
WANDP	16 bits	Pulse	WANDP — EN ENO — s1 d1 — s2	WANDP(EN,s1,s2,d1);
DAND	32 bits	Continuous	DAND EN ENO s1 d s2	DAND(EN,s1,s2,d);
DANDP	32 bits	Pulse	DANDP EN ENO s1 d s2	DANDP(EN,s1,s2,d);

#### 2. Set data

			Data	type		
١	/ariable	Description	16-bit operation	32-bit operation		
	EN	Execution condition	Bit			
Input variable	(s1)	Data used for logical product or word device storing data	ANY16	ANY32		
	<u>(s2</u> )	Data used for logical product or word device storing data	ANY16	ANY32		
Output	ENO	Execution state	Bit			
variable	d	Word device storing the logical product result	ANY16	ANY32		

## 3. Applicable devices

	Bit Devices						s		Word Devices													Others			
Operand type		÷	Sys	te	m	Us	er	Dig	it Spe	cifica	tion		Sy U	ste Ise	em er	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer	
	Х	Y	м	Т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	к	Н	E	"0"	Р	
<u>(s1</u> )								•	•	٠	٠	•	•	•	▲1	▲2	•	•	•	•	•				
<u>(s2</u> )								•	•	٠	٠	•	•	•	▲1	▲2	•	•	•	•	•				
d									•	•	•	•	•	•	▲1	▲2	•	•	•						

▲: Refer to "Cautions".

9

Applied Instructions (Arithmetic and Logical Operation)

10

tion and Operation

#### 1. 16-bit operation(WAND, WANDP)

The logical product (AND) operation is executed to the contents specified by s1 and s2 in units of bit, and the result is transferred to the device specified by ____.



- While the command input is OFF, the data of the transfer destination specified by does not change.
- While the command input is ON, the data of the transfer sources specified by s1 and s2 do not change.
- When a constant (K) is specified in the transfer sources specified by s1 and s2, it is automatically converted into the binary format.
- The logical product operation is executed in units of bit as shown in the table below  $(1 \land 1 = 1, 0 \land 1 = 0, 1 = 0, 1 = 0)$  $1 \land 0 = 0$  and  $0 \land 0 = 0$ ).

	(s1)		d
			WAND
	0	0	0
Logical operation	1	0	0
(unit: bit)	0	1	0
	1	1	1

#### In the table : 1=ON, 0=OFF

#### 2. 32-bit operation(DAND, DANDP)

The logical product (AND) operation is executed to the contents specified by s1 and s2 in units of bit, and the result is transferred to the device specified by ____.



- While the command input is OFF, the data of the transfer destination specified by does not change.
- While the command input is ON, the data of the transfer sources specified by s1 and s2 do not change.
- When a constant (K) is specified in the transfer sources specified by (s1) and (s2), it is automatically converted into the binary format.
- The logical product operation is executed in units of bit as shown in the table below  $(1 \land 1 = 1, 0 \land 1 = 0, 1 \land 0$  $= 0 \text{ and } 0 \land 0 = 0$ ). h

n	the	table	:	1=ON.	0=0FF
---	-----	-------	---	-------	-------

	(s1)+1 (s1)	(3) <b>+1</b> (32)	d +1, d
			DAND instruction
	0	0	0
Logical operation	1	0	0
(unit: bit)	0	1	0
	1	1	1

#### Cautions

- 1) Instructions of pulse operation type are not provided in the FXos, FXo or FXoN PLC. To execute pulse operation, make the instruction execution condition pulse type.
- Some restrictions to applicable devices
  - ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  - ▲2:The FX₃U and FX₃UC PLCs only are applicable.

## 9.8 WOR / Logical Word OR

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

#### Outline

This instruction executes the logical sum (OR) operation of two numeric values.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
WOR	16 bits	Continuous	WOR EN ENO s1 d1 s2	WOR(EN,s1,s2,d1);
WORP	16 bits	Pulse	WORP — EN ENO — s1 d1 — s2	WORP(EN,s1,s2,d1);
DOR	32 bits	Continuous	DOR EN ENO s1 d s2	DOR(EN,s1,s2,d);
DORP	32 bits	Pulse	DORP 	DORP(EN,s1,s2,d);

#### 2. Set data

			Data	type		
١	/ariable	Description	16-bit operation	32-bit operation		
	EN	Execution condition	Bit			
Input variable	<u>(s1)</u>	Data used for logical sum or word device storing data	ANY16	ANY32		
	<u>(s2</u> )	Data used for logical sum or word device storing data	ANY16	ANY32		
Output	ENO	Execution state	Bit			
variable	d	Word device storing the logical sum result.	ANY16	ANY32		

#### 3. Applicable devices

	Bit Devices								W	or	d D	)evid	es				Others							
Operand type		;	Sys	te	m	Us	er	Dig	it Spe	cifica	tion		Sy U	ste Ise	em er	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	X	Y	м	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	к	Н	E	"0"	Р
<u>(s1</u> )								•	•	•	•	•	•	•	▲1	▲2	•	•	•	•	•			
(s2)								•	•	•	•	•	•	•	▲1	▲2	•	•	•	•	•			
d									•	•	•	•	•	•	▲1	▲2	•	•	•					

▲: Refer to "Cautions".

Applied Instructions (Arithmetic and Logical Operation)

10

ation and Operation)

#### 1. 16-bit operation(WOR, WORP)

The logical sum (OR) operation is executed to the contents specified by  $\underline{s1}$  and  $\underline{s2}$  in units of bit, and the result is transferred to the device specified by  $\underline{d}$ .



- While the command input is OFF, the data of the transfer destination specified by <u>d</u> does not change.
- While the command input is ON, the data of the transfer sources specified by <u>s1</u> and <u>s2</u> do not change.
- When a constant (K) is specified in the transfer sources specified by (s1) and (s2), it is automatically converted into the binary format.
- The logical sum operation is executed in units of bit as shown in the table below (1 v 1 = 1, 0 v 1 = 1, 0 v 0 = 0 and 1 v 0 = 1).
   In the table : 1=ON, 0=OFF

			•
	(91)		d
			WOR
	0	0	0
Logical operation	1	0	1
(unit: bit)	0	1	1
	1	1	1

#### 2. 32-bit operation(DOR, DORP)

The logical sum (OR) operation is executed to the contents specified by  $\underline{s1}$  and  $\underline{s2}$  in units of bit, and the result is transferred to the device specified by  $\underline{d}$ .



- While the command input is OFF, the data of the transfer destination specified by d does not change.
- While the command input is ON, the data of the transfer sources specified by <u>s1</u> and <u>s2</u> do not change.
- When a constant (K) is specified in the transfer sources specified by <u>s1</u> and <u>s2</u>, it is automatically converted into the binary format.
- The logical sum operation is executed in units of bit as shown in the table below  $(1 \lor 1 = 1, 0 \lor 1 = 1, 0 \lor 0 = 0 \text{ and } 1 \lor 0 = 1)$ .

n	the	table	:	1=ON,	0=OFF	
---	-----	-------	---	-------	-------	--

	<u>(51)</u> +1, ( <u>51</u> )	<u>(s2</u> )+1, <u>(s2</u> )	d+1, d     DOR instruction
	0	0	0
Logical operation	1	0	1
(unit: bit)	0	1	1
	1	1	1

#### Cautions

- Instructions of pulse operation type are not provided in the FX0, FX0s or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 2) Some restrictions to applicable devices
  - ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  - ▲2:The FX₃U and FX₃UC PLCs only are applicable.

# 9.9 WXOR / Logical Exclusive OR

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

#### Outline

This instruction executes the exclusive logical sum (XOR) operation of two numeric values.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language						
name	operation	form	Structured ladder/FBD	ST					
WXOR	16 bits	Continuous	WXOR EN ENO s1 d1 s2	WXOR(EN,s1,s2,d1);					
WXORP	16 bits	Pulse	WXORP — EN ENO — s1 d1 — s2	WXORP(EN,s1,s2,d1);					
DXOR	32 bits	Continuous	DXOR EN ENO s1 d s2	DXOR(EN,s1,s2,d);					
DXORP	32 bits	Pulse	DXORP — EN ENO — s1 d — s2	DXORP(EN,s1,s2,d);					

#### 2. Set data

			Data type			
`	Variable	Description	16-bit operation	32-bit operation		
	EN	Execution condition	Bit			
Input variable	<u>(s1)</u>	Data used for exclusive logical sum or word device storing data	ANY16	ANY32		
	<u>(s2</u> )	Data used for exclusive logical sum or word device storing data	ANY16	ANY32		
Output	ENO	Execution state	Bit			
variable	d	Word device storing the exclusive logical sum result	ANY16	ANY32		

#### 3. Applicable devices

	Bit Devices					es	Word Devices							Others										
Operand type			Sy	ste	əm	Us	ser	Dig	it Spe	cifica	tion		Sy U	ste Ise	em r	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	X	Y	N	Т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	к	н	E	"0"	Р
<u>(s1</u> )								•	•	•	•	•	•	•	▲1	▲2	•	•	•	٠	•			
(s2)								•	•	٠	•	•	•	•	▲1	▲2	•	•	•	•	•			
d									•	•	•	•	•	•	<b>▲</b> 1	▲2	•	•	•					

▲: Refer to "Cautions".

9

Applied Instructions (Arithmetic and Logical Operation)

10

tion and Operation

#### 1. 16-bit operation(WXOR, WXORP)

The exclusive logical sum (XOR) operation is executed to the contents specified by  $\underline{s1}$  and  $\underline{s2}$  in units of bit, and the result is transferred to the device specified by  $\underline{d}$ .

Command input	WXOR		
	EN ENG		$(s1) \forall (s2) \rightarrow (d)$
XOR data 1—	s1 d	1 XOR result	
XOR data 2-	s2		

- While the command input is OFF, the data of the transfer destination specified by <u>d</u> does not change.
- While the command input is ON, the data of the transfer sources specified by <u>s1</u> and <u>s2</u> do not change.
- When a constant (K) is specified in the transfer sources specified by (s1) and (s2), it is automatically converted into the binary format.
- The logical exclusive sum operation is executed in units of bit as shown in the table below (1 ∀ 1 = 0, 0 ∀ 0 = 0, 1 ∀ 0 = 1 and 0 ∀ 1 = 1).
   In the table : 1=ON, 0=OFF

	(51)		d
			WXOR
	0	0	0
Logical operation	1	0	1
(unit: bit)	0	1	1
	1	1	0

#### 2. 32-bit operation(DXOR, DXORP)

The exclusive logical sum (XOR) operation is executed to the contents specified by  $\underline{s1}$  and  $\underline{s2}$  in units of bit, and the result is transferred to the device specified by  $\underline{d}$ .



- While the command input is OFF, the data of the transfer destination specified by <u>d</u> does not change.
- While the command input is ON, the data of the transfer sources specified by <u>s1</u> and <u>s2</u> do not change.
- When a constant (K) is specified in the transfer sources specified by <u>s</u>1 and <u>s</u>2, it is automatically converted into the binary format.
- The logical exclusive sum operation is executed in units of bit as shown in the table below (1  $\forall$  1 = 0, 0  $\forall$  0 = 0, 1  $\forall$  0 = 1 and 0  $\forall$  1 = 1).

In	the	table	:	1=ON,	0=OFF
----	-----	-------	---	-------	-------

	<u>(s1)+1, (s1)</u>	(s2)+1, (s2)	d+1, d     DXOR instruction
	0	0	0
Logical operation	1	0	1
(unit: bit)	0	1	1
	1	1	0

#### Cautions

- 1) Instructions of pulse operation type are not provided in the FX0S, FX0 or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 2) Some restrictions to applicable devices
   ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
   ▲2:The FX3U and FX3UC PLCs only are applicable.

#### **Program examples**

By combining WXOR and CML instructions, the exclusive logical sum not (XORNOT) operation can be executed.



[ ST ]

WXOR(X000, D10, D12, D14); CML(X000, D14, D14); 1

Outline

## 9.10 NEG / Negation

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	0	×	×

#### Outline

This instruction obtains the 2's complement of a numeric value (by inverting each bit and adding "1"). A sign of a numeric value can be converted by this instruction.

```
\rightarrow For the floating point sign inversion instruction [DENEG], refer to Section 18.16.
```

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
NEG	16 bits	Continuous	NEG EN ENO d	NEG(EN,d);
NEGP	16 bits	Pulse	NEGP EN ENO d	NEGP(EN,d);
DNEG	32 bits	Continuous	DNEG EN ENO d	DNEG(EN,d);
DNEGP	32 bits	Pulse	DNEGP EN ENO d	DNEGP(EN,d);

#### 2. Set data

			Data type				
١	Variable	Description	16-bit operation	32-bit operation			
Input variable	EN	Execution condition	Bit				
	ENO	Execution state	Bit				
Output variable	d	Word device which stores data for obtaining complement and will store the operation result. (The operation result will be stored in the same word device.)	ANY16	ANY32			

#### 3. Applicable devices

			Bi	it C	)ev	ice	s		Word Devices													Others				
Operand type	System User				er	Digit Specification					System User			l	Special Unit	Special Unit Index		Con	stant	Real Number	Character String	Pointer				
	X Y M T C S D□.b		D□.b	KnX	KnY	KnM	KnS	т	С	D		R	U□\G□	۷	z	Modifier	к	н	E	"0"	Р					
d									•	•	•	•	•	•		1	▲1	•	•	•						

▲: Refer to "Cautions".

#### 1. 16-bit operation(NEG, NEGP)

Each bit of the device specified by  $\bigcirc$  is inverted (0  $\rightarrow$  1, 1  $\rightarrow$  0), "1" is added, and then the result is stored in the original device.



#### 2. 32-bit operation(DNEG, DNEGP)

Each bit of the device specified by  $\bigcirc$  is inverted (0  $\rightarrow$  1, 1  $\rightarrow$  0), "1" is added, and then the result is stored in the original device.

 Command input
 DNEG

 I
 EN
 ENO

 d
 Complement data

#### Cautions

- 1) Note that the complement is obtained in every scan time (operation cycle) in a continuous operation type instruction (NEG,DNEG).
- 2) Some restrictions to applicable devices
   ▲1:The FX3U and FX3UC PLCs only are applicable.

#### **Program examples**

The program examples below are provided to obtain the absolute value of a negative binary value.

#### 1. Obtaining the absolute value of a negative value using NEG instruction

[Structured ladder/FBD]

BON(M8000, D0, K15, M0);

NEGP(M0, D10);



In BON (ON bit check) instruction, M0 turns ON when the bit 15 (b15 among b0 to b15) of D10 is "1".

NEGP instruction is executed for D10 only when M0 turns ON.

10

iedInstructions ation and t Operation)

#### 2. Obtaining the absolute value by SUB (subtraction) instruction

Even if NEG instruction (complement operation) is not used, D30 always stores the absolute value of the difference.



[ST]

CMP(X000,D10, D20, M10); SUB_E(X000 AND (M10 OR M11), D10, D20, D30); SUB_E(X000 AND M12, D20, D10, D30);

#### Negative value expression and absolute value (reference)

In PLCs, a negative value is expressed in 2's complement.

When the most significant bit is "1", it is a negative value, and its absolute value can be obtained by NEG instruction.

(D 10) = 2



The absolute value can be obtained up to 32,767.

# 10. Applied Instructions (Rotation and Shift Operation)

This chapter introduces the instructions for rotating and shifting bit data and word data in specified directions.

Instruction name	Function	Reference	
ROR			
RORP	Patotion Dicht	Section 10.1	
DROR		Section 10.1	
DRORP			
ROL			
ROLP	Potation Left	Section 10.2	
DROL		360101110.2	
DROLP			
RCR			
RCRP	Potation Right with Carry	Section 10.2	
DRCR		Section 10.5	
DRCRP			
RCL			
RCLP	Potation Left with Carry	Section 10.4	
DRCL		Section 10.4	
DRCLP			
SFTR	Bit Shift Dight	Section 10.5	
SFTRP			
SFTL	Bit Shift Left	Section 10.6	
SFTLP			
WSFR	Word Shift Right	Section 10.7	
WSFRP	The one regin		
WSFL	Word Shift Left	Section 10.8	
WSFLP			
SFWR	Shift Write [EJEO/EII O Control]	Section 10.9	
SFWRP			
SFRD	Shift Read [FIFO Control]	Section 10 10	
SFRDP			



nstructions

10

ied Instructions ation and t Operation)

## 10.1 ROR / Rotation Right

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	×	×	0	×	×

#### Outline

This instruction shifts and rotates the bit information rightward by the specified number of bits without the carry flag.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
ROR	16 bits	Continuous	ROR EN ENO n d	ROR(EN,n,d);
RORP	16 bits	Pulse	RORP EN ENO n d	RORP(EN,n,d);
DROR	32 bits	Continuous	DROR EN ENO n d	DROR(EN,n,d);
DRORP	32 bits	Pulse	DRORP EN ENO n d	DRORP(EN,n,d);

#### 2. Set data

			Data type				
١	/ariable	Description	16-bit operation	32-bit operation			
lanut	EN	Execution condition	Bit				
variable	n	Number of bits to be rotated $[n \le 16]$ (16-bit operation), $[n \le 32]$ (32-bit operation)	ANY16				
Output	ENO	Execution state	Bit				
variable	d	Word device storing data to be rotated rightward	ANY16	ANY32			

#### 3. Applicable devices

		E	Bit C	)ev	ice	S		Word Devices													Others				
Operand type		S	yste	əm	Us	er	Digit Specification				Sy	/st	em l	Jser	Special Index Unit		Constant		Real Number	Character String	Pointer				
	х	YI	ИΤ	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	v	Z	Modifier	к	н	E	"0"	Р		
n													▲2	▲3					•	•					
d								▲1	▲1	▲1	•	•	•	▲3	▲4	•	•	•							

▲: Refer to "Cautions".



#### **Related device**

#### $\rightarrow$ For the carry flag use method, refer to Section 1.3.4.

Device	Name	Description
M8022	Carry	Turns ON when the bit shifted last from the lowest position is "1".

#### Cautions

1) Some restrictions to applicable devices

▲1:K4Y000, K4M000 and K4S000 are valid for a 16-bit operation.

K8Y000, K8M000 and K8S000 are valid for a 32-bit operation.

▲2:The FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable. ▲3:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

▲4:The FX₃U and FX₃UC PLCs only are applicable.

- 2) In the case of continuous operation type instructions (ROR and DROR), note that shift and rotation are executed in every scan time (operation cycle).
- 3) When a device with digit specification is specified as d, only K4 (16-bit instruction) or K8 (32-bit instruction) is valid (examples: K4Y010 or K8M0).

#### 10.2 **ROL / Rotation Left**

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	×	×	0	×	×

#### Outline

This instruction shifts and rotates the bit information leftward by the specified number of bits without the carry flag.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language		
name	Operation	form	Structured ladder/FBD	ST		
ROL	16 bits	Continuous	ROL EN ENO n d	ROL(EN,n,d);		
ROLP	16 bits	Pulse	ROLP EN ENO n d	ROLP(EN,n,d);		
DROL	32 bits	Continuous	DROL EN ENO n d	DROL(EN,n,d);		
DROLP	32 bits	Pulse	DROLP EN ENO n d	DROLP(EN,n,d);		

#### 2. Set data

			Data type				
١	/ariable	Description	16-bit operation	32-bit operation			
Innut	EN	Execution condition	Bit				
variable	n	Number of bits to be rotated $[n \le 16]$ (16-bit operation), $[n \le 32]$ (32-bit operation)	ANY16				
Output	ENO	Execution state	Bit				
variable	d	Word device storing data to be rotated leftward	ANY16	ANY32			

#### 3. Applicable devices

			Bit	De	evi	ce	s					W	or	d De	vice	Word Devices													
Operand type		S	Sys	ter	n l	Jse	er	Digit Specification					st	em l	Jser	Special Index Unit		Con	stant	Real Number	Character String	Pointer							
	X	Y	M.	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	κ	Н	E	"0"	Р					
n														▲2	▲3					٠	•								
d									▲1	▲1	▲1	•	•	٠	▲3	▲4	•	•	•										

▲: Refer to "Cautions".

Operation

ation and Operation)

0

#### 1. 16-bit operation (ROL, ROLP)

"n" bits out of 16 bits of the device specified by (d) are rotated leftward.

Command input ROL I EN ENO Number of bits n d Leftward rotation data to be rotated

- The final bit is stored in the carry flag (M8022).
- In a device with digit specification, K4 (16-bit instruction) is valid.



The contents of b12 are stored.

#### 2. 32-bit operation (DROL, DROLP)

"n" bits out of 32 bits of the device specified by (d) are rotated leftward.

Command input DROL EN ENO Number of bits n d Leftward rotation data to be rotated

- The final bit is stored in the carry flag (M8022).
- In a device with digit specification, K8 (32-bit instruction) is valid.



#### **Related device**

#### $\rightarrow$ For the carry flag use method, refer to Section 1.3.4.

Device	Name	Description
M8022	Carry	Turns ON when the bit shifted last from the highest position is "1".

#### Cautions

1) Some restrictions to applicable devices

▲1:K4Y000, K4M000 and K4S000 are valid for a 16-bit operation. K8Y000, K8M000 and K8S000 are valid for a 32-bit operation.

▲2:The FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

▲3:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

▲4:The FX3U and FX3UC PLCs only are applicable.

- 2) In the case of continuous operation type instructions (ROL and DROL), note that shift and rotation are executed in every scan time (operation cycle).
- 3) When a device with digit specification is specified as d, only K4 (16-bit instruction) or K8 (32-bit instruction) is valid (examples: K4Y010 or K8M0).

ition and Operation

# 10.3 RCR / Rotation Right with Carry

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	0	×	×

#### Outline

This instruction shifts and rotates the bit information rightward by the specified number of bits together with the carry flag.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language		
name	Operation	form	Structured ladder/FBD	ST		
RCR	16 bits	Continuous	RCR EN ENO n d	RCR(EN,n,d);		
RCRP	16 bits	Pulse	RCRP EN ENO n d	RCRP(EN,n,d);		
DRCR	32 bits	Continuous	DRCR EN ENO n d	DRCR(EN,n,d);		
DRCRP	32 bits	Pulse	DRCRP — EN ENO — — n d —	DRCRP(EN,n,d);		

#### 2. Set data

			Data type				
١	/ariable	Description	16-bit operation	32-bit operation			
lanut	EN	Execution condition	Bit				
variable	n	Number of bits to be rotated $[n \le 16]$ (16-bit operation), $[n \le 32]$ (32-bit operation)	ANY16				
Output	ENO	Execution state	Bit				
variable	d	Word device storing data to be rotated rightward	ANY16	ANY32			

#### 3. Applicable devices

		E	Bit C	)ev	ice	s					W	Word Devices					Others						
Operand type		s	yste	əm	Us	er	Dig	it Spe	cifica	tion	Sy	/st	em l	Jser	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	х	Y	п	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	к	н	E	"0"	Р
n													▲2	▲2					٠	•			
d								▲1	▲1	▲1	•	•	•	▲2	▲2	•	•	•					

▲: Refer to "Cautions".



"n" bits out of 32 bits of the device specified by (d) and 1 bit (carry flag M8022) are rotated rightward.



#### **Related device**

#### $\rightarrow$ For the carry flag use method, refer to Section 1.3.4.

M8022 Carry Turns ON when the bit shifted last from the lowest position is "1".	Device	Name	Description
	M8022	Carry	Turns ON when the bit shifted last from the lowest position is "1".

#### Cautions

1) Some restrictions to applicable devices

▲1:K4Y000, K4M000 and K4S000 are valid for a 16-bit operation.
 K8Y000, K8M000 and K8S000 are valid for a 32-bit operation.
 ▲2:The FX3U and FX3UC PLCs only are applicable.

- 2) In the case of continuous operation type instructions (RCR and DRCR), note that shift and rotation are executed in every scan time (operation cycle).
- 3) When a device with digit specification is specified as s, only K4 (16-bit instruction) or K8 (32-bit instruction) is valid (examples: K4Y010 or K8M0).

#### 10.4 **RCL / Rotation Left with Carry**

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	0	×	×

#### Outline

This instruction shifts and rotates the bit information leftward by the specified number of bits together with the carry flag.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
RCL	16 bits	Continuous	RCL EN ENO n d	RCL(EN,n,d);
RCLP	16 bits	Pulse	RCLP EN ENO n d	RCLP(EN,n,d);
DRCL	32 bits	Continuous	DRCL — EN ENO — n d	DRCL(EN,n,d);
DRCLP	32 bits	Pulse	DRCLP – EN ENO – n d	DRCLP(EN,n,d);

#### 2. Set data

			Data type				
Ň	/ariable	Description	16-bit operation	32-bit operation			
Input	EN	Execution condition	Bit				
variable	n	Number of bits to be rotated $[n \le 16]$ (16-bit operation), $[n \le 32]$ (32-bit operation)	ANY16				
Output	ENO	Execution state	Bit				
variable	d	Word device storing data to be rotated leftward	ANY16	ANY32			

#### 3. Applicable devices

		I	Bit	De	evi	ce	s					W	or	d De	vice	s			Others					
Operand type		S	iys	ter	n l	Js	er	Dig	it Spe	ecifica	tion	Sy	st	em l	Jser	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	х	Y	M	Г	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	к	н	E	"0"	Р
n														▲2	▲2					•	٠			
d									▲1	▲1	▲1	•	•	•	▲2	▲2	•	•	•					

▲: Refer to "Cautions".

Jctions

Operation

ation and Operation)

0

#### 1. 16-bit operation (RCL, RCLP)

"n" bits out of 16 bits of the device specified by d and 1 bit (carry flag M8022) are rotated leftward.



The carry flag is intervened in the rotation loop. If M8022 has been set to ON or OFF before the rotation instruction, the carry flag is transferred to the destination.

#### 2. 32-bit operation (DRCL, DRCLP)

"n" bits out of 32 bits of the device specified by d and 1 bit (carry flag M8022) are rotated leftward.



## **Related device**

 $\rightarrow$  For the carry flag use method, refer to Section 1.3.4.

Device	Name	Description
M8022	Carry	Turns ON when the bit shifted last from the highest position is "1".

#### Cautions

- 1) Some restrictions to applicable devices
  - ▲1:K4Y000, K4M000 and K4S000 are valid for a 16-bit operation.
    - K8Y000, K8M000 and K8S000 are valid for a 32-bit operation.
  - ▲2:The FX3U and FX3UC PLCs only are applicable.
- 2) In the case of continuous operation type instructions (RCL and DRCL), note that shift and rotation are executed in every scan time (operation cycle).
- 3) When a device with digit specification is specified as s, only K4 (16-bit instruction) or K8 (32-bit instruction) is valid (examples: K4Y010 or K8M0).

## 10.5 SFTR / Bit Shift Right

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

#### Outline

This instruction shifts bit devices of the specified bit length rightward by the specified number of bits. After shift, the bit device specified by  $\bigcirc$  is transferred by "n2" bits from the most significant bit.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language
name	Operation	form	Structured ladder/FBD	ST
SFTR	16 bits	Continuous	SFTR 	SFTR(EN,s,n1,n2,d);
SFTRP	16 bits	Pulse	SFTRP – EN ENO – s d – n1 – n2	SFTRP(EN,s,n1,n2,d);

#### 2. Set data

,	Variable	Description	Data type
	EN	Execution condition	Bit
Input	S	Head bit device to be stored to the shift data after rightward shift.	Bit
variable	(n1)	Bit length of the shift data (see Caution).	ANY16
	(n2)	Number of bits to be shifted rightward (see Caution)	ANY16
Output	ENO	Execution state	Bit
variable	d	Head bit device to be shifted rightward	Bit

#### 3. Applicable devices

			Bi	t D	ev	ice	s					٧	Vor	d De	evice	s				Others					
Operand type		ę	Sys	ste	m	Us	er	Dig	it Spe	cifica	tion	S	yst	em l	Jser	Special Unit			Index	Con	stant	Real Number	Character String	Pointer	
	X	Y	Μ	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	к	н	E	"0"	Р	
S	•	•				•	▲1												•						
<u>(n1)</u>																				•	•				
<u>(n2)</u>														▲2	▲3					•	•				
d		•	•			•													•						

▲: Refer to "Cautions".

#### 1. 16-bit operation (SFTR, SFTRP)

For "n1" bits (shift register length) starting from the bit device specified by ____, "n2" bits are shifted rightward (1) and 2) shown below).

After shift, "n2" bits from the bit device specified by (s) are transferred to "n2" bits from (d)+n1-n2 (3) shown below).



#### Cautions

- 1) Some restrictions to applicable devices ▲1:The FX3U and FX3UC PLCs only are applicable. Not indexed (V, Z). ▲2:The FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable. ▲3:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- 2) Instructions of pulse operation type are not provided in the FX0S, FX0 or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 3) Note that "n2" bits are shifted every time the command input turns ON from OFF in SFTRP instruction, but that "n2" bits are shifted in each scan time (operation cycle) in SFTR instruction.
- 4) Limitation to n1 and n2 differs from one PLC to another.

PLC	Limit
FX1N, FX1NC, FXU, FX2C, FX2N, FX2NC, FX3S, FX3G, FX3GC, FX3U, FX3UC	n2≤n1≤1024
FX0S, FX0, FX0N, FX1S	n2≦n1≦512

#### Error

If the transfer source specified by s is equivalent to the shifted device specified by d, an operation error occurs (error code: K6710). (Applicable only to the FX3U and FX3UC PLCs)

1

Outline

2

Instruction List

3

Configuration of nstruction

4

How to Read Explanation o

5

<u>o</u>

uctions

## 10.6 SFTL / Bit Shift Left

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

#### Outline

This instruction shifts bit devices of the specified bit length leftward by the specified number of bits. After shift, the bit device specified by s is transferred by "n2" bits from the least significant bit.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
SFTL	16 bits	Continuous	SFTL — EN ENO — s d — n1 — n2	SFTL(EN,s,n1,n2,d);
SFTLP	16 bits	Pulse	SFTLP – EN ENO – s d – n1 – n2	SFTLP(EN,s,n1,n2,d);

#### 2. Set data

,	Variable	Description	Data type
	EN	Execution condition	Bit
Input	S	Head bit device to be stored to the shift data after leftward shift	Bit
variable	<u>(n1)</u>	Bit length of the shift data (see Caution).	ANY16
	<u>(n2)</u>	Number of bits to be shifted leftward (see Caution).	ANY16
Output	ENO	Execution state	Bit
variable	d	Head bit device to be shifted leftward	Bit

#### 3. Applicable devices

			Bi	t D	ev	ice	s					V	/or	d De	evice	s				Others					
Operand type		S	Sys	ste	m	Us	er	Dig	it Spe	cifica	tion	S	yst	em l	Jser	Special Unit			Index	Con	stant	Real Number	Character String	Pointer	
	X	Y	Μ	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	к	н	E	"0"	Р	
S	•	•				•	▲1												•						
<u>(n1)</u>																				٠	•				
<u>(n2)</u>														▲2	▲3					•	•				
d		•				•													•						

▲: Refer to "Cautions".

#### 1. 16-bit operation (SFTL, SFTLP)

For "n1" bits (shift register length) starting from the bit device specified by ____, "n2" bits are shifted leftward (1) and 2) shown below).

After shift, "n2" bits from the bit device specified by (s) are transferred to "n2" bits from the bit device specified by  $\bigcirc$  (3) shown below).



#### Cautions

- 1) Some restrictions to applicable devices ▲1:The FX₃U and FX₃UC PLCs only are applicable. Not indexed (V, Z). ▲2:The FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable. ▲3:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- 2) Instructions of pulse operation type are not provided in the FXos, FXo or FXoN PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 3) Note that "n2" bits are shifted every time the command input turns ON from OFF in SFTLP instruction, but that "n2" bits are shifted in each operation cycle in SFTL instruction.
- 4) Limitation to n1 and n2 differs from one PLC to another.

PLC	Limit
FX1N, FX1NC, FXU, FX2C, FX2N, FX2NC, FX3S, FX3G, FX3GC, FX3U, FX3UC	n2≤n1≤1024
FX0S, FX0, FX0N, FX1S	n2≤n1≤512

#### Error

If the transfer source specified by (s) is equivalent to the shifted device specified by (d), an operation error occurs (error code: K6710). (Applicable only to the FX3U and FX3UC PLCs)

1

Outline

2

Instruction List

3

Configuration of

4

How to Read Explanation o nstructions

오,

5

Basic Instruction

6

nstruction

#### Program examples(Conditional stepping of 1-bit data)

By setting X000 to X007 to ON in turn, Y000 to Y007 are activated in turn. If the order is wrong, activation is disabled.

[Structured ladder/FBD]



[ST]

M0:= X000 AND NOT M8046; SFTL((NOT M8046 AND X000) OR (S0 AND X001) ··· OR (S1 AND X002) R(S7 AND X000), M0, K8, K1, S0); MOV(M8000, K2S0, K2Y000); M8047:= M8000;

#### 10.7 WSFR / Word Shift Right

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	×	×	0	×	×

#### Outline

This instruction shifts word devices with "n1" data length rightward by "n2" words.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
WSFR	16 bits	Continuous	WSFR — EN ENO — s d — n1 — n2	WSFR(EN,s,n1,n2,d);
WSFRP	16 bits	Pulse	WSFRP EN ENO s d n1 n2	WSFRP(EN,s,n1,n2,d);

#### 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input	S	Head device to be stored to the shift data after rightward shift	ANY16
variable	<u>(n1)</u>	Word data length of the shift data ( $n2 \le n1 \le 512$ )	ANY16
	<u>(n2)</u>	Number of words to be shifted rightward (n2 $\leq$ n1 $\leq$ 512)	ANY16
Output	ENO	Execution state	Bit
variable	d	Head word device storing data to be shifted rightward	ANY16

#### 3. Applicable devices

Operand type	Bit Devices					S	Word Devices												Others					
	System User						er	Digit Specification				System User			Special Unit	Index		Constant		Real Number	Character String	Pointer		
	X	Y	М	Т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	к	н	E	"0"	Р
S								•	•	•	•	•	•	٠	▲2	▲3			•					
<u>(n1)</u>																				•	٠			
<u>(n2)</u>														<b>▲</b> 1	▲2					•	•			
d									٠	•	•	•	•	•	▲2	▲3			•					

▲: Refer to "Cautions".

9

Applied Instructions (Arithmetic and Operation

0

ation and Operation)

uctions

#### 1. 16-bit operation (WSFR, WSFRP)

For "n1" word devices starting from the device specified by  $\bigcirc$ , "n2" words are shifted rightward (1) and 2) shown below)

After shift, "n2" words starting from the device specified by  $\underline{s}$  are transferred to "n2" words starting from the device specified by  $\underline{d}+n1-n2$  (3) shown below).



#### Cautions

- 1) Note that "n2" words are shifted when the drive input turns ON in WSFRP instruction, but that "n2" words are shifted in each operation cycle in WSFR instruction.
- 2) Some restrictions to applicable devices
  - ▲1:The FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  - ▲2:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  - ▲3:The FX₃∪ and FX₃∪C PLCs only are applicable.

#### Error

If the transfer source device specified by  $\underline{\}$  is equivalent to the shifted device specified by  $\underline{\}$ , an operation error occurs (error code: K6710).
1

Outline

2

Instruction List

3

Configuration of Instruction

4

How to Read Explanation of Instructions

5

Basic Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

AppliedInstructions (Move and Compare)

9

Applied Instructions (Arithmetic and Logical Operation)

10

lied Instructions tation and ft Operation)

# **Program examples**

#### 1. Shifting devices with digit specification



WSFR(X000, K1X000, K4, K2, K1Y000);



# 10.8 WSFL / Word Shift Left

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	×	×	0	×	×

# Outline

This instruction shifts the word data information leftward by the specified number of words.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
WSFL	16 bits	Continuous	WSFL — EN ENO — s d — n1 — n2	WSFL(EN,s,n1,n2,d);
WSFLP	16 bits	Pulse	WSFLP – EN ENO – s d – n1 – n2	WSFLP(EN,s,n1,n2,d);

# 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input	S	Head device to be stored to the shift data after leftward shift	ANY16
variable	(n1)	Word data length of the shift data (n2 $\leq$ n1 $\leq$ 512)	ANY16
	<u>(n2)</u>	Number of words to be shifted leftward (n2 $\leq$ n1 $\leq$ 512)	ANY16
Output variable	ENO	Execution state	Bit
	d	Head word device storing data to be shifted leftward	ANY16

# 3. Applicable devices

		E	Bit	De	vic	es					N	/or	d De	evice	S						Oth	ners	
Operand type		s	yst	en	n Us	ser	Dig	it Spe	ecifica	tion	S	yst	em I	User	Special Unit			Index	Con	stant	Real Number	Character String	Pointer
	X	Υ	M	Г	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	к	н	E	"0"	Р
S							•	•	•	•	•	•	٠	▲2	▲3			•					
<u>(n1)</u>																			•	•			
<u>(n2)</u>													<b>▲</b> 1	▲2					•	•			
d								٠	•	•	•	•	٠	▲2	▲3			•					

▲: Refer to "Cautions".

# Function and operation explanation

#### 1. 16-bit operation (WSFL, WSFLP)

For "n1" word devices starting from the device specified by  $\bigcirc$ , "n2" words are shifted leftward (1) and 2) shown below).

After shift, "n2" words starting from the device specified by  $\bigcirc$  are shifted to "n2" words starting from the device specified by  $\bigcirc$ .



#### Cautions

- 1) Note that "n2" words are shifted every time the drive input turns ON from OFF in WSFLP instruction, but that "n2" words are shifted in each operation cycle in WSFL instruction.
- 2) Some restrictions to applicable devices
  - ▲1:The FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  - ▲2:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  - ▲3:The FX₃U and FX₃UC PLCs only are applicable.

#### Error

If the transfer source specified by <u>s</u> is equivalent to the shifted device specified by <u>d</u>, an operation error occurs (error code: K6710).

1

Outline

2

# **Program examples**

#### 1. Shifting devices with digit specification



[ ST ] WSFL(X000, K1X000, K4, K2, K1Y000);

# 10.9 SFWR / Shift Write [FIFO/FILO Control]

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	×	×

# Outline

This instruction writes data for first-in first-out (FIFO) and first-in last-out (FILO) control.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
SFWR	16 bits	Continuous	SFWR — EN ENO — s d — n	SFWR(EN,s,n,d);
SFWRP	16 bits	Pulse	SFWRP — EN ENO — s d — n	SFWRP(EN,s,n,d);

# 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input	S	Word device storing data to be put in first	ANY16
variable	n	Number of store points (for pointer, value is added by "+1".) $2 \le n \le 512$	ANY16
Output	ENO	Execution state	Bit
variable	d	Head word device storing and shifting data.	ANY16

#### 3. Applicable devices

		l	Bit	De	vic	es					W	orc	1 D	evic	es						Oth	iers	
Operand type		S	) Sys	ter	n U:	ser	Dig	it Spe	cifica	tion		Sy: U	ste se	m r	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	х	Υ	М	Т	cs	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
S							•	•	٠	•	•	•	•	<b>▲</b> 1	▲2	•	•	•	•	•			
n																			٠	٠			
d								•	•	•	•	•	•	▲1	▲2			•					

▲: Refer to "Cautions".

1

Outline

2

# Function and operation explanation

#### 1. 16-bit operation (SFWR, SFWRP)

The contents of the device specified by  $\underline{\}$  are written to "n-1" devices from the device specified by  $\underline{\}$  +1, and "1" is added to the number of data stored in the device specified by  $\underline{\}$ .

For example, when the device specified by  $\bigcirc$  is "0", the contents of the device specified by  $\bigcirc$  are written to the device specified by  $\bigcirc$  +1. When the device specified by  $\bigcirc$  is "1", the contents of the device specified by  $\bigcirc$  are written to the device specified by  $\bigcirc$  +2.



- When X000 turns ON from OFF, the contents of the device specified by s are stored to the device specified by d +1. So the contents of the device specified by d +1 become equivalent to the contents of the device specified by s.
- 2) When the contents of the device specified by s are changed and then the command input is set to ON from OFF again, the new contents of the device specified by are stored to the device specified by d +2. So the contents of the device specified by d +2 become equivalent to the contents of the device specified by s. (When the continuous operation type SFWR instruction is used, the contents are stored in each operation cycle. Use the pulse operation type SFWRP instruction in programming.)
- 3) Data are stored from the right end in the same way, and the number of stored data is indicated by the contents of the pointer specified by <u>d</u>.

#### **Related device**

#### $\rightarrow$ For the carry flag use method, refer to Section 1.3.4.

Device	Name	Description
M8022	Carry	When the contents of the pointer specified by d exceeds "n-1", no operation is executed (data is not written) and the carry flag M8022 turns ON.

#### **Related instructions**

Instruction	Description
SFRD	Shift read (for FIFO control)
POP	Last-in data read (for FILO control)

#### Cautions

- 1. In the case of continuous operation type (SFWR) instruction. Note that data are stored (overwritten) in each scan time (operation cycle).
- 2. Some restrictions to applicable devices
  - ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  - ▲2:The FX3U and FX3UC PLCs only are applicable.

# **Program examples**

#### 1. Example of first-in first-out control

#### $\rightarrow$ For a program example of FILO, refer to Section 27.3.

In the example below, the shift write (SFWR) and shift read (SFRD) instructions are used.

- 1) Contents of operation
  - In this circuit example, a product number to be taken out now is output according to "first-in first-out" rule while products which were put into a warehouse with their product numbers registered are taken out of the warehouse.
  - The product number is hexadecimal, and up to 4 digits. Up to 99 products can be stored in the warehouse.

#### 2) Program

[Structured ladder/FBD] Button for request to put a product into warehouse ź MOVP X020 The product number is input from X000 to X017. ENO FN -11 and transferred to D256. K4X000 s d D256 SFWRP Pointer FN **FNO** D257: Data register for storing the product number s d -D257 D256 D258 to D356: (99 points) K100 n Button for request to take a product out of warehouse ź SERDP X021 **FNO** FN

d

MOV

FNO

d

FN

s

-D357

K4Y000

The product number of a product put into first is output to D357 in response to the request to take a product out of the warehouse.

The product number to be taken out is output to Y000 to Y017 in a four-digit hexadecimal number.

[ST]

M8000

**RUN** monitor

MOVP(X020, K4X000, D256); SFWRP(X020, D256, K100, D257); SFRDP(X021, D257, K100, D357); MOV(M8000, D357, K4Y000);

D257

K100-

D357

s

n



Instruction List 3 Configuration of Instruction 4 How to Read Explanation or Instructions ç, 5 Basic Instruction 6 Step Ladder Instructions 7 Applied Instructions (Program Flow) 8 Applied Instru (Move and Compare) uctions

9

Applied Instructions (Arithmetic and Logical Operation)

0

blied Instructions otation and ift Operation)

1

Outline

2

# 10.10 SFRD / Shift Read [FIFO Control]

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	×	×

# Outline

This instruction reads data for first-in first-out control.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
SFRD	16 bits	Continuous	SFRD — EN ENO — s d — n	SFRD(EN,s,n,d);
SFRDP	16 bits	Pulse	SFRDP EN ENO s d n	SFRDP(EN,s,n,d);

# 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input	S	Head word device storing data	ANY16
variable	n	Number of store points (for pointer, value is added by "+1".) $2 \leq n \leq 512$	ANY16
Output	ENO	Execution state	Bit
variable	d	Word device storing data taken out first	ANY16

#### 3. Applicable devices

			Bit	D	evi	се	S					W	or	d D	)evi	Ce	es						Oth	ners	
Operand type		ę	Sys	te	mι	Js	er	Dig	it Spe	cifica	tion		Sy U	ste Jse	em r		Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	Х	Y	м	Т	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R		U□\G□	۷	z	Modifier	к	н	E	"0"	Р
S									•	٠	•	•	•	•	▲1	1	▲2			•					
n																					•	•			
d									٠	•	•	•	•	•	▲1	1	▲2	•	•	•					

▲: Refer to "Cautions".

1

Outline

2

Instruction List

3

ē

4

How to Read Explanation o nstructions

<u>o</u>

5

Basic

Instruction

6

Step Ladder Instructions

7

Applied Instructions (Program Flow)

8

uctions

9

Applied Instructions (Arithmetic and Logical Operation)

ſ

tation and tOperation)

nstruction Configuration

# Function and operation explanation

#### 1. 16-bit operation (SFRD, SFRDP)

The data of the device specified by [s1+1] written in turn by SFWR instruction is transferred (read) to the device specified by ____, and "n-1" words from the device specified by ____+1 are shifted rightward by 1 word. "1" is subtracted from the number of data stored in the device specified by s.



- 1) When the command contact turns ON, the contents of the device specified by [s]+1 are transferred (read) to the device specified by ____.
- Accompanied by this transfer, the contents of the pointer specified by s decrease, and the data on the 2) left side are shifted rightward by 1 word. (When the continuous operation type SFRD instruction is used, the contents are shifted in turn in each operation cycle. Use the pulse operation type SFRDP instruction in programming.)

# **Related device**

#### $\rightarrow$ For the zero flag use method, refer to Section 1.3.4.

Device	Name	Description
M8020	Zero	Data is always read from the device specified by $[s]+1]$ . When the contents of the pointer specified by $\underline{s}$ become "0", the zero flag M8020 turns ON.

# **Related instructions**

Instruction	Description	
SFWR	Shift write (for FIFO/FILO control)	npa
POP	Last-in data read (for FILO control)	and re)

#### Cautions

- 1) The contents of the device specified by [s+n] do not change by reading.
- 2) In the case of continuous operation type (SFRD) instruction, data is read in turn in each scan time (operation cycle), but the contents of the device specified by [(s)+n] do not change.
- 3) When pointer specified by (s) is "0", data is not processed, and the contents of the device specified by d do not change.
- 4) Some restrictions to applicable devices ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable. ▲2:The FX3U and FX3UC PLCs only are applicable.

#### **Program examples**

Refer to the program example provided for SFWR instruction.

# 11. Applied Instructions (Data Operation)

This chapter introduces the instructions for executing complicated processing for applied instructions move, compare, arithmetic operations, rotation and shift operation instructions.

Instruction name	Function	Reference
ZRST	Zana Basat	Section 11.1
ZRSTP		Section 11.1
DECO	Decede	Section 11.2
DECOP		36010111.2
ENCO	Encodo	Section 11.2
ENCOP	Encode	36010111.3
SUM		
SUMP	Sum of Active Pite	Section 11.4
DSUM		36010111.4
DSUMP		
BON		
BONP	Chaok Specified Bit Statue	Section 11 F
DBON		Section 11.5
DBONP		
MEAN		
MEANP	Moon	Section 11.6
DMEAN		Section 11.0
DMEANP		
ANS	Timed Annunciator Set	Section 11.7
ANR	Annunciator Report	Section 11.9
ANRP		Section 11.6
SQR		
SQRP	Square Dept	Section 11.0
DSQR	Square Root	Section 11.9
DSQRP		
FLT		
FLTP	Conversion to Electing Point	Section 11 10
DFLT		Section 11.10
DFLTP		

# 11.1 ZRST / Zone Reset

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)
0	0	0	0	0	0	0	0	0

#### Outline

This instruction resets devices located in a zone between two specified devices at one time. Use this instruction for restarting operation from the beginning after pause or after resetting control data.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language									
name	Operation	form	Structured ladder/FBD	ST								
ZRST	16 bits	Continuous	ZRST EN ENO d1 d2	ZRST(EN,d1,d2);								
ZRSTP	16 bits	Pulse	EN ENO d1 d2	ZRSTP(EN,d1,d2);								

# 2. Set data

١	/ariable	Description	Data type
Input variable	EN	Execution condition	Bit
	ENO	Execution state	Bit
Output variable	<u>d1</u>	Head device to be reset at one time	ANY_SIMPLE
	(d2)	Last device to be reset at one time	ANY_SIMPLE

#### 3. Applicable devices

	Bit Devices											W	oro	d D	Word Devices													
Operand type		ę	Sy	ste	m	Us	er	Dig	it Spe	cifica	tion		Sy: U	ste se	m r	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer				
	X	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	к	н	Е	"0"	Р				
<u>d1</u> )			•			•						•	•	•	<b>▲</b> 1	▲2			•									
<u>d</u> 2		•	•			•						•	•	•	<b>▲</b> 1	▲2			•									

▲: Refer to "Cautions".

11

# Function and operation explanation

#### 1. 16-bit operation (ZRST, ZRSTP)

Same type of devices specified by (d1) to (d2) are reset at one time.

#### When the devices specified by d1 and d2 are bit devices

"OFF (reset)" is written to the entire range from the devices specified by (d1) to (d2) at one time.



#### When the devices specified by d1 and d2 are word devices

"K0" is written to the entire range from the devices specified by (d1) to (d2) at one time.



#### **Related instructions**

#### 1. RST

As an independent reset instruction for devices, RST instruction can be used for bit devices (Y, M and S) and word devices (T, C, D and R).



11

Applied Instructions (Data Operation)

12

dInstructions Speed

13

Applied Instru (Handy Instruction)

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

d2

-CN230

# 2. FMOV

FMOV instruction is provided to write a constant (example: K0) at one time. By using this instruction, "0" can be written to word devices (KnY, KnM, KnS, T, C, D and R) at one time.



# Cautions

- Instructions of pulse operation type are not provided in the FX0S, FX0 or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- Specify same type of devices in the devices specified by d1 and d2. The device number of the device specified by d1 should be smaller than or equal to the device number of the device specified by d2. If the device number of the device specified by d1 is larger than the device number of the device specified by d1 is reset.
- 3) When specifying the high-speed counter, ZRST instruction is handled as the 16-bit type, but 32-bit counters can be specified in <u>d1</u> and <u>d2</u>.

However, it is not possible to specify a 16-bit counter in the device specified by (1) and specify a 32-bit counter in the device specified by (2); (1) and (2) should be a same type.

#### Program example



4) Caution for simultaneous instances of the ZRST instruction and the PLS instruction The ZRST instruction resets the last stage for the PLS instruction and PLF instruction of the applicable device. In addition, the reset state of T and C is also reset. Accordingly, when the program shown below is executed, the PLS instruction continuously sets M0 to ON.



Please program in the following way to turn on M0 only once.

#### Structured ladder/FBD



5) Caution on simultaneous instances of the ZRST instruction and a counter The ZRST instruction resets also the last stage and reset state of T and C coils. Accordingly, if the drive contact of X000 is ON in the following program, the counter executes counting after the ZRST instruction is executed.



Program in the following way to disable counting after execution of the ZRST instruction.



6) Some restrictions to applicable devices
 ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 ▲2:The FX3U and FX3UC PLCs only are applicable.

# **Program examples**

#### 1. When using devices in the latch area as non-latch type devices

When the power of the PLC is turned ON or when the PLC mode is changed to RUN, the specified ranges of bit devices and word devices are reset at one time.

[Structured ladder/FBD]



# 11.2 DECO / Decode

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

# Outline

This instruction converts numeric data into ON bit. A bit number which is set to ON by this instruction indicates a numeric value

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
DECO	16 bits	Continuous	DECO 	DECO(EN,s,n,d);
DECOP	16 bits	Pulse	DECOP – EN ENO – s d – n	DECOP(EN,s,n,d);

# 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input	S	Data to be decoded or word device storing data	ANY_SIMPLE
variable	n	Number of bits of device storing the decoding result [n = 1 to 8] (No processing is executed in the case of "n = 0".)	ANY16
Output	ENO	Execution state	Bit
variable	d	Device storing decoding result	ANY_SIMPLE

# 3. Applicable devices

			Bi	it D	)ev	ice	s					W	ord	d D	evic	es						Oth	ers	
Operand type		;	Sy	ste	m	Us	er	Dig	it Spe	cifica	tion		Sy U	ste se	em r	Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	Х	Y	Μ	T	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	к	Н	E	"0"	Р
S	•	•	•			•						•	•	•	▲1	▲2	•	•	•	•	•			
n																				•	•			
d		•	•	•		•						•	•	•	▲1	▲2			•					

▲: Refer to "Cautions".

20

ied Instructions sitioning

# Function and operation explanation

#### 1. 16-bit operation (DECO, DECOP)

One bit among the devices specified by  $[d to d+2^n-1]$  is set to ON according to the value of the device specified by (s).

1) When the device specified by  $\bigcirc$  is a bit device  $(1 \le n \le 8)$ 

n bits  $(1 \le n \le 8)$  of a device specified by  $\bigcirc$  is decoded to the device specified by  $\bigcirc$ .

- When all bits of the devices specified by s are "0", the bit device specified by d turns ON.
- When "n" is "8", the bit device specified by  $\bigcirc$  occupies maximum  $2^8 = 256$  bits.



2) When the device specified by  $\fbox{d}$  is word device (1  $\le$  n  $\le$  4)

n bits on the low-order side of the device specified by  $\bigcirc$  is decoded to the device specified by  $\bigcirc$ .

- When all bits of the device specified by s are "0", b0 of the word device specified by d turns ON.
- In the case of "n  $\leq$  3", all of high-order bits of the device specified by  $\bigcirc$  become "0" (turn OFF).



11

Applied Instructions (Data Operation)

12

Speed

13

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

olied Instructions

nstructions

# Cautions

- 1) Instructions of pulse operation type are not provided in the FX0, FX0s or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 2) While the command input is OFF, the instruction is not executed. The activated decode output is held in the previous ON/OFF status.
- 3) When "n" is "0", the instruction executes no processing.
- 4) Some restrictions to applicable devices
  ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  ▲2:The FX3U and FX3UC PLCs only are applicable.

# **Program examples**

#### **1. When setting bit devices to ON according to the value of a data register** The value of D0 (whose current value is "14" in this example) is decoded to M0 to M15.



- When the value of b0 to b3 of D0 is "14 (=0+2+4+8)", M14 (which is the 15th from M0) becomes "1" (turns ON).
- When the value of D0 is "0", M0 becomes "1" (turns ON).
- When "n" is set to "K4", any one point among M0 to M15 turns ON according to the value of D0 (0 to 15).
- By changing "n" from K1 to K8, D0 can correspond to numeric values from 0 to 255.
  However, because the device range of the device specified by d is occupied for decoding accordingly, such device range should not be used for another control.

2. Turning ON the bit out of word devices according to the contents of bit devices The value expressed by X000 to X002 is decoded to D0 (X000 and X001 are ON, and X002 is OFF in this example).



- When the values expressed by X000 to X002 are "3 (=1+2+0)", b3 (which is the 4th from b0) becomes "1" (turns ON).
- When all of X000 to X002 are "0" (OFF), b0 becomes "1" (turns ON).

# 11.3 ENCO / Encode

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

# Outline

This instruction obtains positions in which bits are ON in data.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language
name	operation	form	Structured ladder/FBD	ST
ENCO	16 bits	Continuous	ENCO EN ENO s d n	ENCO(EN,s,n,d);
ENCOP	16 bits	Pulse	ENCOP EN ENO s d n	ENCOP(EN,s,n,d);

# 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input	S	Data to be encoded or word device storing data	ANY_SIMPLE
variable	n	Number of bits of device storing the encoding result [n = 1 to 8] (When "n" is "0", no processing is executed.)	ANY16
Output variable	ENO	Execution state	Bit
	d	Device storing the encoding result	ANY16

# 3. Applicable devices

			Bi	t D	ev	ice	S					W	ore	d D	evio	ces	i						Oth	iers	
Operand type		ę	Sys	ste	m	Us	er	Dig	it Spe	cifica	tion		Sy U	ste Ise	em r	S	pecial Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	X	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U	I□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
S	•	•	•		•							•	•	•	▲1	1	▲2	•	•	•					
n																					•	•			
d												•	•	•	▲1	I	▲2	•	•	•					

▲: Refer to "Cautions".

lied Instructions sitioning

# Function and operation explanation

#### 1. 16-bit operation (ENCO, ENCOP)

The  $2^n$  bit of the data specified by  $\bigcirc$  is encoded, and the result value is stored to the device specified by  $\bigcirc$ .

This instruction converts data into binary data according to a bit position in the ON status.

- 1) When the device specified by (s) is a bit device  $(1 \le n \le 8)$ 
  - ON bit positions among "2ⁿ" bits ( $1 \le n \le 8$ ) from the device specified by  $\underline{s}$  are encoded to the device specified by  $\underline{d}$ .
  - When "n" is "8", the device specified by  $\bigcirc$  occupies  $2^8 = 256$  bits (which is the maximum value).
  - The encoding result of the device specified by d is all "0" (OFF) from the most significant bit to the low-order bit "n".



- 2) When the device specified by s is a word device (1 ≤ n ≤ 4) ON bit positions among "2n" bits (1 ≤ n ≤ 4) from a device specified by s are encoded to the device specified by d.
  - The encoding result of the device specified by d is all "0" (OFF) from the most significant bit to the low-order bit "n".



# Cautions

- 1) Instructions of pulse operation type are not provided in the FX0s, FX0 or FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 2) When two or more bits are ON in the data specified by (s), the low-order side is ignored, and only the ON position on the high-order side is encoded.
- 3) When the command input is OFF, the instruction is not executed. Activated encode outputs are latched in the previous ON/OFF status.
- 4) Some restrictions to applicable devices
  ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  ▲2:The FX3U and FX3UC PLCs only are applicable.

# 11.4 SUM / Sum of Active Bits

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	×	×	0	×	×

# Outline

This instruction counts the number of "1" (ON) bits in the data of a specified device.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
SUM	16 bits	Continuous	SUM EN ENO s d	SUM(EN,s,d);
SUMP	16 bits	Pulse	SUMP EN ENO s d	SUMP(EN,s,d);
DSUM	32 bits	Continuous	DSUM EN ENO s d	DSUM(EN,s,d);
DSUMP	32 bits	Pulse	DSUMP — EN ENO — s d	DSUMP(EN,s,d);

#### 2. Set data

			Data	type
	Variable	Description	16-bit operation	32-bit operation
Input	EN	Execution condition	Bit	
variable	S	Word device storing the data	ANY16	ANY32
Output	ENO	Execution state	Bit	•
variable	d	Word device storing the result data	ANY16	ANY32

# 3. Applicable devices

			Bit	De	vic	es					W	or	d C	)ev	ic	es						Oth	ners	
Operand type		;	Sys	ten	٦U	ser	Dig	it Spe	ecifica	tion		Sy U	ste Jse	em er		Special Unit		I	ndex	Con	stant	Real Number	Character String	Pointer
	Х	Y	М	т	c s	BD⊡.b	KnX	KnY	KnM	KnS	Т	С	D	R	2	U□\G□	۷	z	Modifier	к	Н	Е	"0"	Р
S							•	•	•	•	•	•	•		.1	▲2	•	•	•	٠	•			
d								•	•	•	•	•	•		.1	▲2	•	•	•					

▲: Refer to "Cautions".

11

Applied Instructions (Data Operation)

12

Applied (High S Proces

edInstructions n Speed essing)

13

Applied In (Handy

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

olied Instructions

# Function and operation explanation

# 1. 16-bit operation (SUM ,SUMP)

The number of bits in the ON status in the device specified by  $\bigcirc$  is counted, and stored to the device specified by  $\bigcirc$ .

• When all bits are 0 (OFF) in the device specified by (s), the zero flag M8020 turns ON.



# 2. 32-bit operation (DSUM, DSUMP)

The number of bits in the ON status in the device specified by  $\bigcirc$  is counted, and stored to the device specified by  $\bigcirc$ .

- The number of bits in the ON status is stored in the device specified by ____, and K0 is stored in __+1.
- When all bits are 0 (OFF) in the device specified by (s), the zero flag M8020 turns ON.



3. Operation result of the device specified by d according to the value specified by s (in 16-bit operation)

(s)															Menan				
							Bit d	evice								Woi	d device	d	Zero flag
b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	Decimal	Hexadecimal		•
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000	0	ON
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0001	1	OFF
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2	0002	1	OFF
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	3	0003	2	OFF
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	4	0004	1	OFF
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	5	0005	2	OFF
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	6	0006	2	OFF
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	7	0007	3	OFF
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	8	0008	1	OFF
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	9	0009	2	OFF
0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	10	000A	2	OFF
0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	11	000B	3	OFF
							:									:	:	:	OFF
1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	-5	FFFB	15	OFF
1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	-4	FFFC	14	OFF
1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	-3	FFFD	15	OFF
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	-2	FFFE	15	OFF
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1	FFFF	16	OFF

# Cautions

- 1) While the command input is OFF, the instruction is not executed. The output of the number of bits in the ON status is latched in the previous status.
- 2) Some restrictions to applicable devices ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.  $\blacktriangle$ 2:The FX_{3U} and FX_{3UC} PLCs only are applicable.

# **Program examples**

When X000 is ON, the number of bits in the ON status in D0 is counted, and stored to D2.

[Structured ladder/FBD]



# 11.5 BON / Check Specified Bit Status

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)
0	0	0	0	×	×	0	×	×

# Outline

This instruction checks whether a specified bit position in a device is ON or OFF.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
BON	16 bits	Continuous	BON EN ENO d EN s d n	BON(EN,s,n,d);
BONP	16 bits	Pulse	BONP EN ENO S d n	BONP(EN,s,n,d);
DBON	32 bits	Continuous	DBON EN ENO S d n	DBON(EN,s,n,d);
DBONP	32 bits	Pulse	DBONP EN ENO s d n	DBONP(EN,s,n,d);

#### 2. Set data

			Data	type
١	/ariable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input	S	Word device storing the data	ANY16	ANY32
variable	n	Bit position to be checked [n=0 to 15 (16-bit instruction), n=0 to 31 (32-bit instruction)]	ANY16	
Output	ENO	Execution state	Bit	
variable	d	Bit device to be driven	Bit	

# 3. Applicable devices

			Bi	t D	ev	ice	s					V	Vor	d De	evice	S						Oth	iers	
Operand type		ę	Sy	ste	m	Us	er	Dig	it Spe	ecifica	tion	S	yst	em l	Jser	Special Unit			Index	Con	stant	Real Number	Character String	Pointer
	X	Y	М	т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	к	н	E	"0"	Р
s								•	•	•	٠	•	•	•	▲3	▲4	•	•	•	•	•			
n														▲2	▲3					•	•			
d		•	•			•	▲1												•					

▲: Refer to "Cautions".

11

# Function and operation explanation

#### 1. 16-bit operation(BON, BONP)

The status (ON or OFF) of the bit "n" in the device specified by  $\underline{\}$  is output to the device specified by  $\underline{\}$ . [When the bit "n" is ON, the device specified by  $\underline{\}$  is set to ON. When the bit "n" is OFF, the device specified by  $\underline{\}$  is set to OFF.]

• When a constant (K) is specified as s, it is automatically converted into the binary format.



#### 2. 32-bit operation(DBON, DBONP)

The status (ON or OFF) of the bit "n" in the device specified by  $_$  is output to the device specified by  $_$ . [When the bit "n" is ON, the device specified by  $_$  is set to ON. When the bit "n" is OFF, the device specified by  $_$  is set to OFF.]

• When a constant (K) is specified as s, it is automatically converted into the binary format.



#### Cautions

- 1) Some restrictions to applicable devices
  - ▲ 1:The FX₃U and FX₃UC PLCs only are applicable. Not indexed (V, Z).
  - ▲2:The FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  - ▲3:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

▲4:The FX3U and FX3UC PLCs only are applicable.

# **Program examples**

When the bit 9 (n=9) in D10 is "1" (ON), M0 is set to "1" (ON).





11

# 11.6 MEAN / Mean

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	×	×	0	×	×

# Outline

This instruction obtains the mean value of data.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
MEAN	16 bits	Continuous	MEAN EN ENO s d n	MEAN(EN,s,n,d);
MEANP	16 bits	Pulse	MEANP EN ENO s d n	MEANP(EN,s,n,d);
DMEAN	32 bits	Continuous	DMEAN EN ENO s d n	DMEAN(EN,s,n,d);
DMEANP	32 bits	Pulse	DMEANP EN ENO s d n	DMEANP(EN,s,n,d);

#### 2. Set data

			Data	type
١	/ariable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input variable	S	Head word device storing data to be averaged	ANY16	ANY32
	n	Number of data to be averaged (n=1 to 64)	ANY16	
Output	ENO	Execution state	Bit	
variable	d	Word device storing the mean value result	ANY16	ANY32

#### 3. Applicable devices

			Bi	t D	ev	ice	s					N	/or	d De	evice	s						Oth	ners	
Operand type		ŝ	Sys	ste	m	Us	er	Dig	it Spe	cifica	tion	Sy	/st	em	User	Special Unit			Index	Con	stant	Real Number	Character String	Pointer
	х	Y	М	т	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	к	н	Е	"0"	Р
S								•	•	•	•	•	•	٠	▲2	▲3			•					
n														<b>▲</b> 1	▲2					•	•			
d									•	•	•	•	•	•	▲2	▲3	•	•	•					

▲: Refer to "Cautions".

# Applied Instructions (Data Operation) 12 nstr ructions 13 Applied In (Handy nstruction nstructions 14 P R P ternal FX l/O 15 @₫ plied Instructions External Device ptional device)) 16 Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

ning

11

# Function and operation explanation

#### 1. 16-bit operation (MEAN, MEANP)

The mean value of "n" 16-bit data from the device specified by  $\bigcirc$  is stored to the device specified by  $\bigcirc$ .

- The sum is obtained as algebraic sum, and divided by "n".
- The remainder is ignored.



#### 2. 32-bit operation (DMEAN, DMEANP)

The mean value of "n" 32-bit data from the device specified by  $\bigcirc$  is stored to the device specified by  $\bigcirc$ .

- The sum is obtained as algebraic sum, and divided by "n".
- The remainder is ignored.

Command input	DMEAN EN ENO s d n	Resulting data	
[ <u>s</u> +1, <u>s</u> ]	+ [+3,+	$+2] + \dots + [{\underline{s}}+n \times 2-1], [{\underline{s}}+n \times 2-2]]$	→[ <u>d</u> +1, <u>d</u> ]

# Cautions

- 1) 32-bit instructions are not provided in the FXU PLC Ver. 2.30 or earlier.
- 2) When a device number is exceeded, "n" is handled as a smaller value in the possible range.
- 3) Some restrictions to applicable devices
  - ▲1:The FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  - ▲2:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  - ▲3:The FX₃U and FX₃UC PLCs only are applicable.

# Error

When "n" is any value outside the range from "1" to "64", an operation error (M8067) is caused.

# **Program examples**

The data of D0, D1 and D2 are summed, divided by "3", and then stored to D10.

[Structured ladder/FBD]



[ ST ]

MEAN(X000, D0, K3, D10);

# 11.7 ANS / Timed Annunciator Set

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	Х	0	×	Х	0	×	×

# Outline

This instruction sets a state relay as an annunciator.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language
name	operation	form	Structured ladder/FBD	ST
ANS	16 bits	Continuous	ANS EN ENO s d m	ANS(EN,s,m,d);

#### 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	S	Timer for evaluation time (100 ms timer)	ANY16
	m	Evaluation time [m=1 to 32,767] (unit: 100 ms)	ANY16
Output	ENO	Execution state	Bit
variable	d	Annunciator device to be set	Bit

#### 3. Applicable devices

			E	Bit	De	vice	s					W	orc	l Dev	/ices	i i						0	thers	
Operand type			s	ysi	em	l Us	er	Dig	it Spe	ecifica	tion	Sy	ste	m U	ser	Special Unit		ļ	Index	Co sta	on ant	Real Number	Character String	Pointer
	Х	Y	N	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
s												▲1							•					
m														▲3	▲3					•	•			
d						▲2													•					

▲: Refer to "Cautions".

# Function and operation explanation

#### 1. 16-bit operation

When the command input remains ON for equivalent to or longer than the evaluation time [  $m \times 100$  ms, timer specified by  $\bigcirc$  ], the device specified by  $\bigcirc$  is set.

When the command input remains ON for less than the evaluation time  $[m \times 100 \text{ ms}]$  and then turns OFF, the current value of the timer for evaluation specified by  $\bigcirc$  is reset and the device specified by  $\bigcirc$  is not set. When the command input turns OFF, the timer for evaluation is reset.



11

Applied Instructions (Data Operation)

12

13

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

nstructions

# **Related device**

Device	Name	Description
M8049	Enable annunciator	When M8049 is set to ON, M8048 and D8049 are valid.
M8048	Annunciator ON	When M8049 is ON and one of the state relays S900 to S999 is ON, M8048 turns ON.
D8049	Smallest state relay number in ON status	Among S900 to S999, the smallest state relay number in the ON status is stored.

# Cautions

Some restrictions to applicable devices

- ▲1:T0 to T199
- ▲2:S900 to 999
- ▲3:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

#### **Program examples**

#### 1. Displaying a fault number using an annunciator

When the program for external fault diagnosis shown below is created and the content of D8049 (smallest state relay number in the ON status) is monitored, the smallest state relay number in the ON status from S900 to S999 is displayed.

If two or more faults are present at the same time, the next smallest fault number is displayed after the fault of the smallest fault number is cleared.

[Structured ladder/FBD]

M8000			N	18049	
RUN mon	iitor			-( )—	
Y005	X000			ANS	
Forward movement	Forward end	то — К10—	s m	d	_ S900
X001	X002		EN	ANS ENO	L
Upper limit	Lower limit	т1 — К20 —	s m	d	— S901
X003	X004		EN	ANS ENO	
Continuous	Cycle	T2 — K100 —	s m	d	— S902
X005			```	Y005 -( )—	
M8048	novement		````	Y006	
Annuncia	tor ON	I	Fault	t display	
X007			EN	ANRP ENO	<u> </u>
Reset					

When M8049 turns ON, monitoring becomes valid.

If the forward end detection input X000 does not turn ON within 1 second after the forward movement output Y005 is driven, S900 turns ON.

If both the upper limit input X001 and the lower limit input X002 are OFF for 2 seconds or more due to a DOG error, S901 turns ON.

The switch X004 is set to ON in one operation cycle of the machine. If the switch X004 is not set to ON while the continuous operation mode input X003 is ON in the machine whose tact time is less than 10 seconds, S902 turns ON.

When one among S900 to S999 turns ON, M8048 turns ON and the fault display output Y006 turns ON.

A state relay which was set to ON by the external fault diagnosis program is set to OFF by the reset button X007. Every time X007 is set to ON, an operation state relay in the ON status with the smallest device number is reset (set to OFF) in turn.

#### [ ST ]

M8049:= M8000; ANS(Y005 AND NOT X000, T0, K10, S900); ANS(NOT X001 AND NOT X002,T1, K20, S901); ANS(X003 AND NOT X004, T2, K100, S902); Y005:=X005; Y006:=M8048; ANRP(X007);

# 11.8 ANR / Annunciator Reset

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	×	0	×	×	0	×	×

#### Outline

This instruction resets an annunciator in the ON status with the smallest number.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language
name	operation	form	Structured ladder/FBD	ST
ANR	16 bits	Continuous	ANR EN ENO	ANR(EN);
ANRP	16 bits	Pulse	ANRP — EN ENO	ANRP(EN);

#### 2. Set data

,	Variable	Description	Data type
Input variable	EN	Execution condition	Bit
Output variable	ENO	Execution state	Bit

#### 3. Applicable devices

	Bit Devices							Word Devices										Others				
Operand type			s	yst	em	Us	er	Dig	it Spe	ecifica	tion	ion System User			Special Unit	Index		Constant		Real Number	Character String	Pointer
	X	Y	1	ти	. 0	s	D□.b	KnX	nX KnY KnM KnS T C D R U⊡\G⊡ V Z Modifier								Modifier	к	Н	Е	"0"	Р
-		There are no applicable devices.																				

# Function and operation explanation

#### 1. 16-bit operation (ANR, ANRP)

When the command input turns ON, a state relay working as annunciator in the ON status is reset.

If two or more state relays are ON, the state relay with the smallest number is reset.
 When the command input is set to ON again, the state relay with the next smallest number is reset among state relays working as annunciators in the ON status.

ANR Command input ENO 41 EN

# **Related device**

Device	Name	Description
M8049	Enable annunciator	When M8049 is set to ON, M8048 and D8049 are valid.
M8048	Annunciator ON	When M8049 is ON and one of the state relays S900 to S999 is ON, M8048 turns ON.
D8049	Smallest state relay number in ON status	Among S900 to S999, the smallest state relay number in the ON status is stored.

# Cautions

#### 1. Execution in each operation cycle

- When ANR instruction is used, annunciators in the ON status are reset in turn in each operation cycle.
- When ANRP instruction is used, an annunciator in the ON status is reset only in one operation cycle (only once).

# **Program examples**

Refer to ANS instruction

 $\rightarrow$  For a program example, refer to Section 11.7.

11

# 11.9 SQR / Square Root

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	Δ	×	×

# Outline

This instruction obtains the square root. The DESQR instruction obtains the square root in floating point operation.

 $\rightarrow$  For DESQR instruction, refer to Section 18.15.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
SQR	16 bits	Continuous	SQR EN ENO s d	SQR(EN,s,d);
SQRP	16 bits	Pulse	SQRP EN ENO s d	SQRP(EN,s,d);
DSQR	32 bits	Continuous	DSQR — EN ENO — s d	DSQR(EN,s,d);
DSQRP	32 bits	Pulse	DSQRP — EN ENO — s d	DSQRP(EN,s,d);

# 2. Set data

			Data type				
`	/ariable	Description	16-bit operation	32-bit operation			
Input	EN	Execution condition	Bit				
variable	S	Word device storing data whose square root is obtained.	ANY16	ANY32			
Output	ENO	Execution state	Bit				
variable	d	Data register storing the square root operation result	ANY16	ANY32			

# 3. Applicable devices

			Bit	D	ev	ice	es								Devi	ces			Others					
Operand type		ę	Sys	te	m	Us	ser	Dig	it Spe	ecifica	tion		Sy U	ste se	em r	Special Unit		In	dex	Co ta	ons nt	Real Number	Character String	Pointer
	х	Y	M	Т	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
S														•	▲1	▲1			•	•	•			
d														•	▲1	▲1			•					

▲: Refer to "Cautions".

# Function and operation explanation

# 1. 16-bit operation (SQR, SQRP)

The square root of the data stored in the device specified by  $\bigcirc$  is calculated, and stored to the device specified by  $\bigcirc$ ).



#### 2. 32-bit operation (DSQR, DSQRP)

The square root of the data stored in the device specified by  $\underline{s}$  is calculated, and stored to the device specified by  $\underline{d}$ ).

Command input DSQR H EN ENO  $\sqrt{s} + 1, s \rightarrow d + 1, d$ Root data s d Resulting data

# Cautions

- 1) The instruction is provided in the FXU PLC Ver. 3.07 or later.
- 2) The obtained square root is an integer because the decimal point is ignored. When the decimal point is ignored, M8021 (borrow flag) turns ON.
- 3) When the calculated value is true "0", M8020 (zero flag) turns ON.
- 4) Some restrictions to applicable devices
  ▲1:The FX3U and FX3UC PLCs only are applicable.

# **Program examples**

The square root of D10 is stored to D12. The value of D10 is "100".

[Structured ladder/FBD]



[ST]

SQR(X000, D10, D12);

# 11.10 FLT / Conversion to Floating Point

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	Δ	0	0	×	×	Δ	×	×

# Outline

This instruction converts a binary integer into a binary floating point (real number).

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
FLT	16 bits	Continuous	FLT EN ENO s d	FLT(EN,s,d);
FLTP	16 bits	Pulse	FLTP EN ENO s d	FLTP(EN,s,d);
DFLT	32 bits	Continuous	DFLT — EN ENO— — s d	DFLT(EN,s,d);
DFLTP	32 bits	Pulse	DFLTP — EN ENO — s d	DFLTP(EN,s,d);

# 2. Set data

			Data type			
ľ	Variable	Description	16-bit operation	32-bit operation		
Input variable	EN	Execution condition	Bit			
	S	Data register storing binary integer	ANY_SIMPLE			
Output variable	ENO	Execution state	Bit			
	d	Data register storing binary floating point (real number)	ANY_SIMPLE			

#### 3. Applicable devices

Operand type	Bit Devices					s	Word Devices												Others				
	System User					er	Digit Specification				System User			m r	Special Unit	Index			Cons Real tant Numbe		Real Number	Character String	Pointer
	х	YN	Т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
S													•	▲1	▲2			•					
d													●	<b>▲</b> 1	▲2			•					

▲: Refer to "Cautions".
## Function and operation explanation

#### 1. 16-bit operation (FLT, FLTP)

The binary integer data of the device specified by  $\bigcirc$  is converted into binary floating point (real number), and stored to the device specified by  $\bigcirc$ .

### 2. 32-bit operation (DFLT, DFLTP)

The binary integer data of the device specified by  $\bigcirc$  is converted into binary floating point (real number), and stored to the device specified by  $\bigcirc$ .

Command input	D	FLT			
	EN	ENO	—	$((\underline{s})+1, (\underline{s})) \rightarrow$	$((\underline{d})+1,(\underline{d}))$
Device that stores — the binary integer data	s	d	<ul> <li>Device that stores the binary floating point data</li> </ul>	Binary integer	Binary floating point (real number)

## **Related instruction**

Instruction	Description
INT	It is inverse of FLT instruction, and converts binary floating point into binary integer.

## **Related devices**

#### $\rightarrow$ For the method of the zero and borrow flags, refer to Section Section 1.3.4.

Device	Name	Description
M8020	Zero flag	Turns ON when the value is true "0".
M8021	Borrow flag	Turns ON when the floating point is rounded down

### Cautions

- 1) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
- 2) The instruction is provided in the FXU PLC Ver. 3.07 or later.
- 3) Some restrictions to applicable devices
  - ▲1:The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
     ▲2:The FX3U and FX3UC PLCs only are applicable.

11

20

nstructions

## **Program examples**

## 1. Arithmetic operations by binary floating point operations

The sequence program shown below is constructed as follows:

1) Calculation example



11

#### 2) Program

[Structured ladder/FBD]



$(D \ 0) \rightarrow (D21, D20)$ BIN Binary floating point operation		AppliedInstructions (Data Operation)
(X017 to X010) $\rightarrow$ (D22) BCD BIN		12 (High Speed Processing)
$(D22) \rightarrow (D25, D24)$ BIN Binary floating point operation		3 13
(K345) → (D50) BIN BIN (D50) → (D52, D51)		<ul> <li>Applied Instructions (Handy Instruction)</li> </ul>
BIN Binary floating point operation		14
$\begin{array}{l} (K10) \rightarrow (D53) \\ BIN & BIN \end{array}$	K34.5 is converted into binary floating point.	Applied Instructions (External FX I/O Device)
$(D53) \rightarrow (D55, D54)$ BIN Binary floating point operation		15
$(D52, D51) \div (D55, D54) \rightarrow (D27, D26)$ Binary floating point operation		Applied Instructions (External Device (optional device))
-		16
(D21, D20) ÷ (D25, D24) → (D29, D28) Binary floating point division Binary floati operation	ng point	Applied Instructions (External Device)
$(D29, D28) \times (D27, D26) \rightarrow (D11, D10)$ Binary floating point multiplication		17
(D11, D10) → (D13, D12) Binary floating point operation Decimal floa operation for	ting point monitoring	Applied Instructions (Data Transfer 2)
$(D11, D10) \rightarrow (D15, D14)$ Binary floating point operation 32-bit binary	integer	18
Dinary loading point operation - 52-bit billary	integer	716

[ST]

FLT(M8000, D0, D20); BIN(M8000, K2X010, D22); FLT(M8000, D22, D24); MOV(M8000, K345, D50; FLT(M8000, D50, D51); MOV(M8000, K10, D53); FLT(M8000, D53, D54); DEDIV(M8000, D51, D54, D26); DEDIV(M8000, D20, D24, D28); DEMUL(M8000, D28, D26, D10); DEBCD(M8000, D10, D12); DINT(M8000, D10, D14);

Applied Instructions (Positioning Control)

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

# 12. Applied Instructions (High Speed Processing)

This chapter introduces interrupt processing type high-speed instructions that execute sequence control using the latest I/O information and utilize the high-speed processing performance of the PLC.

Instruction name	Function	Reference
REF	Refrech	Section 12.1
REFP		00000112.1
REFF	Pafrash and Eilter Adjust	Section 12.2
REFFP		3601011 12.2
MTR	Input Matrix	Section 12.3
DHSCS	High Speed Counter Set. High Speed Interrupt Counter Set	Section 12.4
DHSCS_I	nigh Speed Counter Set, nigh Speed interrupt Counter Set	
DHSCR	High Speed Counter Reset	Section 12.5
DHSZ	High Speed Counter Zone Compare	Section 12.6
SPD	Speed Detection	Section 12.7
DSPD		3601011 12.7
PLSY	Pulso V Output	Section 12.9
DPLSY	Fuise i Output	3601011 12.8
PWM	Pulse Width Modulation	Section 12.9
PLSR	Acceleration/Decoloration Satur	Section 12.10
DPLSR		Section 12.10

## 12.1 REF / Refresh

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

## Outline

This instruction immediately outputs the latest input (X) information or the current output (Y) operation result in the middle of a sequence program operation.

## 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
REF	16 bits	Continuous	REF - EN ENO - d - n	REF(EN, d, n);
REFP	16 bits	Pulse	REFP — EN ENO — d — n	REFP(EN, d, n);

## 2. Set data

Variable	)	Description	Data type
	EN	Execution condition	Bit
Input variable	d	Bit device (X or Y) to be refreshed	Bit
	n	Number of bit devices to be refreshed	ANY16
Output variable	ENO	Execution state	Bit

#### 3. Applicable devices

		В	it I	Dev	vic	es			V					Word Devices						Others				
Operand type		Sy	/st	em	U	sei	r	Dig	it Spe	cifica	tion System User			System User		Special Unit		I	ndex	Cons	stant	Real Number	Character String	Pointer
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	к	Н	Е	"0"	Р
d	▲1	▲2																						
n																				<b>▲</b> 3	<b>▲</b> 3			

▲: Refer to "Cautions".

## Function and operation explanation

#### 1. 16-bit operation(REF, REFP)

- 1) When refreshing outputs (Y)
  - "n" points are refreshed from the output of the device specified by ____. ("n" must be a multiple of 8.)



- * Refer to "Caution" for the head device number and the number of points.
- When this instruction is executed, the output latch memory is refreshed to the output status in the specified range.



#### 2) When refreshing inputs (X)

"n" points are refreshed from the input of the device specified by ____. ("n" must be a multiple of 8.)



* Refer to "Caution" for the head device number and the number of points.

- If the input information is turned ON approximately 10 ms (response delay time of the input filter) before the instruction is executed, the input image memory turns ON when the instruction is executed.
- The response delay time of the input filter can be changed.





## Cautions

- 1) When setting the specified head device number "d", make sure that the least significant digit number is "0" such as "X000, X010, X020, ..." or "Y000, Y010, Y020, ...".
- 2) Instructions of pulse operation type are not provided in the FXos, FXo or FXoN PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 3) Some restrictions to applicable devices
  - ▲1: X000, X010, X020 ....Up to the final input number (The last digit number must be "0".)
  - ▲2: Y000, Y010, Y020 ....Up to the final output number (The last digit number must be "0".)
  - ▲3: Set a multiple of "8" to the number of refresh points "n", such as K8(H8), K16(H10), ..., K256 (H100). Any number other than the above generates an error.

PLC	n
FX3U, FX3UC	K8(H8), K16(H10),, K256(H100)
FX3G, FX3GC	K8(H8), K16(H10),, K128(H80)
FX3S	K8(H8) or K16(H10)
FX1S, FX1N, FX1NC, FX2N, FX2NC	K8(H8), K16(H10),, K256(H100)
FX0S, FX0	K8(H8) or K16(H10)
FX0N	K8(H8), K16(H10),, K128(H80)
FXU, FX2C	K8(H8), K16(H10),, K256(H100)

## **Program examples**

#### 1. When refreshing inputs

Only X010 to X017 (8 points in total) are refreshed.

[Structured ladder/FBD] [ST]

REF(X000,X010,K8);

## 2. When refreshing outputs

Y000 to Y007, Y010 to Y017 and Y020 to Y027 (24 points in total) are refreshed.

[Structured ladder/FBD] [ST]



REF(X001,Y000,K24);

20

d Instructions tioning

## 12.1.1 What should be understood before using the REF instruction

#### 1. Changing the input filter

The input filter value is determined by the contents of D8020 (initial value: 10 ms). Use the MOV instruction, etc. to adjust the value in D8020, which represents the input filter value.  $\rightarrow$  For details, refer to "FX Structured Programming Manual (Device & Common)."

#### 2. Output response time

After the REF instruction is executed, the output (Y) sets the output signal to ON after the response time shown below.

#### $\rightarrow$ For details, refer to the respective PLC Hardware Edition manuals.

- 1) Relay output type
  - The output contact is activated after the response time of the output relay.
  - Y000 and higher: Approximately 10 ms
- 2) Transistor output type
  - a) For FX3∪ PLC
    - Y000, Y001, Y002: 5  $\mu$ s or less (load current = 10 mA or more, 5 to 24 V DC)
    - Y003 and higher: 0.2 ms or less (load current = 200 mA, 24 V DC)
  - b) For FX3UC (D, DSS) PLC
    - Y000, Y001, Y002: 5 μs or less (load current = 10 mA or more, 5 to 24 V DC)
    - Y003 and higher: 0.2 ms or less (load current = 100 mA, 24 V DC)
  - c) For FX3UC-32MT-LT (-2) PLC
    - Y000, Y001, Y002, Y003: 5 µs or less (load current = 10 mA or more, 5 to 24 V DC)
  - Y004 and higher: 0.2 ms or less (load current = 100 mA, 24 V DC)
  - d) For FX3G PLC (14-point, 24-point types) and FX3GC PLCs
    - Y000, Y001: 5  $\mu$ s or less (load current = 10 mA or more, 5 to 24 V DC)
    - Y002 and higher: 0.2 ms or less (load current = 200 mA, 24 V DC)
  - e) For FX3G (40-point, 60-point types)
    - Y000, Y001, Y002: 5 μs or less (load current = 10 mA or more, 5 to 24 V DC)
    - Y003 and higher: 0.2 ms or less (load current = 200 mA, 24 V DC)
  - f) For FX3GC PLC
    - Y000, Y001: 5 μs or less (load current = 10 mA or more, 5 to 24 V DC)
    - Y002 and higher: 0.2 ms or less (load current = 100 mA, 24 V DC)
  - g) For FX3S PLC
    - Y000, Y001: 5 μs or less (load current = 10 mA or more, 5 to 24 V DC)
    - Y002 and higher: 0.2 ms or less (load current = 200 mA, 24 V DC)
  - h) For FX1s, FX1n, FX1nc, FX2n and FX2nc PLCs
    - Y000, Y001: 15  $\mu s$  to 30  $\mu s$  or less
    - Y002 and higher: 0.2 ms or less
  - i) For FX0s, FX0, FX0N, FXU and FX2C PLCs
    - Y000 and higher: 0.2 ms or less

# 3. When using the REF instruction between FOR and NEXT instructions or between a label (with a lower step number) and CJ instruction (with a higher step number)

Inputs and outputs can be refreshed in a routine program even when the input information or immediate output is required in the middle of a routine program during control.

#### 4. When using the input interrupt (I) function

When executing interrupt processing accompanied by I/O operations, I/O refresh can be executed in the interrupt routine to receive the latest input (X) information and give the immediate output (Y) of the operation result so that dispersion caused by the operation time is improved.

11

Applied Instructions (Data Operation)

2

nstructions

Applied

nstructions

14 ied

nal FX I/O

15

Ū₽

16

Applied Instru (External De

structions I Device)

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

nstructions Bull

1 7

(optional erna instr nstructions al Device I device))

13

Speed

#### 12.2 **REFF / Refresh and Filter Adjust**

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	0	×	×

## Outline

The digital input filter time of the inputs can be changed using this instruction or D8020. Using this instruction, the status of inputs can be refreshed at an arbitrary step in the program for the specified input filter time, and then transferred to the image memory.

## 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
REF	16 bits	Continuous	REFF EN ENO n	REF(EN, n);
REFP	16 bits	Pulse	REFFP — EN ENO — n	REFP(EN, n);

## 2. Set data

Variable	)	Description	Data type			
Input veriable	EN	Execution condition	Bit			
input variable	n	Digital input filter time (1 ms increment)	ANY16			
Output variable	ENO	Execution state	Bit			

#### 3. Applicable devices

			В	it	Dev	vice	es		v						evice	S				Others					
Operand type			Sy	/st	em	Us	ser	Dig	it Spe	ecifica	tion	S	yst	em	Jser	Special Unit		I	ndex	Co ta	ons nt	Real Number	Character String	Pointer	
	x	(	ſ	/ 1		s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U 🗆 \G 🗆	۷	z	Modifier	κ	н	E	"0"	Р	
n														▲1	▲1					▲2	▲2				

▲: Refer to "Cautions".

## Function and operation explanation

## 1. 16-bit operation(REFF, REFFP)

The image inputs below are refreshed at the digital input filter time  $[n \times 1 ms]$ .

PLC	Input
	X000 to X017
FA30, FA30C	X000 to X007 in the FX3U-16M□, and FX3UC-16M□
	X000 to X017
	X000 to X007 in the 16-input basic units
FXU, FX2C	X000 to X007



- K0 to K60 (Filter constant from 0 to 60 ms)

- When the input turns ON "n × 1 ms" before the instruction is executed, the input image memory is set to ON. When the input turns OFF "n × 1 ms" before the instruction is executed, the input image memory is set to OFF.
- When the command input is ON, the REFF instruction is executed in each operation cycle.
- When the command input is OFF, the REFF instruction is not executed, and the input filter uses the set value of D8020 (which is the value used during input processing).

## Cautions

#### 1. Function of the input filter

The filter time of the digital filter can be changed in 1 ms units within the range from 0 to 60 ms using instructions. When the filter time is set to "0", the input filter value is as follows.

1) For FX3U and FX3UC PLCs

Input number	Input filter value when set to "0"
X000 to X005	5μs ^{*2}
X006, X007	50µs
X010 to X017 ^{*3}	200μs ^{*3}

- *1. X000 to X007 in the FX3U-16MD, and FX3UC-16MD
- *2. When setting the input filter time to "5  $\mu$ s", perform the following actions.
  - Make sure that the wiring length is 5 m or less.
  - Connect a bleeder resistor of 1.5 kΩ (1 W or more) to the input terminal, and make sure that the load current in the open collector transistor output of the external equipment is 20 mA or more including the input current of the main unit.
- *3. The filter time is fixed for 10 ms in X010 to X017 in 16-point type FX3U PLCs and 16-point type FX3UC PLCs.
- 2) For FX2N and FX2NC PLCs

Input number	Input filter value when set to "0"
X000, X001	20µs
X002 to X017	50µs

3) For FXU and FX2C PLCs

Input number	Input filter value when set to "0"
X000 to X007	50µs

#### 2. Some restrictions to applicable devices

- ▲1: The FX3U and FX3UC PLCs only are applicable.
- ▲2: Set the filter time within the range of K0(H0) to K60(H3C) [0 to 60 ms].

Input processing

Sequence program

REFF instruction

REFF instruction

END

Output processing

## **Program examples**

## 1. Relationship between the program and the filter time





Instructions 14 Applied Instructions (External FX I/O Device) 15 Applied Instructions (External Device (optional device)) 16 Applied Instructions (External Device) 17 Applied Instructions (Data Transfer 2) 18 Applied Instructions (Floating Point) 19 Applied Instructions (Data Operation 2)

11

Applied Instructions (Data Operation)

12

AppliedInstructions (High Speed Processing)

13

Applied Instru (Handy Instruction)

Set value of D8020 (Initial value: 10 ms)

1 ms

20ms

20

Applied Instructions Positioning Control)

## 12.2.1 What should be understood before using REFF instruction

Generally, a C-R filter of approximately 10 ms is provided for inputs in PLCs as countermeasures against chattering and noise at the input contacts.

A digital filter is provided for some inputs (*1). The digital filter value can be changed within the range from 0 to 60 ms using instructions.

### 1. How to change the digital filter (executing END instruction)

The digital filter initial value (10 ms) is set in special data register D8020.

By changing this value using the MOV instruction, etc., the input filter value for X000 to X017^{*2} which is used during execution of the END instruction can be changed.



*1. Where a digital filter is used on an input terminal, refer to the descriptions on the functions and operations.

#### 2. Instruction in which the digital filter is automatically changed

Regardless of the change in the filter time executed by the REFF instruction, when the following functions and instructions are executed, the input filter value is automatically changed (as shown in the caution). However, if the digital filter is used in any other functions or instructions than the ones listed, the digital filter uses the time set in D8020. As a result, the program will not run correctly if the ON or OFF duration of the corresponding input signal is less than the input filter time.

- · Input of interrupt pointer specified in the input interrupt function
- Input used in a high speed counter
- Input used in the SPD instruction

# 12.3 MTR / Input Matrix

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	×	×

## Outline

This instruction reads matrix input as 8-point input  $\times$  "n" output (transistor) in the time division method.

## 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language											
name	operation	form	Structured ladder/FBD	ST										
MTR	16 bits	Continuous	MTR — EN ENO — s d1 — n d2	MTR(EN, s, n, d1, d2);										

## 2. Set data

Variable	)	Description	Data type
	EN	Execution condition	Bit
Input variable	S	Head device (X) number of matrix signal input X000, X010, X020,, final input X number (Only "0" is allowed in the least significant digit of device numbers)	Bit
	n	Number of columns in matrix input (K2 to K8/H2 to H8)	ANY16
	ENO	Execution state	Bit
Output variable	<u>(d1</u> )	Head device (Y) number of matrix signal output Y000, Y010, Y020,, final output Y number (Only "0" is allowed in the least significant digit of device numbers.)	Bit
	(d2)	Head bit device (Y, M or S) number of ON output destination Y000, Y010, Y020,, final Y number, M000, M010, M020,, final M number or S000, S010, S020,, final S number (Only "0" is allowed in the least significant digit of device numbers.)	Bit

## 3. Applicable devices

			Bi	t D	evi	ces	i		١						evi	ces				Others					
Operand type			Sy	ste	mι	Jse	r	Dig	it Spe	ecifica	tion	S	Sys Us	ster ser	n	Special Unit		Ir	ndex	Co sta	on ant	Real Number	Character String	Pointer	
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р	
S	•																								
n																				•	•				
<u>d1</u> )		•																							
d2)		•	•			•																			

20

vitioning

## Function and operation explanation

#### 1. 16-bit operation (MTR)

An input signal of 8 points  $\times$  "n" columns is controlled in the time division method using 8 inputs of the device specified by al. Each column is read in turn, and then output to the device specified by al.



For each output, the I/O processing is executed immediately in turn in interrupt at every 20 ms under consideration of the input filter response delay of 10 ms.

The figure below shows an example of the FX_{3U} series main unit (sink input / sink output). For the wiring, refer to the manual of the PLC used.



"n" points are occupied.

#### **Related devices**

Device	Name	Description
M8029	Instruction execution complete	Turns ON after the first cycle operation

## Cautions

#### 1. Number of occupied devices

- 1) Eight input points are occupied from the input device number specified in s.
- 2) "n" output points are occupied from the output device number specified in (d1).

When specifying the output in (d2), make sure that "n" output numbers specified in (d1) does not overlap the output specified in (d2).

#### 2. Limitation in the number of instructions

The MTR instruction can be used only once in a program.

#### 3. Wiring

One diode of 0.1A/50V is required for each switch.

#### 4. Output format

Use the transistor output format.

#### 5. Cautions about writing during RUN

Even if an operand device is changed by write during RUN while the MTR instruction is executed, the PLC operates using the device before change.

The changed device is reflected after the command input is set to OFF once and set to ON again.

## Program examples

n = Three outputs (Y020, Y021 and Y022) are set to ON in turn repeatedly.

Every time an output is set to ON, eight inputs in the 1st, 2nd and 3rd columns are received in turn repeatedly, and stored to M30 to M37, M40 to M47, and M50 to M57 respectively.

In this program example, the FX_{3U} series main unit (sink input / sink output) is used. For the wiring, refer to the manual of the PLC used.



11 Applied Instructions (Data Operation) 12 Applied Instructions (High Speed Processing) 13 Applied In (Handy nstruction) nstructions 14 Applied Instructions (External FX I/O Device) 15 Applied Instructions (External Device (optional device)) 16 Applied Instructions (External Device) 17 Applied Instructions (Data Transfer 2) 18 Applied Instructions (Floating Point) 19

Applied Instructions (Data Operation 2)

20

Applied Instruction (Positioning Control

lied Instructions

## 12.3.1 Operation and cautions for MTR instruction

#### 1. Command input

 Setting the command input to normally ON For the MTR instruction, set the command input to normally ON.



#### 2. Input numbers used in MTR instruction

- Inputs available in MTR instruction Use inputs X020 and later under normal conditions.
- 2) When using the inputs X000 to X017 (X000 to X007 for 16-point type main unit)

The receiving speed is higher. Because the output transistor recovery time is long and the input sensitivity is high, however, erroneous input pulses may be counted.

To prevent erroneous input pulses, connect pull-up resistors (3.3 k $\Omega$  / 0.5W) to transistor outputs used in MTR instruction.

For pull-up resistors, use the power supply shown in the table below.

	Power supply used for pull-up resistors
AC power type PLC	Service power supply
DC power type PLC	Power supply for driving PLC

The figure below shows an example of the FX3U series main unit (sink input / sink output).



#### 3. ON/OFF duration of input signals

Because 64 input points (8 rows  $\times$  8 columns) are received in a cycle of 80 or 160 ms, the ON/OFF duration of each input signal should be greater than or equal to the value shown below.



- *1. X000 to X007 for FXU, FX2C, FX1S, FX1N, FX1NC, FX3G and FX3GC PLCs.
- *2. X010 and later for FXU, FX2C, FX1S, FX1N, FX1NC, FX3G, FX3GC PLCs.

## 12.4 DHSCS, DHSCS_I / High Speed Counter Set, High Speed Interrupt Counter Set

	FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
DHSCS	0	0	0	0	0	0	0	0	0
DHSCS_I	0	×	×	0	×	×	0	×	×

## Outline

These instructions compare a value counted by a high speed counter with a specified value at each count, and execute the following processing.

- DHSCS: Sets an external output (Y).
- DHSCS_I: Executes an interrupt program.
  - $\rightarrow$  Refer to Section 35.6 for the counter interrupt using this (DHSCS_I) instruction.

## 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language
name	Operation	form	Structured ladder/FBD	ST
DHSCS	32 bits	Continuous	DHSCS – EN ENO – s1 d – s2	DHSCS(EN, s1, s2, d);
DHSCS_I	32 bits	Continuous	DHSCS_I — EN ENO — — s1 — s2 — i	DHSCS_I(EN, s1, s2, i);

#### 2. Set data

Instruction name	Variable		Description	Data type					
		EN	Execution condition	Bit					
	Input variable	<u>(s1</u> )	Data to be compared with the current value of a high-speed counter or word device storing the data to be compared	ANY32					
DHSCS		<u>(s2</u> )	Device of a high speed counter	ANY32					
	Output variable	EN0	Execution state						
		d	Bit device to be set to ON when the compared two values are equivalent to each other	Bit					
		EN	Execution condition	Bit					
	Inputvoriable	<u>(s1</u> )	Data to be compared with the current value of a high-speed counter or word device storing the data to be compared	ANY32					
DHSCS_I	input variable	<u>(s2</u> )	Device of a high speed counter	ANY32					
		(i)	Interrupt pointer (I) for executing an interrupt program when the compared two values agree.	ANY16					
	Output variable	EN0	Execution state	Bit					

## 3. Applicable devices

			l	Bit	t D	ev	ice	s					Wo	ord	D	evic	es						C	others	
Instruction name	Operand type		S	Sys	ste	m	Us	er	Digi	it Spe	ecifica	tion		Sy L	'ste Jse	em r	Special Unit		I	ndex	C sta	on ant	Real Number	Character String	Pointer
		Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
	<u>(s1</u> )								•	•	•	•	•	•	•	▲2	▲3		•	•	•	•			
DHSCS	<u>(s2</u> )													•						•					
	d		•	•			•	▲1												•					
	<u>(s1</u> )								•	•	٠	•	•	•	•	▲2	▲3		•	•	•	•			
DHSCS_I	<u>(s2</u> )													•						•					
	(i)																								▲4

▲: Refer to "Cautions".

11

Applied Instructions (Data Operation)

12

edInstructions h Speed essing)

13

Applied Instru (Handy Instruction)

nstructions

4

Instructions al FX I/O

15

pplied Instructions External Device ptional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

nstructions ning

## Function and operation explanation

#### 1. 32-bit operation (DHSCS)

When the current value of a high speed counter of the device specified by  $\underline{s2}$  becomes the comparison value of the device specified by  $\underline{s1}$  (for example, when the current value changes from "199" to "200" or from "201" to "200" if the comparison value is K200), the bit device specified by  $\underline{d}$  is set to ON without regard to the operation cycle. This instruction is executed after the counting processing in the high speed counter.



## Operation

When the current value of the high speed counter C235 changes from "99" to "100" or from "101" to "100", Y010 is set to ON (output refresh).



## **Related instruction**

The following instructions can be combined with high speed counters.

Instruction	Instruction name
DHSCS	High speed counter set
DHSCR	High speed counter reset
DHSZ	High speed counter zone compare
DHCMOV	High speed counter move
DHSCT	High speed counter compare with data table

## Cautions

#### 1. Selection of the counter comparison method

When the DHSCS instruction is used, the maximum frequency and total frequency of the high speed counter are affected.

Refer to the counting operation described below, and select according to the contents of control whether to use this instruction or general-purpose comparison instruction.

- 1) Case to select DHSCS instruction
  - When the output should be given when the counting result becomes equivalent to the comparison value without regard to the scan time of the PLC.
- 2) Cases to select a general-purpose comparison instruction
  - When the required frequency is beyond the counting performance.
  - When counting is regarded as important, but the effect of the scan time can be ignored in operations according to the counting result.
  - When the number of an instruction exceeds the allowable limit. For FX3U and FX3UC PLCs



## 2. Device specification range

Only high speed counters can be specified as <u>s</u>. For details, refer to the following manual.

## → FX Structured Programming Manual [Device & Common]

### 3. DHSCS_I instruction

- Use the DHSCS_I instruction when executing counter interrupt using the interrupt pointer (I).  $\rightarrow$  Refer to Section 35.6 for the counter interrupt using this instruction.
- The FX0s, FX0, FX0s, FX1s, FX1n, FX1nc, FX3s, FX3g and FX3gc PLCs do not support this instruction.

lied Instructions

#### 4. Some restrictions to applicable devices

- ▲1: The FX3U and FX3UC PLCs only are applicable.
  - Not indexed (V, Z).
- ▲2: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲3: The FX₃U and FX₃UC PLCs only are applicable.
- ▲4: When executing counter interrupt, the interrupt pointer is specified using the DHSCS_I instruction. (Not available for the FXos, FXo, FXon, FX1s, FX1n, FX1nc, FX3s, FX3G or FX3GC PLC.) → For the counter interrupt using this instruction, refer to Section 35.6.
- 5. Precedence of DHSCS, DHSCR and DHSZ instructions to one particular high speed counter → Refer to caution 6 in "Common cautions on using instructions for high speed counter" which is described later.
- 6. Reset operation by an external terminal
  - $\rightarrow$  Refer to caution 5 in "Common cautions on using instructions for high speed counter" which is described later.

### 7. Other cautions on use

 $\rightarrow$  Refer to caution in "Common cautions on using instructions for high speed counter" which is described later.

## **Program examples**

With regard to the current value of a counter, different outputs (Y) are arbitrarily set to ON by two values.

[Structured ladder/FBD]



## 12.4.1 Common cautions on using instructions for high speed counter

DHSCS, DHSCR, DHSZ and DHSCT instructions are provided for high speed counters. This section explains common cautions for these instructions.

#### 1. Limitation in the number of an instruction in a program

DHSCS, DHSCR and DHSZ instructions can be used as many times as necessary in the same way as general instructions. However, the number of simultaneously driven instructions is limited.

1) For FX3U and FX3UC PLCs

Instruction	Limitation in number of instructions driven at same time
DHSCS	
DHSCR	32 instructions including DHSCT instruction
DHSZ	
DHSCT	Only 1 (This instruction can only be used once.)
	N EV 10 EV 11 EV 110 EV 11 EV 10 EV 11 EV 11 EV 11 EV 11

2) For FX0s, FX0, FX0n, FX1s, FX1n, FX1nc, FXU, FX2c, FX2n, FX2nc, FX3s, FX3g and FX3gc PLCs

instruction	Limitation in number of instructions driven at same time
DHSCS	
DHSCR	6 instructions
DHSZ ^{*1}	

*1. The instruction is not provided in the FX0S, FX0, FX0N, FX1S, FX1N and FX1NC PLCs.

#### 2. Response frequency of high speed counters

When DHSZ instruction is used, the maximum response frequency of every software counter and the total frequency are limited. For details, refer to the following manual.

#### $\rightarrow$ FX Structured Programming Manual [Device & Common]

#### 3. Specification of output numbers (Y)

When using the same instruction for high speed counter repeatedly or when driving two or more instructions for high speed counter at the same time, specify such output devices (Y) whose high-order two digits are the same (in units of 8 devices).

- When using devices of the same number (in units of 8 devices) Example: when using Y000, specify Y000 to Y007. When using Y010, specify Y010 to Y017.
- When using two or more instructions for high speed counter and non-consecutive output (Y) numbers A program example is shown below:



When C255 reaches K100, the output Y000 is driven by interrupt. Y010 is driven when END processing is executed.

If interrupt drive is required, use an output number in the range from Y001 to Y007 whose high-order two digits are equivalent.

#### 4. Caution on the counting operation when the current value is changed

An instruction for the high speed counter gives the comparison result when a pulse is input to the input (X) of the high speed counter.

However, the comparison result is not given when the current value of the high speed counter is changed in the following method.

- 1) Change method (example)
  - a) Overwriting the contents of a word device used as the comparison value using DMOV instruction, etc.
  - b) Resetting the current value of a high speed counter in a program.

11

2) Operation

Even if the condition for setting the output to ON or OFF is given as the comparison result, the comparison result does not change when an instruction is simply driven.

## 5. Reset operation by an external terminal [M8025^{*1}: DHSC (external reset) mode]

For a high speed counter equipped with an external reset terminal (R) such as C241, an instruction is executed and the comparison result is output at the rising edge of the reset input signal.

(The FXU PLC of V2.1 or later and produced February 1990 or later are compatible with this function. The FX0s, FX0, FX0N, FX1s, FX1N, FX1NC, FX3s, FX3G or FX3GC is not compatible.)

1) Program

If an instruction for the high speed counter is used while M8025^{*1} is driven, the instruction is executed again when the current value of the high speed counter C241 is cleared by an external reset terminal. And the comparison result is output even if a counting input is not given.



*1. It is not necessary to drive M8025 for the FX0s, FX0, FX1s, FX1s, FX1s, FX1s, FX3s, FX3g and FX3gc PLCs. The above reset operation takes place as a basic function.

#### 2) Operation

When the external reset input X001 turns ON while the current value of C241 is "100", for example, the current value of C241 is reset to "0". And Y000 is reset at this time even if a counting input is not given.

# 6. Priority order in operations among DHSCS, DHSCR and DHSZ instructions for the same high speed counter when the same comparison value is used.

1) FX3U and FX3UC PLCs

When the same comparison value is used for the same high speed counter in DHSCS, DHSCR and DHSZ instructions, high speed counter reset (self-reset) by DHSCR instruction is executed with the highest priority (as shown in the table below).

In this case, the comparison results do not change in DHSCS, DHSCR and DHSZ instructions whose comparison value is programmed to be the same as the comparison value for self-reset by DHSCR instruction. To change the comparison results, set the comparison value to "K0".

 FX1s, FX1N, FX1NC, FX2N, FX2NC, FX3s, FX3G and FX3GC PLCs Comparison is executed in the programmed sequence without regard to the instructions.

Processing sequence

Program soquence		i receccing coquence	
Flogram sequence	FX3U•FX3UC	FX2N•FX2NC•FX3S•FX3G•FX3GC	FX1N•FX1S•FX1NC
DHSCS (1)	DHSCR (6) (Self-reset)	DHSCS (1)	DHSCS (1)
DHSCS (2)	DHSZ (4)	DHSCS (2)	DHSCS (2)
DHSCR (3)	DHSCS (1)	DHSCR (3)	DHSCR (3)
DHSZ (4)	DHSCS (2)	DHSZ (4)	(Not supported)
DHSCR (5)	DHSCR (3)	DHSCR (5)	DHSCR (5)
DHSCR (6) (Self-reset)	DHSCR (5)	DHSCR (6) (Self-reset)	DHSCR (6) (Self-reset)



11

#### Operation of FX3U and FX3UC PLCs



- *1. To change the comparison results by the instructions (1) to (3) and (5) in the previous page, change the comparison value "K500" in the instructions (1) to (3) and (5) in the previous page to "K0".
- *2. To set Y005 to ON in the DHSZ instruction (4) in the previous page, set a value smaller than the comparison value "K500". However, due to the response delay at the output, the output may not operate within the short time before the counter's current value is reset to "0" (to K500 (K0)).

#### Operation of FX1s, FX1N, FX1NC, FX2N, FX2NC, FX3s, FX3g and FX3gc PLCs.



*1. Due to the response delay at the output, the output may not operate within the short time before the counter's current value is reset from "0" to "1".

#### 7. Timing at which the instruction is executed

The comparison instruction for high-speed counter is executed at the END instruction for the scan in which the comparison instruction is driven.

When the comparison value is changed, the changed comparison instruction also becomes effective at the END instruction for the scan in which the comparison instruction is driven.

## 12.5 DHSCR / High Speed Counter Reset

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

## Outline

This instruction compares the value counted by a high speed counter with a specified value at each count, and immediately resets an external output (Y) when both values become equivalent to each other.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language				
name	operation	form	Structured ladder/FBD	ST				
DHSCR	32 bits	Continuous	DHSCR — EN ENO — — s1 d — — s2	DHSCR(EN,s1,s2,d);				

## 2. Set data

Variable	)	Description	Data type
	EN	Execution condition	Bit
Input variable	<u>(s1</u> )	Data to be compared with the current value of a high-speed counter or word device storing the data to be compared ^{*1}	ANY32
	<u>(s2</u> )	Device of a high speed counter	ANY32
	EN0	Execution state	Bit
Output variable	d	Bit device to be set to ON when the compared two values are equivalent to each other	Bit

## 3. Applicable devices

			Bit	De	vic	es					٧	Vord	Dev	vices						Others					
Operand type		System User Digit Specification			s	System User Special Unit					Index			ons nt	Real Number	Character String	Pointer								
	х	Y	M	т	cs	DD	b KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р		
<u>(s1</u> )							•	•	٠	٠	•	•	•	▲2	▲3		•	•	•	•					
<u>(s2</u> )												•						•							
d		•	•			<b>A</b> '						▲4						•							

▲: Refer to "Cautions".

## Function and operation explanation

#### 1. 32-bit operation (DHSCR)

When the current value of the high speed counter of the device specified by  $\underline{s2}$  becomes the comparison value of the device specified by  $\underline{s1}$  (for example, when the current value changes from "199" to "200" or from "201" to "200" if the comparison value is K200), the bit device specified by  $\underline{d}$  is reset (set to OFF) regardless of the operation cycle. In this instruction, the comparison processing is executed after the counting processing in the high speed counter.



## Operation

When the current value of the high speed counter C255 changes (counts) from "99" to "100" or from "101" to "100", Y010 is reset (output refresh).



## **Related instruction**

The following instructions can be combined with high speed counters.

Instruction	Instruction name
DHSCS	High speed counter set
DHSCR	High speed counter reset
DHSZ	High speed counter zone compare
DHCMOV	High speed counter move
DHSCT	High speed counter compare with data table

## Cautions

## 1. Selection of the counter comparison method

When the DHSCS instruction is used, the maximum frequency and total frequency of the high speed counter are affected.

Refer to the counting operation described below, and select according to the contents of control whether to use this instruction or general-purpose comparison instruction.

- 1) Case to select DHSCR instruction
  - When the output should be given when the counting result becomes equivalent to the comparison value without regard to the scan time of the PLC.
- 2) Cases to select a general-purpose comparison instruction
  - When the required frequency is beyond the counting performance.
  - When counting is regarded as important, but the effect of the scan time can be ignored in operations according to the counting result.
  - When the number of an instruction exceeds the allowable limit. For FX3U and FX3UC PLCs



For FX1s, FX1n, FX1nc, FX2n, FX2nc, FX3s, FX3g and FX3gc PLCs



For FXos, FXo, FXon, FXU and FX2C PLCs



#### 2. Device specification range

Only high speed counters can be specified as  $(s_2)$ . For details, refer to the following manual.

#### → FX Structured Programming Manual [Device & Common]

#### 3. Some restrictions to applicable devices

- ▲1: The FX3U and FX3UC PLCs only are applicable. Not indexed.
- ▲2: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

▲3: The FX3U and FX3UC PLCs only are applicable.

▲4: The same counter of the device specified by <u>s2</u> can be used. (See the program example.)

#### 4. Specifying input and output variables

When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data. A 32-bit counter can be specified directly as it is a 32-bit long device.

Use a global label to specify a device.

5. Precedence of DHSCS, DHSCR and DHSZ instructions to one particular high speed counter  $\rightarrow$  Refer to caution 6 in "Common cautions on using instructions for high speed counter" which is described in Section 12.4.

#### 6. Reset operation by an external terminal

 $\rightarrow$  Refer to caution 5 in "Common cautions on using instructions for high speed counter" which is described in Section 12.4.

#### 7. Other cautions on use

 $\rightarrow$  Refer to caution in "Common cautions on using instructions for high speed counter" which is described in Section 12.4.

## **Program examples**

#### 1. Example of self-reset circuit

When the current value of C255 becomes "400", C255 is immediately reset. Its current value becomes "0", and the output contact is set to OFF.

[Structured ladder/FBD]



[ST]

OUT_C_32(M8000,CC255,K300);

DHSCR(M8000,K400,CN255,CC255);

## 12.6 DHSZ / High Speed Counter Zone Compare

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	×	×	0	×	×

## Outline

This instruction compares the current value of a high speed counter with two values (one zone), and outputs the comparison result to three bit devices (refresh).

### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	Expression in each language						
name		form	Structured ladder/FBD	ST						
DHSZ	32 bits	Continuous	DHSZ — EN ENO — — s1 d — — s2 — s	DHSZ(EN,s1,s2,s,d);						

### 2. Set data

Variable	•	Description	Data type
	EN	Execution condition	Bit
lanut variable	<u>(s1</u> )	Data to be compared with the current value of a high-speed counter or word device storing the data to be compared (Comparison value 1)	ANY32
input variable	<u>s2</u>	Data to be compared with the current value of a high-speed counter or word device storing the data to be compared (Comparison value 2)	ANY32
	S	Device of a high speed counter	ANY32
	ENO	Execution state	Bit
Output variable	d	Head device to which the comparison result is output based on upper and lower comparison values (3 points occupied)	ARRAY [02] OF Bit

#### 3. Applicable devices

Bit Devic					ice	es		Word Devices					Data type											
Operand type		S	6ys	te	m	Us	ser	Dig	jit Spe	cificat	ion	Sy	/ste	em l	User	Special Unit		Ir	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	X	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	E	"0"	Р
<u>(s1</u> )								•	٠	•	•	•	•	•	▲2	▲3		•	٠	•	•			
<u>s2</u>								•	٠	•	•	•	•	•	▲2	▲3		•	٠	•	•			
S													•						٠					
d		•	•				▲1												٠					

▲: Refer to "Cautions".

11

Applied Instructions (Data Operation)

2

## Function and operation explanation

#### 1. 32-bit operation (DHSZ)

The current value of the high speed counter of the device specified by  $\bigcirc$  is compared with two comparison points (comparison value 1 and comparison value 2). Based on the comparison result, "smaller than the lower comparison value", "inside the comparison zone" or "larger than the upper comparison value", one among the devices specified by  $\bigcirc$  is set to ON regardless of the operation cycle.

In this instruction, the comparison processing is executed after the count processing in the high speed counter.



#### **Comparison points**

Make sure that the comparison value 1 and the comparison value 2 have the following relationship:  $(s1) \le (s2)$ 

#### Operation

When the current value of the high speed counter C251 changes (counts) as shown below, the comparison result is output to one of the outputs Y000, Y001 or Y002.

M8000		OUT_C_32					
RUN monitor	— CC251 — K2147483647	CCoil CValue					
		DHSZ	1				ON
		EN ENO	<u> </u>	K1000	> C251	$\rightarrow$	Y000
	K1000 —	s1 d	— Y0	K1000 :	≤ C251 ≤	$\leq$ K2000 $\rightarrow$	Y001
	K2000 —	s2			C251	> K2000 $\rightarrow$	Y002
	C251 —	S					

Comparison pattorn	Current value of C251	C	hange of output contact (	Y)
companson pattern	Current value of C251	Y000	Y001	Y002
	1000> <u>s</u>	ON	OFF	OFF
(s1) > (s)	999→1000	ON→OFF	OFF→ON	OFF
	999←1000	OFF→ON	ON→OFF	OFF
	999→1000	ON→OFF	OFF→ON	OFF
	999←1000	OFF→ON	ON→OFF	OFF
$\underline{s1} \leq \underline{s} \leq \underline{s2}$	1000≤ <u>s</u> ≤2000	OFF	ON	OFF
	2000→2001	OFF	ON→OFF	OFF→ON
	2000←2001	OFF	OFF→ON	ON→OFF
	2000→2001	OFF	ON→OFF	OFF→ON
<u>s</u> < <u>s</u> 2	2000←2001	OFF	OFF→ON	ON→OFF
	<u>s</u> >2000	OFF	OFF	ON

## **Related instruction**

The following instructions can be combined with high speed counters.

Instruction	Instruction name
DHSCS	High speed counter set
DHSCR	High speed counter reset
DHSZ	High speed counter zone compare
DHCMOV	High speed counter move
DHSCT	High speed counter compare with data table

## Cautions

1. Selection of the counter comparison method

When the DHSCS instruction is used, the maximum frequency and total frequency of the high speed counter are affected.Refer to the counting operation described below, and select according to the contents of control whether to use this instruction or general-purpose comparison instruction.

- 1) Case to select DHSCS instruction
  - When the output should be given when the counting result becomes equivalent to the comparison value without regard to the scan time of the PLC.
- 2) Cases to select a general-purpose comparison instruction
  - When the required frequency is beyond the counting performance.
  - When counting is regarded as important, but the effect of the scan time can be ignored in operations according to the counting result.
  - When the number of an instruction exceeds the allowable limit. For FX3U and FX3UC PLCs



For FX2N, FX2NC, FX3S, FX3G and FX3GC PLCs



20

sitioning

## For FXU and FX2C PLCs



#### 2. Device specification range

Only high speed counters can be specified as  $(s_2)$ . For details, refer to the following manual.

#### → FX Structured Programming Manual [Device & Common]

#### 3. Some restrictions to applicable devices

- ▲1: The FX₃U and FX₃UC PLCs only are applicable. Not indexed (V, Z).
- ▲2: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲3: The FX3U and FX3UC PLCs only are applicable.

# 4. Caution on values set in the comparison value 1 s1 and comparison value 2 s2

Make sure that (s1) is smaller than or equivalent to (s2).

#### 5. Relationship between the comparison timing and the result output

1) DHSZ instruction executes comparison and outputs the result only when a counting pulse is input to a high speed counter.

(When (s1) is "1000" and (s2) is "1999", the output (d) is set to ON as soon as the current value of C235 changes from "999" to "1000" or from "1999" to "2000".)

 Because the comparison result cannot be obtained when restoring the power or when the PLC mode switches from STOP to RUN, the result is not output even if the comparison condition is provided.
 → For details, refer to "Program in which comparison result is set to ON when power is turned ON

[ZCP] instruction" that is described later.

6. Precedence of DHSCS, DHSCR and DHSZ instructions to one particular high speed counter → Refer to caution 6 in "Common cautions on using instructions for high speed counter" which is

described in Section 12.4.

7. Reset operation by an external terminal

 $\rightarrow$  Refer to caution 5 in "Common cautions on using instructions for high speed counter" which is described in Section 12.4.

#### 8. Number of occupied devices

- 1) The comparison value occupies two devices from (s1) or (s2) respectively.
- 2) The output occupies three devices from d.

#### 9. When an output (Y) is specified in (D) (FX3G/FX3GC/FX3U/FX3UC)

When  $Y \square \square 6$  or  $Y \square \square 7$  is specified as an output (Y), the refresh timing of the three outputs (Y) occupied by the DHSZ instruction is different for each output.

To make the refresh timing of three points simultaneous, specify  $Y \square \square 0$  to  $Y \square \square 5$ .

Example: When Y006 is specified as an output (Y), the refresh timing is different between Y006, Y007 and Y010.

# 12.6.1 Program in which comparison result is set to ON when power is turned ON [ZCP] instruction

DHSZ instruction outputs the comparison result only when a counting pulse is input. Even if the current value of C235 is "0", Y010 remains OFF at the time of startup.

For initializing Y010, compare the current value of C235 with K1000 and K1200 and drive Y010 by DZCPP instruction (for general zone comparison) as pulse operation only at the time of startup. Refer to the program example shown below.

## Explanation of operation

The outputs Y010 to Y012 are as shown below.

	Y010 = ON	Y011 = ON	Y012 = ON
0	1,0	00 1,2	00
			alue of C235

## **Program examples**

[Structured ladder/FBD]



[ST]

RST(NOT X010,CC235);

ZRST(NOT X010,Y010,Y012);

OUT_C_32(M8000,CC235,K999...);

DZCPP(X010,K1000,K1200,CN235,Y010);

DHSZ(X010,K1000,K1200,CN235,Y010);

Y010 to Y012 are reset.

Immediately after start, co	omparison is executed only once.
K1000 > CN235	:Y010 ON
K1000 ≤ CN235 ≤ K1200	:Y011 ON
K1200 < CN235	:Y012 ON

sitioning

## **Timing chart**

In the part 1) in the timing chart, Y010 remains OFF if the current value of a high speed counter (C235 in the example below) is "0" when restoring the power.

- 1) For initializing Y010, the current value of C235 is compared with K1000 and K1200, and Y010 is driven using the DZCPP instruction (for general zone comparison) as pulse operation only in RUN.
- 2) The comparison result in Y010 is latched until an input pulse is input and the comparison output is driven by the DHSZ instruction.
- 3) According to the current value of the counter, the DHSZ instruction drives the output (A), (B) or (C).



## 12.6.2 Table high speed comparison mode (M8130)

This section explains the table high speed comparison mode (high speed pattern output) of the DHSZ instruction.

When two or more outputs should be activated at one time, use the DHSCT instruction which can change up to 16 outputs.

(Valid for the FXU PLC, V3.07 or later)

#### 1. Set data

Operand type	Description	Data type
<u>(s1</u> )	Head word device number storing the data table (only data register D)	ANY32
(s2)	Number of lines in the table (only K or H) K1 to K128 or H1 to H80	ANY32
S	Device number of a high speed counter	ANY32
d	Special auxiliary relay for declaring the table high speed comparison mode	Bit

### Function and operation explanation

#### 1. 32-bit operation (DHSZ)

When the special auxiliary relay M8130 for declaring the table high speed comparison mode is specified as  $\bigcirc$  in the DHSZ instruction, the special function shown below is provided.



#### Comparison table

Comparison data (32 bits)	Output (Y) number	SET/RST	Table counter (D8130)
<u>(s1)</u> +1, <u>(s1)</u>	<u>(s1)</u> +2	<u>(s1</u> )+3	0 ↓
<u>(s1)</u> +5, <u>(s1)</u> +4	<u>s1</u> +6	<u>(s1)</u> +7	1 ↓
<u>(s1)</u> +9, <u>(s1)</u> +8	<u>(s1</u> )+10	<u>(s1</u> )+11	2 ↓
to	to	to	to
(s1)+5, (s1)+4	<u>s1</u> +6	<u>(s1</u> )+7	(s2) -1 ↓ Repeated from "0"

1) Specify the head number for the comparison table as  $\underline{s1}$ Because one line in the comparison table uses four devices,  $\underline{s2} \times 4$  devices are occupied from  $\underline{s1}$ .

- Specify the number of lines in the comparison table as <u>s</u>.
   The created table starts from the head register <u>s</u>, and has the number of lines specified in <u>s</u>.
- Comparison data Make sure that the comparison data is 32 bits.
- 4) Output (Y) number
   Specify each digit of the (Y) number in hexadecimal form.
   Example: When specifying Y010, specify "H10".
   When Specifying Y020, specify "H20".
- 5) Specification of set and reset

These set and reset are directly controlled as interrupt.

	Contents of setting
Set (ON)	K1/H1
Reset (OFF)	K0/H0

11

20

ning

## 2. Operation




#### **Comparison table**

Comparison data	Output (Y) number	SET/RST	Table counter
D201, D200	D 202	D 203	0
K123	H10	K1	↓
D205, D204	D 206	D 207	1
K234	H10	K0	↓
D209, D208	D 210	D 211	2
K345	H11	K1	↓
D213, D212	D 214	D 215	3
K456	H11	K0	↓
D217, D216 K567	D 218 H11	D 219 K1	4 ↓ Repeated from "0"

- 1) When this instruction is executed, the top table in the data table is set as the comparison target data.
- When the current value of the high speed counter C251 is equivalent to the comparison target data table, the output (Y) number specified in the comparison data table is set or reset.



This output processing is directly executed without regard to completion of output refresh by END instruction.

- 3) "1" is added to the current value of the table counter D8130.
- 4) The comparison target data table is transferred to the next table.
- 5) The step 2) and 3) are repeated until the current value of the table counter D8130 becomes "4". When the current value becomes "4", the program execution returns to the step 1), and the table counter D8130 is reset to "0". At this time, the complete flag M8131 turns ON.
- 6) When the command contact is set to OFF, execution of the instruction is stopped and the table counter D8130 is reset to "0".

11

sitioning

# Cautions

# 1. Limitation in the number of DHSZ instruction

This instruction can be programmed only once in a program. With regard to the DHSCS, DHSCR, DHSZ and DHSCT instructions used for other purposes, a limited number of instructions including the DHSZ instruction can be driven at one time.

# 2. When the command input is set to OFF in the middle of execution

Execution of the instruction is aborted, and the table counter D8130 is reset to K0. However, outputs which have been set or reset remain in the current status.

## 3. Output start timing

After the DHSZ instruction is first executed, creation of the table is completed by END instruction. After that, the DHSZ instruction becomes valid.

Accordingly, the output is activated from the second scan.

## 4. Current value of a high speed counter

Be sure to execute the DHSZ instruction from a point where the current value of the high speed counter (regarded as the operation target) is smaller than the value in the first line in the comparison table.

# 12.6.3 Frequency control mode (DHSZ, DPLSY) (M8132)

When the special auxiliary relay M8132 for declaring the frequency control mode is specified as  $\bigcirc$  in the DHSZ instruction, the special function shown below is provided if DPLSY instruction is combined. At this time, only a data register D can be specified as  $\bigcirc$ , and a constant K or H can be specified as  $\bigcirc$ .

The available range is limited to "1  $\leq$  K, H  $\leq$  128".

A high speed counter can be specified as s.

This function is different from the zone comparison described above.

PLSY instruction is as shown on the next page, and only the pulse output can be changed by users. (Valid for the FXU PLC, V3.07 or later)

#### 1. Control example

#### Example of table configuration and data setting

Comparison data	Frequency	Table counter (D8131)	
D 301, D 300	D 302, D 303	0	Head device (32 bits) specified
K 20	K300	↓	
D 305, D 304	D 306, D 307	1	$-$ as $(\underline{s1})$
K600	K500	↓	
D 309, D 308	D 310, D 311	2	Number of lines specified as <u>s</u>
K700	K200	↓	
D 313, D 312	D 314, D 315	3	-
K800	K100	↓	
D 317, D 316	D 318, D 319	4	
K 0	K 0	↓	

20

ed Instructions itioning



#### **Output pulse characteristics**



- 1) Write prescribed data in advance to data registers constructing the table as shown in this program example.
- 2) The output frequency of the DPLSY instruction remains in the value (D303, D302) until the current value of a high speed counter specified in <u>s</u> becomes equivalent to (D301, D300). (D302 specifies low-order 16 bits. D303 specifies high-order 16 bits, but is always "0".)
- 3) The operation in the second line is started after that, and then the operation in each line is executed in turn.
- 4) When the operation in the last line is completed, the complete flag M8133 turns ON. The program execution returns to the first line, and the operation is repeated.
- 5) For stopping the operation in the last line, set the frequency in the last table to K0.
- 6) When the command input is set to OFF, the pulse output turns OFF and the table counter D8131 is reset.
- After DHSZ instruction is first executed, creation of the table is completed at the END instruction. The DHSZ instruction becomes valid after that.
- Accordingly, the contact of PLS M10 is used so that the DPLSY instruction is executed from the second scan after the command input has been set to ON.

Data can be written to the table in a program as shown in this example or directly using keys in peripheral equipment.

- 1) M8132: This is the special auxiliary relay for declaring the frequency control mode.
- D8132: In the frequency control mode, the frequency set in the table is received by D8132 sequentially according to the table counter D8131 count.
- D8134 (low-order), D8135 (high-order): In the frequency control mode, the comparison data in the table is received sequentially according to the table counter count.

#### Cautions

- 1) DHSZ instruction can be used only once.
- 2) With regard to the DHSCS, DHSCR, DHSZ and DHSCT instructions for other purposes, a limited number of instructions including the DHSZ instruction can be driven at one time.
- Because the table is created when the END instruction is executed, it is necessary to delay execution of the DPLSY instruction until creation of the table is completed.
- 4) Do not change the data table while the DHSZ instruction is driven.
- 5) In the frequency control mode, simultaneous output to Y000 to Y001 is not permitted.

Applied Instructions (Data Operation) 13 nstructions 14 ₽ ₽ ₽ ₽ olied Instructi lice l/Os 15 Applied Instructions (External Device (optional device)) 16 Applied Instructions (External Device) 17 Applied Instructions (Data Transfer 2) 18 Applied Instructions (Floating Point) 19 Applied (Data C a Operation 2) 20 nstructions Built

11

# 12.7 SPD / Speed Detection

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
Δ	Δ	0	Δ	Δ	Δ	Δ	×	×

# Outline

This instruction counts the input pulse for a specified period of time as interrupt input. The function of this instruction varies depending on the version.

## 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ch language
name	Operation	form	Structured ladder/FBD	ST
SPD	16 bits	Continuous	SPD — EN ENO — s1 d — s2	SPD(EN,s1,s2,d);
DSPD	32 bits	Continuous	DSPD — EN ENO — s1 d — s2	DSPD(EN,s1,s2,d);

# 2. Set data

Variable	<b>`</b>	Description	Data type					
Vanabie	•	Description	16-bit operation	32-bit operation				
	EN	Execution condition	Bit					
Input variable	<u>(s1)</u>	Device of pulse input (X)	Bit					
	<u>(s2</u> )	Time data (ms) or word device storing the data	ANY16	ANY32				
	EN0	Execution state	Bit					
Output variable	d	Head word device storing the pulse density data	ARRAY [02] OF ANY16	ARRAY [02] OF ANY32				

#### 3. Applicable devices

		l	Bit	De	vio	es						W	ord	De	vice	s					Others						
Operand type		s	iys	ten	n U	lse	r	Dig	Digit Specification			System Special User Unit				In	Idex	Cons tant		Real Number	Character String	Pointer					
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	н	Е	"0"	Р			
<u>(s1</u> )	▲1																		•								
<u>s2</u>								•	•	•	•	•	•	•	▲2	▲3	•	•	•	•	•						
d												•	•	•	▲2		•	•	•								

▲: Refer to "Cautions".

11

Applied Instructions (Data Operation)

12

AppliedInstructions (High Speed Processing)

13

blied

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

a Operation 2)

20

nstructions Built

# Function and operation explanation

# 1. 16-bit operation (SPD)

The input pulse specified by s1 is counted only for the period of "time specified by s2 multiplied by 1 ms." The measured value is stored in  $\bigcirc$ , the current value is stored in  $\bigcirc$ +1, and the remaining time is stored in ___+2 (ms).

By repeating this operation, the measured value d will store the pulse density (which is proportional to the rotation speed).



Timing chart 1)



The command contact is set to ON.

d+1 counts "OFF to ON" operation of s1  $(\underline{s2})$  ms later, the counting result is stored to  $(\underline{d})$ . Accompanied by this operation, d+1 is reset, and then counting of the "OFF to ON" operation of s1 is started again.

(d) +2 is used to measure the remaining time.

2) The measured value d is in proportion to the number of rotations as shown below.



# 2. 32-bit operation (DSPD) [FX3GC PLCs Ver. 1.40 or later, FX3UC PLCs Ver. 2.20 or later, and FX3S/FX3G/FX3U PLCs]

The input pulse specified by  $\underline{s1}$  is counted only for the period of "time specified by  $\underline{s2}$  multiplied by 1 ms." The measured value is stored in  $[\underline{d}+1, \underline{d}]$ , the current value is stored in  $[\underline{d}+3, \underline{d}+2]$ , and the remaining time is stored in  $[\underline{d}+5, \underline{d}+4]$  (ms).

By repeating this operation, the measured value [d+1, d] will store the pulse density (which is proportional to the rotation speed).



2) The value [d+1, d] is in proportion to the number of rotations as shown below.



# Cautions

## 1. Input specifications of the input specified by s1

- s1 can specify the following ranges. FX3G, FX3GC, FX3U and FX3UC PLCs: X000 to X007 FX1s, FX1N, FX1NC, FX2N, FX2NC and FX3S PLCs: X000 to X005 FXU and FX2C PLCs: X000 to X005
- 2) An input device X000 to X007 (X000 to X005) specified by <a>S</a>D cannot overlap the following functions or instructions:
  - High speed counter DSZR
  - Input interrupt DVIT
  - Pulse catch ZRN
  - Pulse width measurement
- 3) For one input, this instruction can be used only once.
- 4) The maximum input frequency is shown below:

Used input number	EX3UC PLC	FX3U	PLC
osed input number	1,2001,50	Main unit	FX3U-4HSX-ADP
X000 to X005	100kHz*1	100kHz*1	200kHz
X006 to X007	10kHz	10kHz	200012

- *1. When receiving pulses within the response frequency range of 50k to 100 kHz, perform the following actions:
  - Make sure that the wiring length is 5 m or less.
  - Connect a bleeder resistor of 1.5 kΩ (1 W or more) to the input terminal, and make sure that the load current in the open collector transistor output of the external equipment is 20 mA or more.

Used input number	FX3G and FX3GC PLCs
X000, X001, X003, X004	60kHz
X002, X005, X006, X007	10kHz
Used input number	FX1S, FX1N, FX1NC, FX2N, FX2NC and FX3S PLCs
X000, X001	60kHz
X002, X003, X004, X005	10kHz
Used input number	FXU and FX2C PLCs
X000, X002, X003	10kHz
X001, X004, X005	7kHz

#### 2. Occupied devices

1) When using the 16-bit operation

Three devices are occupied from a device specified in  $(\underline{d})$ .^{*2}

- 2) When using the 32-bit operation
  - Six devices are occupied from a device specified in  $\bigcirc$ .^{*2}
- *2. The value is updated by interrupt processing from the CPU, not every scan time (operation cycle) of the PLC.

## 3. Restrictions to devices

- ▲1: X000 to X007 (X005) can be specified.
- Refer to item 1 of "Cautions".
- ▲2: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲3: The FX3U and FX3UC PLCs only are applicable.

#### 4. 32-bit operation instruction

Only FX3GC PLCs Ver. 1.40 or later, FX3UC PLCs Ver. 2.20 or later, and FX3S/FX3G/FX3U PLCs support the 32-bit operation instruction.

# 5. When the value of the word device specified by s2 is changed while the SPD instruction is being executed

When the value of the word device is changed while the SPD instruction is being executed, the operation varies depending on the PLC model.

FX3U/FX3UC:

The changed value of the word device is reflected on the operation at every scan time (operation cycle). FX3s/FX3G/FX3GC:

The changed value of the word device is not reflected on the operation at every scan time (operation

cycle), and the PLC operates using the value specified when execution of the SPD instruction is started. The PLC operates using the changed value after the command input of the SPD instruction is turned OFF once and turned ON again.

# 12.8 PLSY / Pulse Y Output

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

# Outline

This instruction generates a pulse signal.

## 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	oporation	form	Structured ladder/FBD	ST
PLSY	16 bits	Continuous	PLSY 	PLSY(EN, s1, s2, d);
DPLSY	32 bits	Continuous	DPLSY EN ENO s1 d s2	DPLSY(EN, s1, s2, d);

# 2. Set data

Variable	<b>`</b>	Description	Data	i type
Variable	•	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input variable	<u>(s1</u> )	Frequency data (Hz) or the word device storing the data	ANY16	ANY32
	<u>(s2</u> )	Pulse quantity data or the word device storing the data	ANY16	ANY32
Output variable	EN0	Execution state	Bit	
	b	Bit device (Y) from which pulses are output	Bit	

# 3. Applicable devices

			Bit	De	vic	es						Wo	ord	De	vice	S					Others					
Operand type		System User				r	Digit Specification				System User			Special Unit	Index			Cons tant		Real Number	Character String	Pointer				
	Х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U 🗆 \G 🗆	۷	z	Modifier	κ	Η	Е	"0"	Р		
<u>(s1</u> )								•	٠	•	•	•	•	•	▲2	▲3	•	•	•	•	•					
<u>(s2</u> )								•	٠	•	•	•	•	•	▲2	▲3	•	•	•	•	•					
d		<b>▲</b> 1																								

▲: Refer to "Cautions".

# Function and operation explanation

#### 1. 16-bit operation (PLSY)

A pulse train of frequency specified by (s) is output in the quantity specified by (s) from the output (Y) specified by (d).





For setting  $(\underline{s1})$ ,  $(\underline{s2})$  and  $(\underline{d})$ , refer to the "cautions".

# 2. 32-bit operation (DPLSY)

A pulse train of frequency specified by <u>s</u> is output in the quantity specified by <u>s</u> from the output (Y) specified by <u>d</u>.



For setting  $(\underline{s1})$ ,  $(\underline{s2})$  and  $(\underline{d})$ , refer to the "cautions".

# **Related devices**

## 1. Instruction execution complete flag

The instruction execution complete flag M8029 used for PLSY instruction can be used also for other instructions. When using other instructions, setting the M8029 flag to ON or OFF, or using two or more PLSY instructions, be sure to use each M8029 flag just after an instruction to be monitored. For the method of using the instruction execution complete flag, refer to the following manual.

# → FX Structured Programming Manual [Device & Common]







17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

nstructions

11

Applied Instructions (Data Operation)

12

#### 2. Monitoring the current number of generated pulses

The number of pulses output from Y000 or Y001 is stored in the following special data resistors.

Device		Description	Contents of data			
High order	Low order	Description	Contents of data			
D8141 ^{*1}	D8140 ^{*1}	Accumulated number of pulses output from Y000	Accumulated number of pulses output from Y000 by PLSY and PLSR instructions			
D8143 ^{*1}	D8142 ^{*1}	Accumulated number of pulses output from Y001	Accumulated number of pulses output from Y001 by PLSY and PLSR instructions			
D8137 ^{*2}	D8136 ^{*2}	Total accumulated number of pulses output from Y000 and Y001	Total accumulated number of pulses output from Y000 and Y001 by PLSY and PLSR instructions.			

*1. The FXos, FXo, FXoN, FXU or FX2C PLC is not compatible with this function.

*2. The FX0s, FX0 or FX0N PLC is not compatible with this function. The FXU PLC of V3.07 or later is compatible.

The contents of each data register can be cleared using the following program.

1	Command input	DMOV	]
		EN ENC	
	K0—	s c	Low order devices in the table above

#### 3. How to stop the pulse output

- When the command input is set to OFF, the pulse generation is immediately stopped. When the command input is set to ON again, pulse generation operation restarts from the beginning.
- When the special auxiliary relays (M) shown below are set to ON, the pulse output is stopped.

	Device	Description	
FX3U, FX3UC	X3UC FX3S, FX3G, FX3GC FX1S, FX1N, FX1NC		Description
M8349	M8145, M8349	M8145	Immediately stops pulse output from Y000.
M8359	M8146, M8359	M8146	Immediately stops pulse output from Y001.

To restart pulse output, set the device corresponding to the output signal to OFF, and then drive the pulse output instruction again.

## Cautions about writing during RUN

Avoid writing during RUN after either of the following operations in a circuit block including the pulse output instruction or positioning instruction.

- · Changing a program for a circuit block including a corresponding instruction.
- Changing a program for a circuit block just before or after a circuit block including a corresponding instruction.
- Deleting or adding a circuit block just before or after a circuit block including a corresponding instruction.

This caution about the above operations is applicable to the following PLCs and instructions.

FX1S, FX1N and FX1NC PLCs	: PLSY, DPLSY, PWM, PLSR, DPLSR, ZRN, DZRN, PLSV,
	DPLSV, DRVI, DDRVI, DRVA and DDRVA
FX2N and FX2NC PLCs	: PLSY, DPLSY, PWM, PLSR and DPLSR
FX3S, FX3G, FX3GC, FX3U and FX3U	c PLCs: DSZR, DVIT ^{*1} , DDVIT ^{*1} , DTBL ^{*2} , ZRN, DZRN, PLSV, DPLSV,
	DRVI DDRVI DRVA and DDRVA

- *1. Not available for the FX3S, FX3G or FX3GC PLC.
- *2. Not available for the FX3S PLC.

# Cautions

1. When a word device is specified as s1 or s2

When the value of the word device is changed while the instruction is executed, the following operation results.

- When the data in  $\underline{\mathrm{st}}$  is changed, the output frequency changes accordingly.
- When the data in <u>s</u> is changed, the change (new value) becomes valid the next time the instruction is driven.

11

Applied Instructions (Data Operation)

12

uctions

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

dInstructions

13

#### 2. Frequency s1

When using transistor outputs in the main unit, set the output frequency specified by  $\underline{s1}$  as follows. Do not set the frequency to "0".

•	FX3U and FX3UC PLCs	<ul> <li>16-bit instruction→1 to 32,767Hz</li> <li>32-bit instruction→1 to 200,000Hz (When using special high speed output adapter)</li> <li>→1 to 100,000Hz (When using main unit)</li> </ul>
•	FX3S, FX3G and FX3GC PLCs	: 16-bit instruction $\rightarrow$ 1 to 32,767Hz 32-bit instruction $\rightarrow$ 1 to 100,000Hz
•	FX2N and FX2NC PLCs	: 2 to 20,000Hz
•	FX1NC PLC	: 1 to 10,000Hz
•	FX1s and FX1N PLCs	: 16-bit instruction $\rightarrow$ 1 to 32,767Hz 32-bit instruction $\rightarrow$ 1 to 100,000Hz
•	FX0S, FX0 and FX0N PLCs	: 10 to 2,000Hz
•	FXU and FX2C PLCs	: 1 to 1,000Hz

#### 3. Pulse quantity S2

The pulse quantity can be set in the range from 1 to 32,767 (PLS) for 16-bit instructions and from 1 to 2,147,483,647 (PLS) for 32-bit instructions. If set to zero, pulse generates infinitely.

#### 4. Pulse output

- Only a transistor output on the main unit or the following special high speed output adapters^{*1} can be specified in <u>d</u>.
- FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs : Y000, Y001
- FX1S, FX1N, FX1NC, FX2N and FX2NC PLCs : Y000, Y001
- FX0S, FX0 and FX0N PLCs
   Y000
- FXU and FX2C PLCs : Valid for all Y

When using the PLSY instruction with a relay output type or triac output type FX_{3U} PLC, a special highspeed output adapter is required.

- *1. Special high speed output adapters can be connected only to the FX_{3U} PLC.
- 2) The duty cycle of the pulse ON/OFF time is 50 % inside the PLC.However, 50 % may not be output depending on the frequency due to the effect of the output circuit.
- 3) The pulse output is controlled by the dedicated hardware not affected by the sequence program (operation cycle).
- 4) If the command input is set to OFF during continuous pulse output, the output from the device specified by <u>d</u> turns OFF.

#### 5. Restrictions to target devices

- ▲1: Refer to item 4 of "Cautions".
- ▲2: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲3: The FX3U and FX3UC PLCs only are applicable.

(Special high speed output adapters can be connected only to the FX3U PLC.)

## 6. Handling of pulse output terminals in the main units

The outputs Y000 and Y001 are the high speed response type.

When using a pulse output instruction or positioning instruction, adjust the load current of the open collector transistor output.

When the load is smaller, connect a dummy resistor in parallel to the outside of a used output terminal (Y000 or Y001) as shown in the circuit diagram below so that the specified current shown below flows in the output transistor.

- For FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs Operating voltage range : DC5 to 24V Operating current range : 10 to 160 mA Output frequency : 100 kHz or less
- 2) For FX2N and FX2NC PLCs Operating voltage range : DC5V Operating current range : 0.1A Output frequency : 20 kHz or less
- 3) For FX1NC PLC Operating voltage range : DC5V Operating current range : 10 to 100 mA Output frequency : 10 kHz or less



Operating voltage range	: DC12 to 24V
Operating current range	: 0.1A
Output frequency	: 10 kHz or less

Operating voltage range : DC12 to 24V Operating current range : 50 to 100 mA Output frequency : 10 kHz or less

 For FX1s and FX1N PLCs Even without connecting a dummy resistor, a pulse output of 100 kHz or less can be generated under 5 to 24 VDC (10 to 100 mA).

5) For FX0s, FX0, FX0N, FXU and FX2C PLCs Have a current of about 100 mA flow for the FX2C PLC and a current of about 200 mA flow for the FX0s, FX0, FX0N and FXU PLCs and extension.

## 7. Cautions on using special high speed output adapters (FX3U PLC)

- 1) Outputs of special high speed output adapters work as differential line drivers.
- Set the pulse output type setting switch in a special high speed output adapter to the "pulse train + direction" (PLS - DIR) side.

If the switch is set to the "forward rotation pulse train - reverse rotation pulse train" (FP - RP) side, normal operation is disabled. The pulse output destination changes depending on the PLC output status as shown in the table below.

Pulse output destination	Output affecting operation	Operation
<u>d</u> = Y000	Y004	While Y004 is ON, pulses are output from Y000 in the high speed output adapter. While Y004 is OFF, pulses are output from Y004 in the high speed output adapter.
<u>d</u> = Y001	Y005	While Y005 is ON, pulses are output from Y001 in the high speed output adapter. While Y005 is OFF, pulses are output from Y005 in the high speed output adapter.

- 3) Set the pulse output type setting switch while the PLC is in STOP or while the power is OFF. Do not manipulate the pulse output type setting switch while pulses are being output.
- 4) When special high speed output adapters are connected, the same output numbers in the main unit are assigned as shown in the table below.

Only wire the appropriate terminals. (Use either one only. Do not connect to the other terminal.) Outputs of special high speed output adapters and main units operate as follows.

Assignment	of output numbers	in special	high speed	output adap	oters

Otative of autout times		Setting name in	Output number			
setting switch	Signal name	each positioning	1st unit		2nd unit	
		instruction	1st axis	2nd axis	3rd axis	4th axis
"ED DD" side	Forward rotation pulse train (FP)	Pulse output destina- tion	Y000	Y001	Y002	Y003
	Reverse rotation pulse train (RP)	Rotation direction signal	Y004	Y005	Y006	Y007
"PI S - NIR" side	Pulse train	Pulse output destina- tion	Y000	Y001	Y002	Y003
	Direction	Rotation direction signal	Y004	Y005	Y006	Y007

#### **Output operation**

	Output operation
Relay output type or triac output type main unit	While instruction is activated, relevant output is ON. (LED is also ON.) Use special high speed output adapter.
Special high speed output adapter	Operated (LED operated.) Set the output frequency to "200 kHz" or less.
Transistor output type main unit	Operated (LED is also ON.) Set the output frequency to "100 kHz" or less.

#### 8. Others

1) When using the same output relay (Y000 or Y001) in several instructions.

While a pulse output monitor (BUSY/READY) flag is ON a pulse output instruction and positioning instruction for the same output relay cannot be executed.

While a pulse output monitor flag is ON even after the instruction drive contact is set to OFF, a pulse output instruction or positioning instruction for the same output relay cannot be executed.

Before executing such an instruction, wait until the pulse output monitor flag turns OFF and one or more operation cycles pass.

(Only the FX1s, FX1N, FX1NC, FX3s, FX3G, FX3GC, FX3U and FX3UC PLCs are compatible with the pulse output monitor flags.)

Pulse output destination	Pulse output monitor flag				
device	FX3U, FX3UC	FX3S, FX3G, FX3GC	FX1N, FX1NC, FX1S		
Y000	M8340	M8340, M8147	M8147		
Y001	M8350	M8350, M8148	M8148		

2) "Frequency control mode" in which DHSZ and DPLSY instructions are combined can be used only once in a program.

# Program examples (When outputting pulses without any limitation)

When the device specified by (s2) is set to K0, pulses are output without any limitation.







[ST]

DPLSY(X000,K1000,K0,Y000);

#### 12.9 **PWM / Pulse Width Modulation**

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

# Outline

This instruction outputs pulses with a specified period and ON duration.

## 1. Format and operation, execution form

Instruction	Operation	Execution form	Expression in each language								
name	operation		Structured ladder/FBD	ST							
PWM	16 bits	Continuous	PWM EN ENO 	PWM(EN, s1, s2, d);							

# 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	<u>s1</u>	Pulse width (ms) data or word device storing the data	ANY16
	<u>(s2</u> )	Period data (ms) or word device storing the data	ANY16
Output	ENO	Execution state	Bit
variable	d	Device (Y) from which pulses are to be output	Bit

## 3. Applicable devices

			Bit	De	vic	es						N	/or	d b	evice	s						C	others	
Operand type		;	Sys	ten	n U	ser	•	Dig	it Spe	cifica	tion	Sy	ste	m	User	Special Unit		Ir	Idex	Co ta	ns nt	Real Number	Character String	Pointer
	X	Y	м	т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	Κ	н	Е	"0"	Р
<u>(s1</u> )								٠	•	•	•	•	•	•	▲2	▲3	•	•	•	•	•			
<u>(s2</u> )								•	•	•	•	•	•	•	▲2	▲3	•	•	•	•	•			
d		<b>▲</b> 1																	•					

▲: Refer to "Cautions".

# Function and operation explanation

Specify the pulse width "t" in s1.

Specify the period "T0" in s2

Allowable setting range: 0 to 32,767ms

Allowable setting range: 1 to 32,767ms

Allowable setting range: Refer to "Cautions".

# 1. 16-bit operation (PWM)

٠

Pulses whose ON pulse width (ms) is specified by s1 are output in periods (ms) specified by s2 to the device specified by (s1)



Specify the output (Y) number from which pulses are to be output in d.



11

Applied Instructions (Data Operation)

2

1SU

uctions

13

20

sitioning

nstructions

## Cautions about writing during RUN

Avoid writing during RUN after either of the following operations in a circuit block including the pulse output instruction or positioning instruction.

- Changing a program for a circuit block including a corresponding instruction.
- Changing a program for a circuit block just before or after a circuit block including a corresponding instruction.
- Deleting or adding a circuit block just before or after a circuit block including a corresponding instruction.

This caution about the above operations is applicable to the following PLCs and instructions.FX1s, FX1N and FX1NC PLCs: PLSY, DPLSY, PWM, PLSR, DPLSR, ZRN, DZRN, PLSV,<br/>DPLSV, DRVI, DDRVI, DRVA and DDRVA

FX2N and FX2NC PLCs : PLSY, DPLSY, PWM, PLSR and DPLSR

FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs: DSZR, DVIT^{*1}, DDVIT^{*1}, DTBL^{*2}, ZRN, DZRN, PLSV, DPLSV, DRVI, DDRVI, DDRVI, DDRVA

- *1. Not available for the FX3S, FX3G or FX3GC PLC.
- *2. Not available for the FX3S PLC.

## Cautions

#### 1. Setting the pulse width and period

Make sure that the pulse width  $\underline{s1}$  and period  $\underline{s2}$  satisfy the relationship " $\underline{s1} \leq \underline{s2}$ ".

#### 2. Pulse output

- 1) Only the following outputs can be specified in <u>d</u> according to the system configuration.
  - For FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs
    - When using special high speed output adapters^{*1}: Y000, Y001, Y002^{*2}, Y003^{*2}
    - When using transistor outputs on the main unit (that is, when not using special high speed output adapters): Y000, Y001, Y002^{*3}
    - *1. Special high speed output adapters can be connected only to the FX_{3U} PLC. When using the PWM instruction with a relay output type or triac output type FX_{3U} PLC, a special highspeed output adapter is required.
    - *2. When specifying Y002 or Y003 on a special high speed output adapter, a second special high speed output adapter is required.
    - *3. "Y002 is not available in FX3S, FX3G PLC (14-point and 24-point type) and FX3GC PLC.
  - For FX1s, FX1N, FX1NC, FX2N and FX2NC PLCs Only Y000 or Y001 is valid (transistor output).
  - For FXos, FXo and FXoN PLCs Only Y001 is valid (transistor output).
  - For FXU and FX2C PLCs All Ys are valid (transistor output).
- 2) The pulse output is controlled by interrupt processing not affected by the sequence program (operation cycle).
- 3) If the command input is set to OFF, the output from the device specified by <u>d</u> turns OFF.
- While a pulse output monitor (BUSY/READY) flag is ON, a pulse output or positioning instruction for the same output relay cannot be executed.

While a pulse output monitor flag is ON even after the instruction derive contact is set to OFF, a pulse output or positioning instruction for the same output relay cannot be executed.

Before executing a pulse output or positioning instruction, wait until the pulse output monitor flag turns OFF and one or more operation cycles pass.

(Only the FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs are compatible with the pulse output monitor flags.)

Pulse output destination device	Pulse output monitor flag
Y000	M8340
Y001	M8350
Y002	M8360
Y003	M8370

11

Applied Instructions (Data Operation)

12

AppliedInstructions (High Speed Processing)

13

Applied Instru (Handy Instruction)

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

blied Instructions

## 3. Restrictions to target devices

- ▲1: Refer to item 2 of "Cautions".
- ▲2: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲3: The FX3U and FX3UC PLCs only are applicable.

## 4. Cautions on using special high speed output adapters

 $\rightarrow$  Refer to item in section 12.9 "Cautions".

# **Program examples**

When the contents of D10 are changed in the range from "0" to "50" in the program example shown below, the average output from Y000 will be in the range from 0 to 100%.

When the contents of D10 exceed "50", it becomes an error.

In this program example, the FX_{3U} series main unit (sink output) is used. For wiring details, refer to the manual of the PLC used.

[Structured ladder/FBD]



[ST]

PWM(X0,D10,K50,Y000);

#### Example of smoothing circuit



R>>P

 $\tau = R(k\Omega) \times C(\mu F) = 470 \text{ms} >> To$ 

The time considerably larger than the pulse cycle T0.

The ripple value " $\Delta e$ " in the mean output current "e" is approximately " $\frac{\Delta e}{e} \leq \frac{To}{\tau}$  ".

# 12.10 PLSR / Acceleration/Deceleration Setup

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	×	×	×

# Outline

This pulse output instruction has the acceleration/deceleration function.

## 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
PLSR	16 bits	Continuous	PLSR — EN ENO — s1 d — s2 — s3	PLSR(EN, s1, s2, s3, d);
DPLSR	32 bits	Continuous	DPLSR — EN ENO — s1 d — s2 — s3	DPLSR(EN, s1, s2, s3, d);

# 2. Set data

			Data type				
v	ariable	Description	16-bit operation	32-bit operation			
	EN	Execution condition	Bit				
	<u>(s1)</u>	Maximum frequency data (Hz) or the word device storing the data	ANY16	ANY32			
Input variable	<u>(s2</u> )	Total number of output pulses (PLS) or word device storing the data	ANY16	ANY32			
	<u>(s3)</u>	Acceleration/deceleration time (ms) data or word device storing the data	ANY16	ANY32			
Output	ENO	Execution state	Bit				
variable	d	Device (Y) from which pulses are to be output	Bit				

# 3. Applicable devices

		E	Bit	De	vic	es						W	oro	d D	evic	es						C	others	
Operand type		S	yst	en	٦U	se	r	Dig	it Spe	cifica	tion		Sy L	/ste Jse	em r	Special Unit		Ir	ndex	Co ta	ons ant	Real Number	Character String	Pointer
	х	Υ	м	Т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	н	E	"0"	Р
<u>(s1</u> )								٠	•	•	•	•	•	•	▲2	▲3	•	•	•	•	•			
<u>(s2</u> )								٠	•	٠	٠	•	•	•	▲2	▲3	•	•	•	•	•			
<u>(s3)</u>								٠	٠	٠	٠	•	•	•	▲2	▲3	•	•	•	•	•			
d		<b>▲</b> 1																	•					

▲: Refer to "Cautions".

# Function and operation explanation

#### 1. 16-bit operation (PLSR)

Pulses are output from output (Y) specified by  $\bigcirc$  by the number of output pulses specified by  $\bigcirc$  with acceleration/deceleration to the maximum frequency specified by  $\bigcirc$  over the time (ms) specified by  $\bigcirc$ .



(<u>s3</u>) Acceleration/ deceleration time

## 2. 32-bit operation (DPLSR)

Pulses are output from output (Y) specified by  $\bigcirc$  by the number of output pulses specified by  $\bigcirc$  with acceleration/deceleration to the maximum frequency specified by  $\bigcirc$  over the time (ms) specified by  $\bigcirc$ .



Refer to "Cautions" for setting (s1), (s2), (s3) and (d).

#### 3. Pulse output specifications

• Simple positioning (with the acceleration/deceleration function) The operation pattern is as shown below:



Output processing

The pulse output is controlled by the dedicated hardware regardless of the operation cycle.

• Data change while the instruction is executed Even if operands are overwritten while the instruction is executed, such changes are not reflected immediately. The changes become valid the next time the instruction is driven.

20

nstructions ning

11

Applied Instructions (Data Operation)

12

dInstruc

13

Hangy nstruction

deceleration time

ructions

Applied I

nstructions

# **Related devices**

1. Instruction execution complete flag

Device	Name	Description
M8029	Instruction execution	OFF : The command input is OFF, or pulses are being output. (This flag does not turn ON if the pulse output is interrupted in the middle of output.)
	complete	ON :Output of the number of pulses set in <u>s</u> is completed.

## 2. Monitoring the number of generated pulses

The number of pulses output from Y000 or Y001 is stored in the following special data registers:

Dev	vice							
High order	Low order	Description	Contents of data					
D8141	D8140	Accumulated number of pulses output from Y000	Accumulated number of pulses output from Y000 by PLSY and PLSR instructions					
D8143	D8142	Accumulated number of pulses output from Y001	Accumulated number of pulses output from Y001 by PLSY and PLSR instructions					
D8137	D8136	Total accumulated number of pulses output from Y000 and Y001	Total accumulated number of pulses output from Y000 and Y001 by PLSY and PLSR instructions					

The contents of each data register can be cleared using the following program.



d Low order device in the table above

#### 3. How to stop the pulse output

- When the command input is set to OFF, the pulse generation is immediately stopped. When the command input is set to ON again, pulse generation operation restarts from the beginning.
- When the special auxiliary relays (M) shown below are set to ON, the pulse output is stopped.

	Device	Description			
FX3U, FX3UC	FX3S, FX3G, FX3GC	FX1S, FX1N, FX1NC	Description		
M8349	M8145, M8349	M8145	Immediately stops pulse output from Y000.		
M8359	M8146, M8359	M8146	Immediately stops pulse output from Y001.		

To restart pulse output again, set the device corresponding to the output number to OFF, and then drive the pulse output instruction again.

# Cautions about writing during RUN

Avoid writing during RUN after either of the following operations in a circuit block including the pulse output instruction or positioning instruction.

- · Changing a program for a circuit block including a corresponding instruction.
- Changing a program for a circuit block just before or after a circuit block including a corresponding instruction.
- Deleting or adding a circuit block just before or after a circuit block including a corresponding instruction.

This caution about the above operations is applicable to the following PLCs and instructions.

FX1S, FX1N and FX1NC PLCs	: PLSY, DPLSY, PWM, PLSR, DPLSR, ZRN, DZRN, PLSV,
	DPLSV, DRVI, DDRVI, DRVA and DDRVA
FX2N and FX2NC PLCs	: PLSY, DPLSY, PWM, PLSR and DPLSR
EVen EVen EVen EVen	

FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs: DSZR, DVIT⁻¹, DDVIT⁻¹, DTBL⁻², ZRN, DZRN, PLSV, DPLSV, DRVI, DDRVI, DDRVI, DDRVA

- *1. Not available for the FX3S, FX3G or FX3GC PLC.
- *2. Not available for the FX3S PLC.

# Cautions

#### 1. Maximum frequency s1

When using transistor outputs on the main unit, set the maximum frequency specified by s1 as follows.

11

Applied Instructions (Data Operation)

13

nstructions

14 Applied Instructions (External FX I/O Device)

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

plied Instructions ositioning

	•	For FX3U and FX3UC PLCs	:16-bit instruction $\rightarrow$ 10 to 32,767(Hz) 32-bit instruction $\rightarrow$ 10 to 100,000 Hz or less (200,000 Hz or less when using special high speed adapter.)						
	•	For FX3S, FX3G and FX3GC PLCs	:16-bit instruction $\rightarrow$ 10 to 32,767(Hz) 32-bit instruction $\rightarrow$ 10 to 100,000 Hz or less						
	•	For FX2N and FX2NC PLCs	:10 to 20,000 Hz						
	•	For FX1s and FX1N PLC	:10 to 100,000 Hz						
	•	For FX1NC PLC	:10 to 10,000 Hz						
2.	2. Total number of output pulses secified by second as follows.								
	•	For FX3U and FX3UC PLCs	:16-bit instruction $\rightarrow$ 1 to 32,767PLS 32-bit instruction $\rightarrow$ 1 to 2,147,483,647PLS						
	•	For FX3S, FX3G and FX3GC PLCs	:16-bit instruction $\rightarrow$ 1 to 32,767PLS 32-bit instruction $\rightarrow$ 1 to 2,147,483,647PLS						
	•	For FX2N and FX2NC PLCs	:16-bit instruction $\rightarrow$ 110 to 32,767PLS 32-bit instruction $\rightarrow$ 110 to 2,147,483,647PLS						
When setting a value less than "110", the operation is as follows.         PLC version V3.00 or before       : The pulses are not generated normally.         PLC version V3.00 or later       : One tenth of the maximum frequency is generated.         If the maximum frequency is 100 Hz or less, "10 Hz" is generated.									
	•	For FX1S, FX1N and FX1NC PLCs	: 16-bit instruction $\rightarrow$ 110 to 32,767(PLS) 32-bit instruction $\rightarrow$ 110 to 999,999(PLS)						

When setting a value less than "110", the pulses are not generated normally.

#### 3. Acceleration/deceleration time S3

Set the acceleration/deceleration time specified by  $\odot$  as follows. For FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs: 50 to 5000 (ms) For FX2N and FX2NC PLCs: 5000 (ms) or less

Follow, however, the conditions a) through d).

- a) Make the acceleration/deceleration time be 10 times or more the PLC's maximum scan time (value of D8012 or greater). If set to less than 10 times, the acceleration/deceleration timing becomes instable.
- b) The following equation defines the allowable minimum that can be set as the acceleration/ deceleration time.

$$\underline{s3} \ge \frac{90000}{\underline{s1}} \times 5$$

If setting a value less than the equation indicates, the error in the acceleration time becomes large. If set to less than "90000/s1, operation takes place while rounding it up to "90000/s1".

c) The following equation defines the allowable maximum that can be set as the acceleration/ deceleration time.

$$\underline{(s3)} \leq \frac{\underline{(s2)}}{\underline{(s1)}} \times 818$$

d) The number of speed changes (steps) for the acceleration/deceleration is fixed to "10 times" as shown in the previous page.

If unable to set the PLC to these conditions, lower the maximum frequency specified by s1.

• For FX1s, FX1N and FX1NC PLCs: 50 to 5000(ms)

#### 4. Pulse output

- Only a transistor output on the main unit or Y000 or Y001 on a special high speed output adapter^{*1} can be specified in <u>d</u>.
  - *1. Special high speed output adapters can be connected only to the FX3U PLC. When using the PLSR instruction with a relay output type or triac output type FX3U PLC, a special highspeed output adapter is required.
- The duty cycle of the pulse ON/OFF time is 50 % inside the PLC. However, 50 % may not be output depending on the frequency due to the effect of the output circuit.

- The pulse output is controlled by the dedicated hardware not affected by the sequence program (operation cycle).
- If the command input is set to OFF during continuous pulse output, the output from the device specified by

   d turns OFF.

#### 5. Restrictions to target devices

- ▲1: Refer to item 4 in "Cautions".
- ▲2: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲3: The FX3U and FX3UC PLCs only are applicable.
- 6. Handling of pulse output terminals in the main units of the FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs.

 $\rightarrow$  Refer to item 6 in 12.8 "Cautions".

#### 7. Cautions on using special high speed output adapters

 $\rightarrow$  Refer to item 7 in 12.8 "Cautions".

#### 8. Others

1) When using the same output relay (Y000 or Y001) in several instructions.

While a pulse output monitor (BUSY/READY) flag is ON a pulse output instruction and positioning instruction for the same output relay cannot be executed.

While a pulse output monitor flag is ON even after the instruction drive contact is set to OFF, a pulse output instruction or positioning instruction for the same output relay cannot be executed.

Before executing such an instruction, wait until the pulse output monitor flag turns OFF and one or more operation cycles pass.

(Only the FX1s, FX1N, FX1NC, FX3s, FX3G, FX3GC, FX3U and FX3UC PLCs are compatible with the pulse output monitor flags.)

Pulse output destination	Pulse output monitor flag							
device	FX3U, FX3UC	FX3S, FX3G, FX3GC	FX1S, FX1N, FX1NC					
Y000	M8340	M8340, M8147	M8147					
Y001	M8350	M8350, M8148	M8148					

#### 2) Minimum frequency for FX1s and FX1N PLCs

The output frequency of the PLSR instruction ranges from 10 to 100,000 Hz.

If the maximum speed or the speed during acceleration or deceleration goes out of this range, the value is automatically rounded up or down to a value within the range.

Note, however, that the following equation defines the minimum output frequency actually generated.

 $\sqrt{\text{maximum frequency}(\underline{S_{1}}) + \text{Hz} \div (2 \times (\text{acceleration or deceleration time}(\underline{S_{3}}) + 1000))} = \frac{\text{minimum}}{\text{output pulse}}$ 

• Note that the frequency after the first step acceleration or the final frequency after deceleration does not go below the value calculated by the above equation.

[Example] Maximum speed: 50000Hz Acceleration/deceleration time: 100ms

When setting 50000 Hz into the maximum frequency S1.

 $\rightarrow$  The actual output frequency is "500 Hz" at the first step of acceleration and the last step of deceleration.



# 13. Applied Instructions (Handy Instruction)

This chapter introduces the instructions which achieve complicated control in a minimum sequence program.

Instruction name	Function	Reference	
IST	Initial State	Section 13.1	
SER			
SERP	Search a Data Stack	Section 13.2	
DSER		360101113.2	
DSERP			
ABSD		Section 13.3	
DABSD		000101110.0	
INCD	Incremental Drum Sequencer	Section 13.4	
TTMR	Teaching Timer	Section 13.5	
STMR	Special Timer	Section 13.6	
ALT	Alternate State	Section 13.7	
ALTP		Secuon 13.7	
RAMP	Ramp Variable Value	Section 13.8	
ROTC	Rotary Table Control	Section 13.9	
SORT	SORT Tabulated Data	Section 13.10	

11

# 13.1 IST / Initial State

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

# Outline

This is a command for controlling the initial state and special auxiliary relay automatically in a program by stepladder.

# 1. Format and operation, execution form

Instruction	Operation	Execution form	Expression in each language						
name	operation		Structured ladder/FBD	ST					
IST	16 bits	Continuous	IST EN ENO s d1 d2	IST(E, s, d1, d2);					

# 2. Set data

١	/ariable	Description	Data type	
Input	EN	Execution condition	Bit	
variable	S	Head bit device number of the selector switch in the operation mode (8 points occupied)	ARRAY [07] OF Bit	
	ENO	Execution state	Bit	
Output variable	<u>d1</u>	Minimum state of practical state in automatic mode [d1 <d2]< td=""><td>Bit</td></d2]<>	Bit	
	(d2)	Maximum state of practical state in automatic mode [d1 <d2]< td=""><td>Bit</td></d2]<>	Bit	

# 3. Applicable devices

		Bit Devices							Word Devices							Others								
Operand type			S	/st	em	use	r	Di	git de	signati	on	<b>v</b> ,	èys us	ter ser	n	Special unit			Index	Co ta	ons Int	Real number	Character string	Pointer
	Х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
S	•	•	•				▲1												•					
<u>d1</u> )						▲2													•					
<u>d</u> 2						▲2													•					

▲: Refer to "Cautions".

# Function and operation explanation

Command input		IST	
·	EN	ENO	
Head bit device -	s	d1	—Minimum state
number of the		d2	<ul> <li>Maximum state</li> </ul>
selector switch			-
in the operation mode			

• In <u>s</u>, designate beginning input of operation mode.

Selection switch for operation mode occupies 8 points from the head device designated in (s), and the following switch functions are assigned individually.

As shown in the table below, when X020 is assigned, X020 to X024 must be set in rotary switch so as not to be turned ON simultaneously.

Wiring is not needed for switches not in use, but such switches cannot be used in other applications because they are occupied by IST command.

Source	Device No. (example)	Switch function		Source	Device No. (example)	Switch function
S	X020	Individual operation		<u>s</u> +4	X024	Continuous operation
s+1	X021	Return to home position		<u>s</u> +5	X025	Return home start
<u>s</u> +2	X022	Stepping		<u>s</u> +6	X026	Automatic start
<u>s</u> +3	X023	One-cycle operation		<u>s</u> +7	X027	Stop

- In (d1), designate minimum number of practical state (for automatic mode).
- In d2, designate maximum number of practical state (for automatic mode).

#### 1. Control of device by switch operation (occupied device)

When command input is turned ON, next device is automatically changed over and controlled. No change if command input is turned OFF.

Device No.	Operation function	Device No.	Operation function
M8040	Transfer ban	SO	Initial state of individual operation
M8041 ^{*1}	Transfer start	S1	Initial state of return to home position
M8042	Start pulse	S2	Initial state of automatic operation
M8043 ^{*1}	Return home end		
M8045	All output reset ban		
M8047*2	STL monitor valid		

- *1. Cleared when changed from RUN to STOP
- *2. Process during END command execution

The following states should not be programmed as general states.

Device No.	Operation function
S0 to S9	<ul> <li>Occupied for initial state.</li> <li>S0 to S2 can be used for individual operation, return to home position, or automatic operation as specified above.</li> <li>S3 to S9 can be used freely.</li> </ul>
S10 to S19	Occupied for return to home position.

If return home end (M8043) is not ON, all outputs are OFF if changed over to individual (X020), return to home position (X021), or automatic (X022, X023, X024).

Automatic operation can be resumed after returning to home position completely.

→ Before introduction, refer to "IST command introduction examples (examples of work transfer mechanism)" given below.

11

Applied Instructions (Data Operation)

12

AppliedInstructions (High Speed Processing)

13

Applied Instru (Handy Instruction)

nstructions

**14** Applied Instructions (External FX I/O Device)

15

# Cautions

- Devices designated in s and switches to be used Not all mode selection switches are used. Vacant numbers (not usable in other applications) are designated in switches not in use.
- 2. Program sequence of IST command and STL command
  - IST command must be programmed prior to a series of STL circuits such as states S0 to S2.
- State to be used in operation for return to home position
   Use S10 to S19 for state for return to home position.
   In final state for return to home position, after setting M8043, terminate by self-resetting.

#### 4. Limit times of use of command

IST command can be programmed only once in the program.

#### 5. Object devices are restricted.

- ▲1: The FX₃U and FX₃UC PLCs only are applicable. However, index modifier (V, Z) is not applicable.
- ▲2: The device range is limited as follows by the PLC. S20 to S899, S1000 to S4095 (FX3G, FX3GC, FX3U and FX3UC PLCs) S20 to S255 (FX3S PLC) S20 to S899 (FX2N and FX2NC PLCs) (FXU and FX2C PLCs) S20 to S999 (FX1N and FX1NC PLCs) S20 to S127 (FX1S PLC) (FX0N PLC) S20 to S63 (FX0s and FX0 PLCs)

# IST command equivalent circuit

Detail of special auxiliary relay (M) or initial state (S0 to S9) controlled automatically by IST command is as shown in the following equivalent circuit. (Read as reference knowledge.) This equivalent circuit cannot create program.

## 1. Equivalent circuit

X024 11- X026 11-	Conti- nuous II Automatic start	X027 X Stop	X022 Si X023 Cy X023 Cy X024 nu	tepping ne- /cle onti- Jous	M8041 Transfer start	M8041 is put in action when start button is pressed in automatic mode. In continuous mode, self-holding action is set, and it is canceled when stop button is pressed.
X026	Automatic start Return home	X020		E	PLS EN EN	
	start	Individual			Start nulse	<u>a</u> — M8042
X020	Individual					M8040 is put in action in stepping mode, and is
	Return X027 Sta	N004			-(M8040)	turned OFF every time start button is pressed.
			<u> </u>	Tr	ansfer ban	action is set when stop button is pressed, and
X022	Stepping	Start	pulse			it is canceled when start button is pressed.
X023	One- cycle X027 Sto	p				
M8002	Initial pulse					
M8040	Self-holding					
M8000	RUN monitor					
	-			STI m	-(M8047)	
		*1		SILIN		
	Individual	⇒ S O			-(M8043)	Initial state is changed over depending on each
			position condition	Return	home end	However, M8044 and M8043 must be also controlled by the user program.
X021	Return home	*1	X025	F	RST	
		→ S 1	Return	EN	ENO d	M8043
X022 to	o X024 M8043	*1	M8041	Retur end s	n home ignal reset	
	atic Return	⇒ S 2		start	0	
	home end	ł		start		

*1. Equivalent circuit is presented for explanation, and it cannot be actually programmed as shown herein.

#### 2. Changeover of operation mode

When the modes are changed over in individual, return home, and automatic modes, unless the machine is at home position, all outputs and former states are reset in batch. (When M8045 is driven, all outputs^{*1} are not reset.)



*1. All outputs: outputs not driven from the state of the device designated in <u></u>(Y), and outputs driven by OUT, SET commands from the state of the device designated in <u></u>(Y).

11

Applied Instructions (Data Operation)

12

d Instructions

13

nstructions

14

Applied Instructions (External FX I/O Device)

15

# IST command introduction examples (examples of work transfer mechanism)

#### 1. Operation mode





Operation mode		Operation content
Manual	Individual operation:	Mode for turning ON/OFF each load by individual pushbutton.
	Return to home position:	Mode for returning machine to home position automatically when return home pushbutton is pressed.
Automatic	Stepping:	To advance process by process every time start button is pressed.
	One-cycle operation:	When start button is pressed at home position, the machine is operated by one cycle automatically and stops at home position. If stop button is pressed on the way, the process stops immediately, and start button is pressed, the operation is resumed from the stopped position, and stops automatically at home position.
	Continuous operation:	When start button is pressed at home position, continuous repeating operation is started. When stop button is pressed, the machine operates to home position, and then stops.

#### 2. Transfer mechanism



The home position is the upper left corner, and the work is sequentially transferred from left to right in the sequence of descend, clamp, ascend, right move, descend, unclamp, ascend, and left move. Solenoid valve of double solenoid (two inputs: drive/non-drive) is used for descend/ascend, left move/right move, and solenoid of single solenoid (active only while energized) is used for clamp.

11

Applied Instructions (Data Operation)

12

AppliedInstructions (High Speed Processing)

13

Applied Ir (Handy

Instructions

Applied Instructions (External Device)

Applied Instructions (Data Transfer 2)

19

Applied Instructions (Data Operation 2)

20

ositioning ied Instructions



In order to use IST command, inputs of the following serial numbers must be assigned in the mode inputs. If the numbers are not serial, or modes are partly omitted, the array is modified by using auxiliary relays as shown below, which is used as the mode designation beginning input.

- X020: Individual operation
- X021: Return to home position
- X022: Stepping
- X023: One-cycle operation -
- X024: Continuous operation -
- X025: Return home start
- X026: Automatic start
- X027: Stop



In this example, M0 is used as the mode designation beginning input.



#### 4. Special auxiliary relays for IST command(M) Auxiliary relays (M) used in IST command are divided into those controlled automatically by the command depending on the circumstances, and others that must be controlled by the program depending on the operation preparation or purpose of control. 1) Those controlled automatically by IST command a) M8040: Transfer ban When this auxiliary relay is put in action, transfer of all states is banned. individual : Always M8040 is active. Return home, one-cycle: When stop button is pressed, the operation is held until start button is pressed. Stepping : Always M8040 is active. However, only when start button is pressed, the operation is stopped, and is transferred. Other : Operation is held when PLC is changed from STOP to RUN, and is canceled when start button is pressed. In transfer ban state, the output in the state continues to operate. b) M8041: Transfer start This is the auxiliary relay required as transfer condition from initial state S2 to next state.

Individual, return home	: Not active.
Stepping, one-cycle	: Active only while start button is pressed.
Continuous	: Operation is held when start button is pressed, and canceled when stop
	button is pressed.

c) M8042: Start pulse

Active momentarily only when start button is pressed.

- d) M8047: STL monitor valid M8047 is turned ON when IST command is used.
  STL monitor is valid when M8047 is ON, and active state numbers (S0 to S899) are stored in the special data register D8040 to D8047 in numerical order.
  As a result, up to eight operation state numbers can be monitored.
  If any one of these states is active, the special auxiliary relay M8046 operates.
- 2) Those driven by sequence program

#### $\rightarrow$ For detail of these controls, see next page.

- a) M8043: Return home end
   In the return home mode, when the machine reaches the home position, operate this special auxiliary relay (M) from the user side program.
- b) M8044: Home position condition You can drive this special auxiliary relay by detecting the home position condition of the machine. The signal is valid in all modes.
- c) M8045: All output reset ban When the modes are changed over in individual, return home, and automatic modes, unless the machine is at home position, all outputs and operation states are reset. However, when the M8045 is driven, only the operation states are reset.

#### 5. Program examples

#### 1) Circuit diagram

In the sequence circuit shown below, other portions than the shaded area are routine circuits. You can program the shaded area circuit according to the content of the control.

a) Initial circuit

During operation of the machine, the operation can be changed over freely within the "automatic operation' mode (stepping/one-cycle/continuous).

During operation of the machine, if changed over among "individual operation"/ "return home"/ "automatic operation", for safety precaution, all outputs are once reset, and the mode after changeover is valid.

(You cannot reset when all outputs reset ban M8045 is turned ON.)

[Structured ladder/FBD]

[ST]



[ ST ] M8044:= X004 AND X002 AND NOT Y001; IST(M8000, X020, S20, S27);



#### b) Individual operation

Program is not required when individual mode is not available.

[Structured ladder/FBD]

[ ST ]



SET(X012, Y001); RST(X007, Y001); Y002:= X005 AND NOT Y000; Y000:= X010 AND NOT Y002; Y004:= X006 AND X002 AND NOT Y003; Y003:= X011 AND X002 AND NOT Y004; 11

Applied Instructions (Data Operation)

12

20

sitioning

#### c) Return to home position

Program is not required when return home mode is not available. However, before automatic operation, return home end M8043 must be once set.



11





20 Pp Control ositioning lied Instructions


11

Applied Instructions (Data Operation)

12

AppliedInstructions (High Speed Processing)

13

Applied Instructions (Handy Instruction)

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

lied Instructions sitioning

# 13.2 SER / Search a Data Stack

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	×	×	Δ	×	×

# Outline

This is a command for searching same data and maximum value, minimum value from the table of data.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	on Expression in each language										
name	Operation	form	Structured ladder/FBD	ST									
SER	16 bits	Continuous	SER — EN ENO — s1 d — s2 — n	SER(E, s1, s2, n, d);									
SERP	16 bits	Pulse	SERP 	SERP(EN, s1, s2, n, d);									
DSER	32 bits	Continuous	DSER — EN ENO — s1 d — s2 — n	DSER(EN, s1, s2, n, d);									
DSERP	32 bits	Pulse	DSERP — EN ENO — s1 d — s2 — n	DSERP(EN, s1, s2, n, d);									

# 2. Set data

			Data	type		
v	ariable	Description	16-bit operation	32-bit operation		
	EN	Execution condition	Bit			
Input variable	<u>s1</u>	Beginning device for searching same data, maximum value, minimum value	ANY16	ANY32		
	<u>(s2</u> )	Value for searching same data, maximum value, minimum value, or its storage destination device	ANY16	ANY32		
	n	The number for searching same data, maximum value, minimum value	ANY16			
Output	ENO	Execution state	Bit			
variable	d	Beginning device for storing the numbers after searching same data, maximum value, minimum value	ARRAY [15] OF ANY16	ARRAY [15] OF ANY32		

# 3. Applicable devices

			Bi	t D	ev	ice	s		Word Devices											Others					
Operand type			Sy	ste	m	us	er	Dig	git de	signat	ion		Sy ι	ste Ise	em er	-	Special unit		I	ndex	Co ta	ns nt	Real number	Character string	Pointer
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D		R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
<u>(s1</u> )								•	•	•	•	•	•	•	4	1	▲2			•					
<u>(s2</u> )								•	٠	٠	•	•	•	•	4	<b>1</b>	▲2	•	•	•	•	٠			
n														•	4	1					•	٠			
d									•	•	•	•	•	•	4	1	▲2			•					

▲: Refer to "Cautions".

#### 1. 16-bit operation

In n pieces of data beginning from the device designated in  $\underline{s1}$ , same data as the device designated in  $\underline{s2}$  is searched, and the result is stored in the device designated in  $\underline{d}$ .



#### 1) Content and result of searched data

a) When same data is found

In five devices beginning from the device designated in (d), the number of same data, initial/final position, and positions of maximum value and minimum value are stored.

b) When same data is not found

In five devices beginning from the device designated in (d), the number of same data, initial/final position, and positions of maximum value and minimum value are stored.

However, 0 is stored in three devices beginning from the device designated in (number of same data, initial/final position).

#### 2) Operation examples

a) Examples of composition of search result table and data

Searched device	Value of (s1) of	Value of s2 of	Desition of		Search result	t
(s1)	searched data (ex.)	comparative data (ex.)	data	Maximum value d +4	Coincide d	Minimum value d +3
<u>(s1)</u>	K100		0		√(Initial)	
(s1)+1	K111		1			
(s1)+2	K100		2		$\checkmark$	
<u>(s1)</u> +3	K 98		3			
<u>s1</u> +4	K123	K100	4			
<u>s1</u> +5	K 66	1(100	5			$\checkmark$
<u>s1</u> +6	K100		6		√(Final)	
<u>s1</u> +7	K 95		7			
<u>s1</u> +8	K210		8	$\checkmark$		
<u>s1</u> +9	K 88		9			

#### b) Search result table

Device No.	Content	Search result item
d	3	Number of same data
d+1	0	Position of same data (initial)
(d)+2	6	Position of same data (final)
(d)+3	5	Final position of minimum value
<u>d</u> +4	8	Final position of maximum value

# 2. 32-bit operation(DSER, DSERP)

In n pieces of data beginning from the device designated in  $\underline{s1}$ , same data as the device designated in  $\underline{s2}$  is searched, and the result is stored in the device designated in  $\underline{d}$ .



#### 1) Content and result of searched data

a) When same data is found

In five points of 32-bit data beginning from the device designated in  $\bigcirc$ , the number of same data, initial/final position, and positions of maximum value and minimum value are stored.

b) When same data is not found

In five points of 32-bit data beginning from the device designated in d, the number of same data, initial/final position, and positions of maximum value and minimum value are stored.

However, 0 is stored in three points of 32-bit data beginning from the device designated in  $\bigcirc$  (number of same data, initial/final position).

#### 2) Operation examples

a) Examples of composition of search result table and data

Searched device	Value of (s1) of	Comparativo	Desition		Search result	t
	searched data	data 3	of data	Maximum	Coincide	Minimum
	(ex.)			value d +4	d	value d +3
$\left[\underline{s1}+1,\underline{s1}\right]$	K100000		0		√(Initial)	
[ <u>s1</u> +3, <u>s1</u> +2]	K110100		1			
[ <u>s1</u> +5, <u>s1</u> +4]	K100000		2		$\checkmark$	
[ <u>s1</u> +7, <u>s1</u> +6]	K 98000		3			
[ <u>s1</u> +9, <u>s1</u> +8]	K123000	K100000	4			
[ <u>s1</u> +11, <u>s1</u> +10]	K 66000	K100000	5			$\checkmark$
[ <u>s1</u> +13, <u>s1</u> +12]	K100000		6		√(Final)	
[ <u>s1</u> +15, <u>s1</u> +14]	K 95000		7			
[ <u>s1</u> +17, <u>s1</u> +16]	K910000		8	$\checkmark$		
[ <u>s1</u> +19, <u>s1</u> +18]	K910000		9	$\checkmark$		

#### b) Search result table

Device No.	Content	Search result item
[+1,]	3	Number of same data
[+3,+2]	0	Position of same data (initial)
[+5,+4]	6	Position of same data (final)
[+7,+6]	5	Final position of minimum value
[+9,+8]	9	Final position of maximum value

11

Applied Instructions (Data Operation)

12

Ìnstr

ructions

13

Applied Ir (Handy

nstructions

nstruction)

# Cautions

## 1. Comparison of magnitude

To be calculated algebraically. (-10 < 2)

#### 2. When minimum value and maximum value are present in a plurality

If there are a plurality of minimum value and maximum value in the data, the latter position is stored individually.

## 3. Number of bits occupied

The search result occupies the following number of devices when this command is driven. Please be careful not to overlap with the devices used in the control of the machine.

- 1) In the case of 16-bit operation A total of five points will be occupied, that is, d, d+1, d+2, d+3, d+4.
- 2) In the case of 32-bit operation
  A total of ten points will be occupied, that is, (@+1, @), (@+3, @+2), (@+5, @+4), (@+7, @+6), (@+9, @+8).

#### 4. FXU PLC supports the command by V3.07 or higher.

#### 5. Some restrictions to applicable devices.

- ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲2: The FX3U and FX3UC PLCs only are applicable.

# 13.3 ABSD / Absolute Drum Sequencer

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	×	×

# Outline

This is a command for creating multiple output patterns corresponding to the present value of the counter.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
ABSD	16 bits	Continuous	ABSD — EN ENO — s1 d — s2 — n	ABSD(EN, s1, s2, n, d);
DABSD	32 bits	Continuous	DABSD — EN ENO — s1 d — s2 — n	DABSD(EN, s1, s2, n, d);

# 2. Set data

			Data type					
v	ariable	Description	16-bit operation	32-bit operation				
	EN	Execution condition	Bit					
Input	<u>(s1)</u>	Beginning device for storing table data (rise point, fall point)	ANY16	ANY16				
variable	<u>(s2)</u>	Counter for present value monitor to compare with table data	ANY16	ANY16				
	n	Number of lines of table and number of points of bit device to be output	ANY16					
Output	ENO	Execution state	Bit					
variable	d	Beginning bit device to be output	Bit					

# 3. Applicable devices

			Bit	De	vic	e	s		Word Devices											Others				
Operand type		;	Sys	ten	n u	se	ər	Dig	git de	signat	tion		Sy u	ste Ise	r r	Special unit		I	ndex	Co ta	ons Int	Real number	Character string	Pointer
	х	Y	M	Г	5	5	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
(s1)								•	•	•	•	•	•	•	▲2	▲3			•					
<u>s2</u>													•						•					
n																				•	•			
d		•	•		•	•	▲1												•					

▲: Refer to "Cautions".

19

Applied Instructions (Data Operation 2)

20

lied Instructions sitioning

# IST command equivalent circuit

#### 1. 16-bit operation(ABSD)

This is an example for explaining the ON/OFF control of the output by one revolution of table (0 to 360 degrees).

(Rotation angle signal one degree per pulse)

Data table (occupying n lines  $\times$  2 points) of n lines from the device designated in <u>s</u>) is compared with the present value of the counter of the device designated in <u>s</u>, and outputs of n points continuous from the device designated in <u>d</u> are controlled to be ON/OFF during one revolution.



Rotation angle signal one degree per pulse

1) Write the following data in (s1) to (s1) +2n+1, preliminarily by using transfer command.

R	Rise point	F	all point	Object output
	Data value (example)		Data value (example)	
<u>(s1)</u>	40	<u>s1</u> +1	140	d
<u>s1</u> +2	100	<u>(s1)</u> +3	200	<u>d</u> +1
<u>s1</u> +4	160	<u>s1</u> +5	60	(d)+2
<u>s1</u> +6	240	<u>(s1)</u> +7	280	(d)+3
:		÷		:
(s1)+2n	-	(s1)+2n+1	-	(d)+n-1

For example, store rising point data and falling point data alternately.

#### 2) Output pattern

When command input is turned ON, n points are changed as follows, starting from the device designated in <u>d</u>.

Rise point and fall point may be individually changed by rewriting data in s1 to s1+n×2.



# 2. 32-bit operation(DABSD)

This is an example for explaining the ON/OFF control of the output by one revolution of table (0 to 360 degrees).

(Rotation angle signal one degree per pulse)

Data table (occupying n lines  $\times$  4 points) of n lines from the device designated in  $\underline{s1}$  is compared with the present value of the counter of the device designated in  $\underline{s2}$ , and outputs of n points continuous from the device designated in  $\underline{s2}$ , and outputs of n points continuous from the device designated in  $\underline{s2}$ , and outputs of n points continuous from the device designated in  $\underline{s2}$ .



1) Write the following data in (s1, s1+1) to (s1+4n+2, s1+4n+3), preliminarily by using transfer command.

Rise point		Fall point		Object
	Data value (example)		Data value (example)	output
[ <u>s1</u> +1, <u>s1</u> ]	40	[ <u>s1</u> +3, <u>s1</u> +2]	140	d
[ <u>s1</u> +5, <u>s1</u> +4]	100	[ <u>s1</u> +7, <u>s1</u> +6]	200	+1
[ <u>s1</u> +9, <u>s1</u> +8]	160	[ <u>s1</u> +11, <u>s1</u> +10]	60	+2
[ <u>s1</u> +13, <u>s1</u> +12]	240	[ <u>s1</u> +15, <u>s1</u> +14]	280	(d)+3
:	_	:	_	•
[ <u>s1</u> +4n+1, <u>s1</u> +4n]	_	[ <u>s1</u> +4n+3, <u>s1</u> +4n+2]	-	+n-1

For example, store rising point data and falling point data alternately.

2) Output pattern

When command input is turned ON, n points are changed as follows, starting from the device designated in  $\bigcirc$ .

Rise point and fall point may be individually changed by rewriting data in  $(\underline{s1}+1, \underline{s1})$  to  $(\underline{s1}+(n\times 2)+3, \underline{s1}+(n\times 2)+2)$ .





20

dInstructions

# Cautions

# 1. Designation of high speed counter

DABSD command can designate a high-speed counter in the device designated in <u>s</u>. When the high-speed counter is specified, as compared with the counter present value, the output pattern may have a response delay due to scan cycle.

When using FX_{3U}, FX_{3UC} PLCs, the response may be enhanced by using table high speed comparison function by DHSZ command or by using DHSCT command.

#### 2. When designating the digits of bit device in $\underline{s1}$

1) Device No.

Designate a multiple of 16 (0, 16, 32, 64, ...).

- 2) Number of digits
  - K4 only in the case of ABSD (16-bit operation)
  - K8 only in the case of DABSD (32-bit operation)

#### 3. Other cautions

- The number of output points of the object is determined by the value of n.  $(1 \le n \le 64)$
- The output is not changed if the command input is turned OFF.

#### 4. FXu PLC does not support 32-bit command at V2.30 or lower.

#### 5. Some restrictions to applicable devices.

- ▲1: The FX3U and FX3UC PLCs only are applicable.
- However, index modifier (V, Z) is not applicable.
- ▲2: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲3: The FX3U and FX3UC PLCs only are applicable.

# 13.4 INCD / Incremental Drum Sequencer

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	×	×

## Outline

This is a command for creating multiple output patterns by using a pair of counters.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
INCD	16 bits	Continuous	INCD 	INCD(EN, s1, s2, n, d);

# 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input	<u>(s1)</u>	Beginning word device for storing the set value	ANY16
variable	<u>(s2)</u>	Beginning device of counter for present value monitor (2 points occupied)	ANY16
	n	Number of bit devices to be output	ANY16
Output	ENO	Execution state	Bit
variable	d	Beginning bit device to be output (n points occupied)	Bit

## 3. Applicable devices

			Bi	t D	ev	ice	S					۷	Voi	d [	Devic	es						0	thers	
Operand type			Sy	ste	m	us	er	Dig	git de	signat	ion		Sy u	ste se	em r	Special unit		I	ndex	Co ta	ons nt	Real number	Character string	Pointer
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	K	н	E	"0"	Р
<u>(s1</u> )								•	•	•	•	•	•	•	▲2	▲3			•					
<u>(s2</u> )													•						•					
n																				•	•			
d		•	•			•	▲1												•					

▲: Refer to "Cautions".

11

#### 1. 16-bit operation(INCD)

Data table (n lines  $\times$  1 point occupied) of n lines from the device designated in <u>s</u>1 is compared with the present value of the counter of the device designated in <u>s</u>2, and by resetting when coinciding, outputs are sequentially controlled to be ON/OFF.



#### 1) Timing chart

clock

1-second

CC000-

K9999

CCoil

CValue

Write the following data beforehand by using transfer command.

S	store device		Output
	Data value (example)		Example
(s1)	D300=20	b	MO
<u>s1</u> +1	D301=30	+1	M1
<u>s1</u> +2	D302=10	+2	M2
<u>(s1)</u> +3	D303=40	+3	M3
÷	:	÷	:
(s1) +n-1	-	+n-1	-
X000	30	40	
C 0 Present value	20 10		20 20
C 1 Present value	0	3	
M 0			
M 1			
M 2			
M 3			
M8029 Co	mplete flag	Π	

11

Applied Instructions (Data Operation)

12

AppliedInstructions (High Speed Processing)

13

Applied Instru (Handy Instruction)

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

dInstructions

- 2) M0 output is turned ON when command contact is turned ON.
- Output (M0) is reset when the present value of C0 reaches comparative value D300, and the count value of the process counter C1 is incremented by +1, and the present value of the counter C0 is also reset.
- 4) Next output M1 is turned ON.
- 5) Output M1 is compared with comparative value D301 of C0 present value, and when reaching the comparative value, the count value of the process counter C1 is incremented by +1, and the present value of the counter C0 is also reset.
- 6) Similarly compared up to the number of points designated in n(K4).  $(1 \le n \le 64)$
- When the final process designated in n is over, execution complete flag M8029 is turned ON for one operation period.
  M8029 is a command execution complete flag used by a plurality of commands, and is used as the contact right after the command, and then you can set up a complete flag exclusively for this command.
- 8) Repeat outputs by returning to the beginning.

#### Cautions

**1.** When designating the digits of bit device in the device designated in s Designate a multiple of 16 (0, 16, 32, 64, ...) in the device number.

#### 2. Number of occupied devices

Two devices are occupied from a device designated in  $\underline{s2}$ . Make sure not to use those devices in another control.

#### 3. Some restrictions to applicable devices.

- ▲1: The FX3U and FX3UC PLCs only are applicable. However, index modifier (V, Z) is not applicable.
- ▲2: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲3: The FX3U and FX3UC PLCs only are applicable.

# 13.5 TTMR / Teaching Timer

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	0	×	×

# Outline

This is a command for measuring the ON duration of TTMR command. This is used when adjusting the timer setting time by pushbutton.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
TTMR	16 bits	Continuous	TTMR — EN ENO — n d	TTMR(EN, n, d);

## 2. Set data

'	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	n	Multiplying factor number to be applied to teaching data	ANY16
Output	ENO	Execution state	Bit
variable	d	Device for storing teaching data (2 points occupied)	ARRAY [01] OF ANY16

## 3. Applicable devices

		E	Bit D	Dev	ice	s						Wo	ord E	Devic	es						0	thers	
Operand type		S	yst	em	us	er	Di	git de	signat	tion	s	yst	tem	user	Special unit		I	ndex	Co ta	ns nt	Real number	Character string	Pointer
	х	Υ	ТΜ	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	Z	Modifier	κ	н	Е	"0"	Р
n													<b>▲</b> 1	▲1					•	•			
d													٠	▲1				•					

▲: Refer to "Cautions".

#### 1. 16-bit operation(TTMR)

The pushing duration of command input (pushbutton) is measured in the unit of seconds, and is multiplied by multiplying factor ( $10^n$ ), and transferred to the device designated in  $\bigcirc$ .



Pushing duration (sec) Pushing duration (sec)

The time to be transferred to the device designated in  $\bigcirc$  depends on the multiplying factor of n, supposing the pushing duration to be  $\tau 0$  (1 sec unit), and the value of the device actually designated in  $\bigcirc$  is as follows.

n	Multiplying factor	d
K0	τ0	<u>d</u> ×1
K1	10τ0	<u>d</u> ×10
K2	100τ0	×100

# **Related command**

You can use such a convenient command.

Command	Content
HOUR	The command to issue the ON time of HOUR command by the time added and designated in 1 hour unit.

# Cautions

#### 1. When command contact is turned OFF

The present value  $(\bigcirc +1)$  of the pushing duration is reset, and the teaching time  $\bigcirc$  is not changed.

#### 2. Number of bits occupied

Two devices are occupied starting from the device (teaching time) designated in  $\bigcirc$ . Be careful not to overlap with the device used in control of the machine.

- d: Teaching time
- d+1: Present time of pushing duration

#### 3. Some restrictions to applicable devices.

▲1: The FX3U and FX3UC PLCs only are applicable.

ning

#### **Program examples**



# 13.6 STMR / Special Timer

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	0	×	×

#### Outline

This is the command for creating the off-delay timer, one-shot timer or flicker timer easily.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language
name	operation	form	Structured ladder/FBD	ST
STMR	16 bits	Continuous	STMR EN ENO s d m	STMR(EN, s, m, d);

## 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	S	Timer to be used [100ms timer]	ANY16
	m	Set value of timer	ANY16
Output	ENO	Execution state	Bit
variable	d	Beginning bit device to be output [4 points occupied]	ARRAY [03] OF Bit

## 3. Applicable devices

		E	Bit	D	evi	ce	S						Wo	ord D	)evic	es				Others					
Operand type		s	ys	te	m	us	er	Dię	git des	signat	ion	s	yst	tem	user	Special unit		I	ndex	Co ta	ons nt	Real number	Character string	Pointer	
	X	Y	М	Т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	н	Е	"0"	Р	
S												•							•						
m														▲2	▲2					•	•				
d	1	•	•			•	▲1												•						

▲: Refer to "Cautions".

lied Instructions sitioning

#### 1. 16-bit operation(STMR)

The value designated in m is determined as the set value for the timer of the device designated in  $\underline{s}$ , and is issued to four points from the device designated in  $\underline{d}$ .

Create the program depending on the application by referring to the following example.



#### Off-delay timer, one-shot timer

When T10 is assigned in  $\bigcirc$ , K100 in m, and M0 in  $\bigcirc$ 



- M0[d] : This is an off-delay timer for turning OFF with set time delay of the timer after the command contact is turned OFF.
- M1[d+1] : This is a one-shot timer for turning OFF after the timer set time by turning ON after the command contact is changed from ON to OFF.
- M2[d+2] : Occupied. To be used for flicker application.
- M3[____+3] : Occupied.



#### Flicker

The flicker is issued to  $\bigcirc$  +1,  $\bigcirc$  +2 by preparing the program for turning OFF this command by the b-contact of  $\bigcirc$  +3 as shown below.

 $\bigcirc$  and  $\bigcirc$  +3 are occupied.



- M0[d] : Occupied. (To be used in off-delay timer application. See previous page.)
- M1[____+1] : This is the flicker (a-contact) for repeating ON/OFF at timer time intervals.
- M2[d+2] : This is the flicker (b-contact) for repeating ON/OFF at timer time intervals.
- M3[____+3] : Occupied.



# Cautions

#### 1. Handling of designated timer

The timer number designated by this command cannot be used in overlap with other general circuit (OUT command, etc.).

If overlapped, the timer does not operate correctly.

#### 2. Number of bits occupied

Four devices are occupied from the one designated in <u>d</u>. Be careful not to overlap with the device used in control of the machine.

	Fund	ction
Device	Off-delay timer One-shot timer	Flicker
d	Off-delay timer	Occupied
+1	One-shot timer	Flicker(a-contact)
+2	Occupied	Flicker(b-contact)
+3	Occupied	Flicker(b-contact)

# 3. When command contact is turned OFF

d, d+1, and d+3 are turned OFF after the set time. The timers designated in d+2 and s are reset immediately.

## 4. Some restrictions to applicable devices.

- ▲1: The FX₃U and FX₃UC PLCs only are applicable. However, index modifier (V, Z) is not applicable.
- ▲2: The FX₃U and FX₃UC PLCs only are applicable.

20

nstructions

# 13.7 ALT / Alternate State

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

# Outline

This is the command for inverting the bit device (ON to OFF, OFF to ON) when the input is turned ON.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
ALT	16 bits	Continuous	– EN ENO – d –	ALT(EN, d);
ALTP	16 bits	Pulse	ALTP EN ENO d	ALTP(EN, d);

# 2. Set data

١	/ariable	Description	Data type
Input variable	EN	Execution condition	Bit
Output	ENO	Execution state	Bit
variable	d	Bit device to be output alternately	Bit

## 3. Applicable devices

			Bi	it D	ev	ices	s		Word Devices									Others						
Operand type			Sy	ste	m	use	ər	Dig	git de	signat	tion		Sy u	ste Ise	em r	Special unit		I	ndex	Co ta	ns nt	Real number	Character string	Pointer
	х	Y	М	Т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	×	Z	Modifier	к	н	Е	"0"	Р
d		•	•			•	▲1												•					

▲: Refer to "Cautions".

11

Applied Instructions (Data Operation)

12

Speed

13

Applied Instru (Handy Instruction)

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

ed Instructions

nstructions

# Function and operation explanation

#### 1. 16-bit operation(ALT, ALTP)

#### Alternate output (one stage)

Every time the command input is changed from OFF to ON, the bit device designated in d is inverted from ON to OFF, from OFF to ON.



#### Frequency dividing output (alternate output (two stages))

By combining and using a plurality of ALTP commands, the frequency can be divided and issued in multiple stages.



# Cautions

# When using ALT command (continuous execution form) When programmed by ATL command, the operation is inverted in every operation period. When inverting by ON/OFF switching of command, use the ALTP command (pulse execution form) or execute the command contact by LDP (pulse execution form).

#### **2.** FXos, FXo, FXoN PLCs do not support the command of pulse execution form. In the case of pulse execution form, convert the command execution form into pulses.

#### 3. Some restrictions to applicable devices.

▲1: The FX3U and FX3UC PLCs only are applicable. However, index modifier (V, Z) is not applicable.

# **Program examples**

#### 1. Start/stop by one input

- 1) By pressing pushbutton X000, the start output Y001 is put in action.
- 2) By pressing pushbutton X000 again, the stop output Y000 is put in action.



#### 2. Flicker operation

- 1) When the input X006 is turned ON, the contact of timer T2 operates momentarily in every 5 seconds.
- 2) Every time the contact of T2 is turned ON, the output Y007 is alternately turned ON/OFF.

[Structured ladder/FBD]



3. Alternate output operation using auxiliary relay (M) (same operation as ALT command) The following circuit shows an example of alternate operation by using the basic command and auxiliary relay

(M) in the same operation as ALT command.

- 1) When the X000 is turned on, M0 is turned ON for one operation period only.
- 2) When M0 is turned ON for the first time, the Y000 operates by self-holding, and when turned ON second time, the self-holding function is canceled.

[Structured ladder/FBD]	[ST]
X000 M1 H X000 X000 H M 1	OUT(X000 AND NOT M1, M0); OUT(X000); OUT((M0 OR NOT Y000) OR (NOT M0 AND Y000), Y000));
M0 Y000 II # M0 Y000 M0 Y000 # II	

# 13.8 RAMP / Ramp Variable Value

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	0	0

## Outline

This is a command for obtaining data changing n times when designated between the beginning (initial value) and the end (target value).

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
RAMP	16 bits	Continuous	RAMP EN ENO s1 d s2 n	RAMP(EN, s1, s2, n, d);

# 2. Set data

	Variable	Description	Data type
	EN	Execution condition	Bit
Input	(s1)	Device storing initial value of ramp, setting of target value	ANY16
variable	<u>(s2</u> )	Device storing initial value of ramp, setting of target value	ANY16
	n	Number of transfer scan times of ramp	ANY16
Output	ENO	Execution state	Bit
variable	d	Device storing data of present value of ramp (2 points occupied)	ANY16(01)

# 3. Applicable devices

			Bit	t De	evi	ces	S						Wo	rd D	evice	s						0	thers	
Operand type		;	Sys	ste	m	use	ər	Diç	git de	signat	ion	s	yst	em	user	Special unit		I	ndex	Co ta	ns nt	Real number	Character string	Pointer
	х	Y	Μ	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	E	"0"	Р
<u>(s1</u> )														•	▲2				•					
<u>(s2</u> )														•	▲2				•					
n														▲1	▲2					•	•			
d														٠	▲2				•					

▲: Refer to "Cautions".

11

#### 1. 16-bit operation(RAMP)

The starting value and the desired end value are designated in  $\underline{s1}$  and  $\underline{s2}$ , and when the command input is turned ON, the value equally divided by the number of times designated in n is added to  $\underline{s1}$  sequentially in every operation period, and the sum is stored in the device designated in  $\underline{d}$ .

This command and the analog output are combined, and the cushion start/stop command can be issued.



- In d+1, scan times (0 to n times) is stored.
- The time from start till end is scanned by operation period  $\times$  n times.
- When the command input is turned OFF in the midst of operation, the execution is interrupted (present value data of d is held, and d+1 scan times is cleared), and when turned ON again, d is cleared, and the operation is resumed from s1.
- After completion of transfer, the command execution complete flag M8029 is active, and the value of d returns to the value of s1.



When obtaining operation results at specific time intervals (constant scan mode)
 Write specified scan time in D8039 (a slightly longer value than actual scan time), and when the M8039 is turned ON, the PLC is set in constant scan mode.

When this value is, for example, 20 ms and designated by n=100 times, the value of  $\bigcirc$  changes from  $\bigcirc$  to  $\bigcirc$  n 20 seconds.

#### 2. Operation of mode flag (M8026)

In FXU (V1.20 or higher), FX2C, FX2N, FX2NC, FX3U and FX3UC PLCs, by ON/OFF switching of mode flag M8026, the content of d+1 is changed as follows.

FX0S, FX0, FX0N, FX1S, FX1N, FX3S, FX3G and FX3GC PLCs operate same as when the M8026 is turned ON. FXU (V1.1 or lower) PLC operates same as when the M8026 is turned OFF.

- 1) In the case of M8026=OFF
- 2) In the case of M8026=ON



#### **Related devices**

#### $\rightarrow$ As for the method of using the command execution complete flag, see paragraph 1.3.4.

Device	Name	Content
M8029	Command execution complete	After n operation periods, when becoming $(\underline{d}) = (\underline{s2})$ , the device is turned ON.
M8026*1	RAMP mode	See the Operation of mode flag (M8026) explained above.

*1. Cleared when changed from RUN to STOP (applicable only in FX3U, FX3UC, FX2N, FX2NC, FX2C, FXU PLCs).

#### Cautions

When designating power failure hold device (keep region) in the device designated in d
 When desired to keep the PLC in RUN (start) state while the command input is ON, the device designated in d should be cleared beforehand.

#### 2. Some restrictions to applicable devices.

- ▲1: The FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲2: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

11

Applied Instructions (Data Operation)

12

nstructions

3

nstructions

# 13.9 ROTC / Rotary Table Control

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	0	×	×

# Outline

This is a command suited for turning the table by a shortcut route depending on the demanding window when putting on or taking out articles on the rotary table.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
ROTC	16 bits	Continuous	ROTC – EN ENO – – s d – – m1 – m2	ROTC(EN, s, m1, m2, d);

# 2. Set data

١	Variable	Description	Data type
	EN	Execution condition	Bit
Input	S	Data register for counting (3 points occupied)	ARRAY [02] OF ANY16
variable	(m1)	Number of divisions	ANY16
	(m2)	Number of low speed sections	ANY16
Output	ENO	Execution state	Bit
variable	d	Beginning bit device to be driven (8 points occupied)	ARRAY [07] OF Bit

# 3. Applicable devices

			Bi	t D	ev	ice	s					١	No	rd I	Dev	/ic	es						0	thers	
Operand type			Sy	ste	m	us	er	Di	git de	signat	tion		Sy u	ste Ise	em r		Special unit		I	ndex	Co ta	ns nt	Real number	Character string	Pointer
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	S	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
s														•		2				•					
(m1)																					•	•			
(m2)																					•	•			
d		•	•			•	▲1													•					

▲: Refer to "Cautions".

# 1. 16-bit operation(ROTC)

As shown below, in order to put on or take out articles on the rotary table divided into m1 sections (=10), depending on the demanding window, the table is controlled and moved by a shortcut route in the condition designated in m2 or s and d.



#### 1) Designation register of call condition s

S	Register for counting	
s+1	Setting of calling window number	To be set preliminarily by transfer command
<u>s</u> +2	Setting of calling article number	

#### 2) Designation bit of calling condition d

(d):	Phase A signal	
d +1	Phase B signal	
+2	0 point detection signal	
(d)+3	High speed normal rotation	Internal contact circuit to be driven is preliminarily composed
d +4	Low speed normal rotation	of input signal (X).
d +5	Stop	
d+6	Low speed reverse rotation	
+7	High speed reverse rotation	

# **Operation condition**

The condition necessary for using this command is as shown in the example below.

- 1) Rotation detection signal:  $X \rightarrow \bigcirc$ 
  - a) Please install two-phase switch (X000, X001) for detecting normal rotation/reverse rotation of table, and switch X002 for operating when article number 0 comes to window number 0.
  - b) Create sequence program as shown in the example below.



By X000 to X002, you can exchange with internal contacts of  $(\underline{d})$  to  $(\underline{d})$ +2. Beginning device number for designating  $\times$  or  $(\underline{d})$  is arbitrary.

- Designation of register for counting: s
  is a counter for counting article of which number is coming to window number 0.
- 3) Designation register of calling condition: <u>s+1</u>, <u>s+2</u>
  - a) In (s)+1, you can set the window number desired to be called.
  - b) In <u>s</u>+2, you can set the article number desired to be called.
- Division number m1 and low speed period m2 To designate division number m1 of table and low speed operation section m2.

When the above condition is designated, the output of normal/reverse rotation, high speed/low speed/stop will be obtained in the output of  $\bigcirc$  +3 to  $\bigcirc$  +7 designated in the beginning device  $\bigcirc$  of the command.

# Cautions

#### 1. Operation by ON/OFF of command input

- When this command is driven by turning ON the command input, results of d+3 to d+7 will be obtained automatically.
- By turning OFF the command input, d+3 to d+7 are turned OFF.

# 2. Operation of plural times in one division section of article of rotation detection signal ( d to d+2)

For example, rotation detection signal ( $\bigcirc$  to  $\bigcirc$ +2) operates 10 times in one division section of article, setting of division number, setting of calling window number, and setting of article number should be all multiplied by 10.

As a result, the set value of low speed section can be set in an intermediate value of division number.

#### 3. 0 point detection signal d

When the command input is ON and 0 point detection signal (M2) is turned ON, the content of register for counting <u>s</u> is cleared to 0. You must start operation by executing this clearing operation beforehand.

#### 4. Some restrictions to applicable devices.

- ▲1: The FX3U and FX3UC PLCs only are applicable.
  - However, index modifier (V, Z) is not applicable.
- ▲2: The FX3U and FX3UC PLCs only are applicable.

# 13.10 SORT / SORT Tabulated Data

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	Δ	×	×

#### Outline

This command reshuffles the data table composed of data (columns) and group data (rows) in the ascending order in column unit on the basis of designated group data (rows). In this command, the group data (rows) is stored in continuous devices. Similarly, in SORT2 command, data (columns) is stored in continuous devices, so that the data (columns) may be added easily, and reshuffling is applicable in both ascending order and descending order.

#### $\rightarrow$ As for SORT2 command, see paragraph 19.7.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
SORT	16 bits	Continuous	SORT - EN ENO - s d - m1 - m2 - n	SORT(EN, s, m1, m2, n, d);

# 2. Set data

1	/ariable	Description	Data type
	EN	Execution condition	Bit
	S	Beginning device storing data table (m1xm2 points occupied)	ANY16
Input variable	(m1)	Number of data (columns)	ANY16
	(m2)	Number of group data (rows)	ANY16
	n	Row of group data (rows) as basis of reshuffling	ANY16
Output	ENO	Execution state	Bit
variable	d	Beginning device storing arithmetic results (m1 $\times$ m2 points occupied)	ANY16

#### 3. Applicable devices

			Bit	t D	ev	ice	s					۷	Voi	rd I	Devid	es						0	thers	
Operand type			Sys	ste	m	us	er	Digit designation System user			Special unit		I	ndex	Co ta	ons Int	Real number	Character string	Pointer					
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U 🗆 \G 🗆	۷	Z	Modifier	κ	н	Е	"0"	Р
s														•	▲1									
(m1)																				•	•			
(m2)																				•	•			
n														•	<b>▲</b> 1					•	•			
d														•	<b>▲</b> 1									

▲: Refer to "Cautions".

Instructions

#### 1. 16-bit operation(SORT)

This command reshuffles the data table (reshuffling origin) composed of  $(m1 \times m2)$  points from the device designated in  $\bigcirc$  in the ascending order in data columns on the basis of n rows of group data, and stores in the data table (after reshuffling) of  $(m1 \times m2)$  points from the device designated in  $\bigcirc$ .



• The data table composition is explained in an example of m1=K3, m2=K4 at the reshuffling origin. After reshuffling, replace s with d in data table composition.

F	Row		Group number m2 (in	n the case of m2=K4)			
num	ber	1	2	3	4		
Column number		Management number	Height	Weight	Age		
In the case of	1	S	<u>s</u> +3	<u>s</u> +6	<u>s</u> +9		
data	2	<u>s</u> +1	<u>s</u> +4	<u>s</u> +7	<u>s</u> +10		
m1=K3	3	<u>s</u> +2	<u>s</u> +5	<u>s</u> +8	<u>s</u> +11		

• When the command input is turned ON, the data arraying is started, and after m1 scan, the data arraying is completed, and the command execution complete flag M8029 is turned ON.

#### $\rightarrow$ As for the method of using the command execution complete flag, see paragraph 1.3.4.

#### 2. Operation examples

When the following reshuffling origin data is executed in "n=K2 (row number 2)" and "n=K3 (row number 3)", the operation is as follows.

When a serial number such as management number is entered in the first row, it is convenient because you can judge the original column number by its content.

#### Reshuffling origin data

	Row	G	roup number m2 (i	n the case of m2=K	4)		
	number	1	2	3	4		
Column number		Management number	Height	Weight	Age		
	1	s	<u>s</u> +5	<u>s</u> +10	<u>s</u> +15		
In the	•	1	150	45	20		
	2	<u>s</u> +1	<u>s</u> +6	<u>s</u> +11	<u>s</u> +16		
	_	2	180	50	40		
case of data	3	<u>s</u> +2	<u>s</u> +7	<u>s</u> +12	<u>s</u> +17		
number	, i i i i i i i i i i i i i i i i i i i	3	160	70	30		
m1=K5	4	<u>s</u> +3	<u>s</u> +8	<u>s</u> +13	<u>s</u> +18		
	-	4	100	20	8		
	5	<u>s</u> +4	<u>s</u> +9	<u>s</u> +14	<u>s</u> +19		
	, i i i i i i i i i i i i i i i i i i i	5	150	50	45		

11

Applied Instructions (Data Operation)

12

ructions

nstructions

14 Applied Instructions (External FX I/O Device)

died Instructions

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

ning

13

#### 1) Reshuffling results when command is executed in n=K2 (row number 2)

Row				
number	1	2	3	4
Column number	Management number	Height	Weight	Age
1	<u>(\$3)</u>	<u>s3</u> +5	<u>(s3)</u> +10	<u>s</u> 3)+15
·	4	100	20	8
2	<u>(s3)</u> +1	<u>(s3)</u> +6	<u>(s3)</u> +11	<u>s</u> 3)+16
L	1	150	45	20
a	<u>(s3)</u> +2	<u>(s3)</u> +7	<u>(s3)</u> +12	<u>s</u> 3)+17
5	5	150	50	45
4	<u>(s3)</u> +3	<u>(s3)</u> +8	<u>(s3)</u> +13	<u>s</u> 3)+18
7	3	160	70	30
5	<u>(s3)</u> +4	<u>(s3)</u> +9	<u>(s3)</u> +14	<u>s</u> 3)+19
5	2	180	50	40

2) Reshuffling results when command is executed in n=K3 (row number 3)

Row number	1	2	3	4
Column number	Management number	Height	Weight	Age
1	<u>(s3)</u>	<u>(s3)</u> +5	<u>s</u> 3)+10	<u>s</u> 3)+15
•	4	100	20	8
2	<u>(s3)</u> +1	<u>(s3)</u> +6	<u>s</u> 3)+11	<u>s</u> 3)+16
2	1	150	45	20
3	<u>(s3)</u> +2	<u>(s3)</u> +7	<u>s</u> 3)+12	<u>s</u> 3)+17
0	2	180	50	40
4	<u>(s3)</u> +3	<u>(s3)</u> +8	<u>s</u> 3)+13	<u>s</u> 3)+18
	5	150	50	45
5	<u>(s3)</u> +4	<u>(s3)</u> +9	<u>s3</u> +14	<u>s</u> 3)+19
5	3	160	70	30

# **Related devices**

#### ightarrow As for the method of using the command execution complete flag, see paragraph 1.3.4.

Device	Name	Content
M8029	Command execution complete	To be ON when data arraying is complete.

## Cautions

- 1) Do not change the content of operand or data during operation.
- 2) When resuming the execution, once turn OFF the command input.
- Limit of number of times of use of command Usable only once in the program.
- 4) When designating same device in s and d
  The original data is rewritten in the data sequence after reshuffling.
  In particular, never change the content of the device designated in s until the completion of execution.
- 5) FXU PLC supports the command by V3.07 or higher.
- 6) Some restrictions to applicable devices.
  ▲1: The FX₃U and FX₃UC PLCs only are applicable.

# 14. Applied Instructions (External FX I/O Device)

This chapter introduces the instructions to receive data from and send data to external devices mainly using inputs and outputs in PLCs.

Instruction name	Function	Reference		
TKY	Ten Key Input	Section 14.1		
DTKY		Section 14.1		
HKY		Section 14.2		
DHKY		3601011 14.2		
DSW	Digital Switch (Thumbwheel Input)	Section 14.3		
SEGD	Soven Segment Deceder	Section 14.4		
SEGDP	Seven Segment Decoder	3601011 14.4		
SEGL	Seven Segment With Latch	Section 14.5		
ARWS	Arrow Switch	Section 14.6		
ASC	ASCII Code Data Input	Section 14.7		
PR	Print (ASCII Code)	Section 14.8		
FROM				
FROMP	Poord From A Special Function Plack	Section 14.0		
DFROM		3601011 14.9		
DFROMP				
ТО				
TOP	Write To A Special Eulertian Plack	Section 14 10		
DTO		Section 14.10		
DTOP	1			

# 14.1 TKY / Ten Key Input

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	0	×	×

# Outline

This is a command for setting data in the timer or counter by the input of numeric keys 0 to 9.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
ТКҮ	16 bits	Continuous	TKY — EN ENO — s d1 _ d2 	TKY(EN, s, d1, d2);
DTKY	32 bits	Continuous	DTKY — EN ENO — s d1 d2	DTKY(EN, s, d1, d2);

# 2. Set data

			Data	type	
V	ariable	Description	16-bit operation	32-bit operation	
Input	EN	Execution condition	Bit		
variable	S	Beginning bit device for entering numeric keys (10 points occupied)	ARRAY [09] OF Bit		
	ENO	Execution state	Bit		
Output	<u>(d1)</u>	Word device for storing data	ANY16	ANY32	
variable	<u>d</u> 2	Beginning bit device for turning ON key pushing information (11 points occupied)	ARRAY [010] OF Bit		

# 3. Applicable devices

	Bit Devices								Word Devices														Others					
Operand type	System user		er	Digit designation				System user				Special unit		I	ndex	Co ta	ns nt	Real number	Character string	Pointer								
	Х	Y	м	Т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р				
s	•	•	•			•	▲1												•									
(d1)									٠	٠	٠	•	•	•	▲2	▲2	•	•	•									
<u>d2</u> )		•	•			•	▲1												•									

▲: Refer to "Cautions".

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

ied Instructions

#### 1. 16-bit operation(TKY)

By pressing key from the input for connecting the numeric keys (device designated in  $\bigcirc$ ), the entered numerical value is stored in the device designated in  $\bigcirc$ , and the key pushing information and key sense output are issued to the device designated in  $\bigcirc$ .

- 1) Entered numerical value
  - If more than 9,999, the value overflows from the higher digits.
  - The entered numerical value is stored in the BIN (binary) value.
  - In the diagram of next page, when numeric keys are pressed in the sequence of 1, 2, 3, 4, then "2,130" is stored in the device designated in <u>d1</u>.

#### 2) Key pushing information

- Key pushing information of <u>d2</u> to <u>d2</u>+9 is turned ON/OFF depending on the pushed key.
- Key sense output of  $(\underline{d2})$ +10 is ON when either key is being pushed.



Key sense output

2,130 is stored in  $(\underline{d1})$ .

11

Applied Instructions (Data Operation)

12

nstr ructions

13

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

ed Instructions a Operation 2)

20

nstructions

#### 2. 32-bit operation(DTKY)

By pressing key from the input for connecting the numeric keys (device designated in s), the entered numerical value is stored in the device designated in (d1), and the key pushing information and key sense output are issued to the device designated in (d2).

- 1) Entered numerical value
  - If more than 99,999,999, the value overflows from the higher digits.
  - The entered numerical value is stored in the BIN (binary) value.
- 2) Key pushing information
  - Key pushing information of (d2) to (d2)+9 is turned ON/OFF depending on the pushed key.
  - Key sense output of  $(d_2)$ +10 is ON when either key is being pushed.



As for numeric key connection example and key pushing information, see the above explanation of 16-bit operation (TKY).

# Cautions

#### 1. When keys are pressed simultaneously

When plural keys are pressed, only the first pressed key is valid.



[ST]	2. When comm	and contact is turned
TKY(X03	30. X000. D0. M10):	OFF
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	If turned OFF, the
	content of d1 is no	ot changed, but all of $(d2)$
	to (d2)+10 are turn	ed OFF.

#### 3. Number of bits occupied

1) When a numeric key is connected, 10 points are occupied from (s). When numeric key is not connected (not used), the devices are occupied and cannot be used in other applications.

- 2) A total of 11 points are occupied from the beginning device (d2) for output of key pushing information. Be careful not to overlap with the device used in control of machine.
  - $(d_2)$  to  $(d_2)$ +9: Turned ON corresponding to the input of numeric keys 0 to 9.
  - (d2)+10: Kept ON while any one of 0 to 9 is being pressed (key sense output).

#### 4. Limit of number of times of use of command

Only one of TKY command and DTKY command can be used in the program. If desired to use plural times, you can program by the index modifier (V, Z) function.

#### 5. Some restrictions to applicable devices.

- ▲1: The FX₃U and FX₃UC PLCs only are applicable.
  - However, index modifier (V, Z) is not applicable.
- ▲2: The FX₃U and FX₃UC PLCs only are applicable.

## **Program examples**

This is an explanation of an example in which the input X000 is the beginning, and numeric keys 0 to 9 are connected.

#### 1. Program



[ST] TKY(X030, X000, D0, M10);

#### 2. Wiring diagram

This wiring diagram is an example of FX_{3U} PLC (sync input). As for the actual wiring connection, see the manual of the PLC.



#### 3. Timing chart

1) When numeric keys are pressed in the sequence of 1, 2, 3, 4, the content of D0 is 2,130.

Numerical value more than 9,999 overflows sequentially from the upper digits. (The actual content of D0 is BIN data.)

- When X002 is pressed, M12 is set (ON) until other key is pressed. It is the same when other key is pressed. Thus, depending on the operation of input X000 to X011, operation of M10 to M19 is carried out.
- 3) When any key is pressed, the key sense output M20 is kept ON while being pressed.



Key sense output

# 14.2 HKY / Hexadecimal Input

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)
0	×	×	0	×	×	0	×	×

## Outline

This is a command for setting the input data of numerical value (0 to 9) or operation condition (function keys A to F), by the input of keys from 0 to F (16 keys).

When the extension function is turned ON, the key input is entered in hexadecimal notation by keys 0 to F.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language									
name	Operation	form	Structured ladder/FBD	ST								
НКҮ	16 bits	Continuous	HKY EN ENO s d1 d2 d3	HKY(EN, s, d1, d2, d3);								
DHKY	32 bits	Continuous	DHKY — EN ENO — s d1 — d2 — d3	DHKY(EN, s, d1, d2, d3);								

# 2. Set data

			Data	type			
v	/ariable	Description	16-bit operation	32-bit operation			
Input	EN	Execution condition	Bit	·			
variable	S	Beginning device for entering 16 keys (X) (4 points occupied)	ARRAY [03] OF Bit				
	ENO	Execution state	Bit				
Output	<u>(d1)</u>	Beginning device for sending output (Y) (4 points occupied)	ARRAY [03] OF	Bit			
variable	<u>d</u> 2	Device for storing numerical value entered from 16 keys	ANY16	ANY32			
	<u>d</u> 3	Beginning bit device for turning ON key pushing information (8 points occupied)	ARRAY [07] OF Bit				

# 3. Applicable devices

	Bit Devices					s	Word Devices										Others							
Operand type			Sy	ste	m	us	er	Dig	git de	signat	ion		Sy u	ste Isel	r r	Special unit	Index		Cons Real Character tant number string		Character string	Pointer		
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
S	•																		•					
<u>d1</u> )		•																	•					
d2)												•	•	•	▲2	▲2	•	•	•					
<u>d</u> 3		•	٠			•	▲1												•					

▲: Refer to "Cautions".

# 1. 16-bit operation(HKY)

The numerical value scanned by the signals of the input for connecting 16 keys (0 to F) (device designated in (3)) and the row output (device designated in (3)) and by pressing keys 0 to 9 is stored in the device designated in (3).

When any one of keys A to F is pressed, the key pushing information corresponding to the key (device designated in (3)) is turned ON, and the key sense output (device designated in (3)) is issued.



- 1) Numerical value input by keys 0 to 9
  - If more than 9,999, the value overflows from the higher digits.
  - The entered numerical value is stored in (d2) as BIN (binary) value.
  - The key sense output (d3) +7 is turned ON by pressing any one of keys 0 to 9.
- 2) Key pushing information of keys A to F
  - To turn ON 6 points from (d3) corresponding to any one of keys A to F.
  - The key sense output (d3)+6 is turned ON by pressing any one of keys A to F.

Key	Key pushing information	Key	Key pushing information					
А	<u>(d3</u> )	D	<u>(d3)</u> +3					
В	(d3)+1	E	<u>(d3)</u> +4					
С	(d3)+2	F	(d3) +5					

#### 2. 32-bit operation(DHKY)

The numerical value scanned by the signals of the input for connecting 16 keys (0 to F) (device designated in  $(\underline{d})$ ) and the row output (device designated in  $(\underline{d})$ ) and by pressing keys 0 to 9 is stored in the device designated in  $(\underline{d})$ , and the key sense output is issued to the device designated in  $(\underline{d})$ .

When any one of keys A to F is pressed, the key pushing information corresponding to the key (device designated in (3)) is turned ON, and the key sense output (device designated in (3)) is issued.



- 1) Numerical value input by keys 0 to 9
  - If more than 99,999,999, the value overflows from the higher digits.
  - The entered numerical value is stored in (<u>d2</u>+1, <u>d2</u>) as BIN (binary) value.
  - The key sense output (d3) +7 is turned ON by pressing any one of keys 0 to 9.
- Key pushing information of keys A to F As for the key pushing information, refer to the previous page on 16-bit operation (HKY).
11

Applied Instructions (Data Operation)

12

edInstructions Speed essing)

13

Applied Instr (Handy Instruction

nstructions

14

Applied (Extern

nal FX

1/O

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

# **Extension function**

When the extension function is validated by turning ON the M8167, the hexadecimal key pushing data of 0 to F is stored in BIN.

Except for the following, this is same as the "function and operation explanation" given above. FXU PLC: V2.30 or lower has no extension function.

# 1. 16-bit operation(HKY)

Hexadecimal data entered by keys 0 to F is directly written into the device designated in  $\boxed{d2}$ .

- 1) Numerical value input by keys 0 to F
  - If more than FFFF, the value overflows sequentially from the upper digits.
  - Example:

In the case of input of  $1 \rightarrow 2 \rightarrow 3 \rightarrow B \rightarrow F$ , "23BF" is stored in BIN in the device designated in (d2). That is, 1 overflows at the time of input of F.



## 2. 32-bit operation(DHKY)

Hexadecimal data entered by keys 0 to F is directly written into the device designated in  $\boxed{d2}$ .

- 1) Numerical value input by keys 0 to F
  - If more than FFFFFFF, the value overflows sequentially from the upper digits.
  - Example:

In the case of input of 9  $\rightarrow$  2  $\rightarrow$  3  $\rightarrow$  B  $\rightarrow$  F  $\rightarrow$  A  $\rightarrow$  F, "923BFAF" is stored in BIN.



# **Related devices**

#### ightarrow As for the method of using the command execution complete flag, see paragraph 1.3.4.

Device	Name	Content
M8167	Function extension flag	HEX data handling function of HKY command OFF : numeric key + function key ON : hexadecimal key
M8029	Command execution complete	OFF : During scanning from <a href="mailto:d1">d1</a> to <a href="mailto:d1">d1</a> +3, or command not executed         ON : To be turned ON after one-cycle operation of <a href="mailto:d1">d1</a> to <a href="mailto:d1">d1</a> +3 output (key scan of 0 to F).

# Cautions

## 1. Limit of number of times of use of command

Only one of HKY command and DHKY command can be used in the program. If desired to use plural times, you can program by the index modifier (V, Z) function.

2. When keys are pressed simultaneously

When plural keys are pressed, only the first pressed key is valid

## 3. When command contact is turned OFF

If turned OFF, the content of d2 is not changed, but all of d3 to d3 +7 are turned OFF.

## 4. Number of bits occupied

- 1) To occupy 4 points for connecting 16 keys from the beginning device  $\bigcirc$  of input (X).
- 2) To occupy 4 points for connecting 16 keys from the beginning device (1) of output (Y).
- 3) To occupy 8 points from beginning device (d3) for output of key pushing information.

Be careful not to overlap with the device used in control of the machine.

- (d3) to (d3)+5 : Key pushing information of keys A to F
- (d3)+6 : Key sense output of keys A to F.

- d3+7 : Key sense output of keys 0 to 9

## 5. Intake timing of key input

HKY and DHKY commands are executed simultaneously with the operation period of PLC.

At the end of a series of key scan, a time of 8 scans is needed.

To prevent intake error due to filter delay of key input, you can utilize the function of "constant scan mode" or "timer interruption."

## 6. Output format

Select and use the PLC of transistor output type.

#### 7. Some restrictions to applicable devices.

- ▲1: The FX3U and FX3UC PLCs only are applicable.
- However, index modifier (V, Z) is not applicable.
- ▲2: The FX₃U and FX₃UC PLCs only are applicable.

[ST]

# **Program examples**

[Structured ladder/FBD]



HKY(X004, X000, Y000, D0, M0);

The wiring diagram below is an example of basic unit (sync input/sync output) of FX₃U series. For the actual wiring connection, see the manual of the PLC.



# 14.3 DSW / Digital Switch (Thumbwheel Input)

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	×	×

# Outline

This is a command for reading in the set value of digital switch. You can read in the data of 4 digits and 1 set (n=K1), or 4 digits and 2 sets (n=K2).

## 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
DSW	16 bits	Continuous	DSW EN ENO s d1 n d2	DSW(EN, s, n, d1, d2);

# 2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
Input variable	S	Beginning device for connecting digital switch (X) (4 points occupied)	Bit
Vallabio	n	Number of sets of digital switch (4 digits/1 set) [n=1 or 2]	ANY16
	ENO	Execution state	Bit
Output variable	<u>(d1)</u>	Beginning device of output of strobe signal (Y) (4 points occupied)	ARRAY [03] OF Bit
	<u>d</u> 2	Device for storing numerical value of digital switch (n points occupied)	ANY16

## 3. Applicable devices

			Bi	t D	ev	ice	s					V	Voi	d [	Devid	es				Others						
Operand type		;	Sys	ste	m	us	er	Digit designation				System user			Special unit	Index			Cons tant		Real number	Real Character umber string				
	X	Y	Μ	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	V Z Modifier		κ	н	E	"0"	Р		
s	•																	•								
n																				•	•					
<u>d1</u> )		•																	•							
(d2)												•	•	•	▲1	▲2	•	•	•							

▲: Refer to "Cautions".

11

# Function and operation explanation

#### 1. 16-bit operation(DSW)

The value of digital switch connected to the device designated in  $\bigcirc$  is processed by time division (entered sequentially from the first digit by output signals at 100 ms intervals), and stored in the device designated in  $\bigcirc$   $\bigcirc$  .



- 1) Data (d1)
  - You can read up to 4 digits from 0 to 9,999.
  - Data is stored in BIN (binary value).
  - First set is stored in  $(d_2)$ , and second set in  $(d_2)$ +1.
- 2) Designation of number of sets n
  - When using 4 digits and 1 set × 1 (n=K1)
     Digital switch of 4 digits in BCD connected to s to s+3 is sequentially read in by strobe signals
     d1 to d1+3, and stored in d2 as BIN value.
  - When using 4 digits and 1 set × 2 (n=K2)
     Digital switch of 4 digits in BCD connected to s to s+3 is sequentially read in by strobe signals
     d1 to d1+3, and stored in d2 as BIN value.
  - Digital switch of 4 digits in BCD connected to <u>s</u>+4 to <u>s</u>+7 is sequentially read in by strobe signals <u>d1</u> to <u>d1</u>+3, and stored in <u>d2</u>+1 as BIN value.

#### **Related devices**

#### $\rightarrow$ As for the method of using the command execution complete flag, see paragraph 1.3.4.

Device	Name	Content
M8020	Command execution	OFF : Scan continuous or command not executed from (d1) to (d1) +3.
10025	complete	ON : ON after one-cycle operation of d1 to d1 +3 output (scan of 1 to 4 digits)

#### Cautions

#### 1. When command contact is turned OFF

If turned OFF, the content of <u>d</u>² is not changed, but all of <u>d</u>¹ to <u>d</u>¹+3 are turned OFF.

#### 2. Number of bits occupied

- 1) When 4 digits and 2 sets (n=K2) are used, 2 points are occupied from d2.
- 2) s occupies 4 points in the case of 4 digits and 1 set, and occupies 8 points in the case of 4 digits and 2 sets.

#### 3. When connecting a digital switch of less than 4 digits

The wiring of strobe signal <output for digit designation> d1 is not needed in the digit not in use, but the output for digit not in use is occupied by this command, and cannot be used in other application. The output not in use must be always kept vacant.

#### 4. We recommend to use the transistor output type.

To take in the values of digital switch continuously, you must use the PLC of transistor output.

ightarrow As for the relay output type, refer to the "Method of using by relay output type" shown later.

#### 5. Digital switch

Use the digital switch of BCD output.

#### 6. Some restrictions to applicable devices.

- ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲2: The FX₃U and FX₃UC PLCs only are applicable.

# **Program examples**

This is an example of explaining connection of digital switch starting from the input X010 and starting from the digit designation output Y010.

#### 1. Program



[ST] DSW(X000, X10, K1, Y10, D0);

#### 2. Wiring diagram

This wiring connection diagram is an example of basic unit of FX_{3U} series (sync input/sync output). As for the actual wiring, see the manual of the PLC.



#### 3. Timing chart

X000					
Y010	0.1 sec	Repeated operation	d 🔬 0.1 se	ec	0.1 sec
Y011	0.1	sec			
Y012		0.1 sec		Ŕ	Interrupt
Y013		0.1 s	ec		
M8029 C	Complete	flag	_it		

Y010 to Y013 are turned ON sequentially in every 100 ms while X000 is being turned ON, and when operation of one cycle is over, the execution complete flag M8029 is set up.

## 4. Method of using by relay output type

You can also use the relay output type PLC by providing with "digital switch reading input." When pushbutton (X000) is pressed, the DSW performs a series of operations. In the case of this program, if Y010 to Y013 are relay outputs, there is no problem in relay contact life.



- 1) DSW is operating while the M0 (digital switch reading input) is being ON.
- DSW continues to operate until operation of one cycle is over and execution complete flag (M8029) is set up.

# 14.4 SEGD / Seven Segment Decoder

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	0	×	×

# Outline

This is a command for lighting up the 7-segement display unit (1 digit) by decoding the data.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
SEGD	16 bits	Continuous	SEGD EN ENO s d	SEGD(EN, s, d);
SEGDP	16 bits	Pulse	SEGDP — EN ENO — — s d —	SEGDP(EN, s, d);

# 2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Beginning word device to be decoded	ANY16
Output	ENO	Execution state	Bit
variable	d	Word device for storing 7-segment display data	ANY16

# 3. Applicable devices

			Bi	t D	evi	ice	s		Word Devices												Others						
Operand type	System user							Digit designation					Sy u	ste Ise	em r	Special unit	l Index		ndex	Co ta	Cons Real tant number		Character string	Pointer			
	х	Y	М	т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р			
S								•	٠	•	•	•	•	•	▲1	▲1	•	•	•	•	•						
d									٠	•	•	•	•	•	▲1	▲1	•	•	•								

▲: Refer to "Cautions".

# Function and operation explanation

# 1. 16-bit operation(SEGD, SEGDP)

0 to F (hexadecimal) of lower 4 bits (1 digit) of the device designated in <u>s</u> are decoded into 7-segment display data, and stored in lower 8 bits of the device designated in <u>d</u>.



11

Applied Instructions (Data Operation)

	S	)			Composition of 7			d											
Hexadecimal	b3	b2	b1	b0	segments	B15	•••	<b>B</b> 8	B7	B6	B5	B4	<b>B</b> 3	B2	B1	B0	Display data		
0	0	0	0	0		-		-	0	0	1	1	1	1	1	1	۵		
1	0	0	0	1		-		-	0	0	0	0	0	1	1	0	1		
2	0	0	1	0		-		-	0	1	0	1	1	0	1	1	2		
3	0	0	1	1		-		-	0	1	0	0	1	1	1	1	3		
4	0	1	0	0		-		-	0	1	1	0	0	1	1	0	Ч		
5	0	1	0	1		-		-	0	1	1	0	1	1	0	1	S		
6	0	1	1	0	BO	-		-	0	1	1	1	1	1	0	1	8		
7	0	1	1	1	B5 B6 B1	-		-	0	0	1	0	0	1	1	1	ר		
8	1	0	0	0	B4 B2	-		-	0	1	1	1	1	1	1	1	8		
9	1	0	0	1	B3	-		-	0	1	1	0	1	1	1	1	3		
А	1	0	1	0		-		-	0	1	1	1	0	1	1	1	R		
В	1	0	1	1		-		-	0	1	1	1	1	1	0	0	Ь		
С	1	1	0	0		-		-	0	0	1	1	1	0	0	1	Ľ		
D	1	1	0	1		-		-	0	1	0	1	1	1	1	0	6		
E	1	1	1	0		-		-	0	1	1	1	1	0	0	1	Е		
F	1	1	1	1		-		-	0	1	1	1	0	0	0	1	F		
																1			

# 2. 7-segement decoding table

B0 is the beginning of bit device or the lowest bit of the word device.

# Cautions

- Number of bits occupied Lower 8 bits from the output of the device designated in <a>d</a> are occupied, and the upper 8 bits are not changed.
- Some restrictions to applicable devices.
   ▲1: The FX₃U and FX₃UC PLCs only are applicable.

# 14.5 SEGL / Seven Segment With Latch

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	0	×	×

# Outline

This is a command for controlling the 7-segment display unit with latch of 4 digits and 1 set or 4 digits and 2 sets.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language						
name	operation	form	Structured ladder/FBD	ST					
SEGL	16 bits	Continuous	SEGL - EN ENO - s d - n	SEGL(EN, s, n, d);					

## 2. Set data

١	/ariable	Description	Data type
Input variable	EN	Execution condition	Bit
	S	Beginning word device for BCD conversion • n=K(H)0 to K(H)3: 1 point occupied • n=K(H)4 to K(H)7: 2 points occupied	ANY16
	n	Parameter	ANY16
	ENO	Execution state	Bit
Output variable	d	Beginning device to be output (Y) <ul> <li>n=K(H)0 to K(H)3: 8 points occupied</li> <li>n=K(H)4 to K(H)7: 12 points occupied</li> </ul>	Bit

#### 3. Applicable devices

	_							_																
			Bi	t D	ev	ice	s					V	Noi	rd [	Devic	es					Others			
Operand type			Sy	ste	m	us	er	Di	git de	signat	tion		Sy u	ste Isel	r r	Special unit		I	ndex	Co ta	ons Int	Real number	Character string	Pointer
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
S								•	٠	•	•	•	•	•	▲1	▲2	•	•	•	●	•			
n																				●	•			
d		•																	•					

▲: Refer to "Cautions".

# Function and operation explanation

# 1. 16-bit operation(SEGL)

The 4-digit numerical value of the device designated in  $\bigcirc$  is converted into BCD data, and is sequentially divided in time digit by digit, and is sent into the 7-segment display unit with BCD decoder.



#### When using 4 digits and 1 set(n=K0 to K3)

#### $\rightarrow$ As for selection of "n", refer to section 14.5.2.

- Data and strobe signal The 4-digit numerical value of s is converted from BIN to BCD, and is issued sequentially by time division digit by digit from d to d+3. The strobe signal output (d+4 to d+7) is also issued sequentially by time division, and the 7segment display of 4 digits and 1 set is latched.
- 2) In  $\bigcirc$ , BIN data in a range of 0 to 9,999 is valid.
- Connection example of 7-segment display unit The following diagram show an example of FX_{3U} series basic unit (sync output). As for the actual wiring, see the manual of the PLC.



#### When using 4 digits and 2 sets(n=K4 to K7)

#### $\rightarrow$ As for selection of "n", refer to section 14.5.2.

- 1) Data and strobe signal
  - a) 4 digits, first set

The 4-digit numerical value of  $\underline{s}$  is converted from BIN to BCD, and is issued sequentially by time division digit by digit from  $\underline{d}$  to  $\underline{d}$  +3.

The strobe signal output (d+4 to d+7} is also issued sequentially by time division, and the 7-segment display of 4 digits and 1 set is latched.

b) 4 digits, second set
 The 4-digit numerical value of s+1 is converted from BIN to BCD, and is issued sequentially by time division digit by digit from d+10 to d+13.

The strobe signal output (d + 4 to d + 7) is also issued sequentially by time division, and the 7-segment display of 4 digits and 2 sets is latched. (The strobe signal output (d + 4 to d + 7) is common in each set.)

2) In (s) and (s)+1, BIN data in a range of 0 to 9,999 is valid.

11

Applied Instructions (Data Operation)

12

nstr

ructions

AppliedInstru (Handy Instruction)

nstructions

14

Applied Instructions (External FX I/O

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

nstructions ining

13

#### 3) Connection example of 7-segment display unit

The following diagram show an example of FX₃U series basic unit (sync output). As for the actual wiring, see the manual of the PLC.



## **Related devices**

#### $\rightarrow$ As for the method of using the command execution complete flag, see paragraph 1.3.4.

Device	Name	Content
M8029	Command execution complete	To be turned ON when output of 4 digits is over.

#### Cautions

#### 1. Time for updating 7-segement 4-digit display

The time for updating the display of 4 digits (1 set or 2 sets) is required by 12 times of the scan time (operation time).

#### 2. Operation when command input is turned OFF

While the command input is ON, the operation is repeated, but once the command contact is turned OFF during operation, the operation is interrupted, and when turned ON again, the operation is resumed from the beginning.

#### 3. Number of bits occupied

When using 4 digits and 1 set :	1 point is occupied from the beginning device designated in $\underline{s}$ . 8 points are occupied from the beginning device designated in $\underline{d}$ . If the number of digits is smaller, the remainder cannot be used in other application.
When using 4 digits and 2 sets:	2 points are occupied from the beginning device designated in $\underline{s}$ . 12 points are occupied from the beginning device designated in $\underline{d}$ . If the number of digits is smaller, the remainder cannot be used in other application.

#### 4. Scan time (operation period) and display timing

SEGL command is executed in synchronism with the scan time (operation period) of the PLC. For a series of display, the scan time of the PLC is required by 10 ms or more. If less than 10 ms, you can operate in the scan time of 10 ms or more by using the constant scan mode.

#### 5. Output format of PLC

Use the PLC of transistor output type.

#### 6. Some restrictions to applicable devices.

- ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲2: The FX3U and FX3UC PLCs only are applicable.

# 14.5.1 Selection procedure of 7-segment display unit

You can select the 7-segment display unit depending on the electrical content by referring to the example below.

#### $\rightarrow$ As for the actual wiring, see the hardware manual of the PLC main body.

#### 1. Check points by 7-segment specification

- Check if the data input, and input voltage and current characteristics of strobe signal are satisfying the output specification of the PLC or not.
  - Check if the input signal voltage (Lo) is about 1.5 V or less.
  - Check if the input voltage is DC 5 V to DC 30 V.
- 2) Check if the BCD decoding or latching function is provided or not.

# 14.5.2 Selection procedure of parameter n by specification of 7-segment display

The value to be set in parameter n varies with the signal logic of 7-segment display. Select in the following procedure.

A check column is provided in the final line of the table. Check the corresponding positive or negative logic, and select the parameter accordingly.

#### 1. Role of parameter n

Parameter n is a number selected depending on the logic (positive or negative) of 7-segment data input, the logic (positive or negative) of strobe signal, or control of 4 digits and 1 set or control of 2 sets.

#### 2. Check the output logic of the PLC

The transistor output of the PLC is available in two types, sync output and source output. The specification is different as shown below.



#### 3. Check the logic of the 7-segment display unit.

#### 1) Data input

Logic	Negative logic	Positive logic
Timing chart	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d     1     H     H       d     +1     2     H       d     +2     4       d     +3     8       7-segment     I     I       display     I     I
Explanation	Becoming BCD data at LOW level	Becoming BCD data at HIGH level
Logic check		

#### 2) Strobe signal

Logic	Negative logic	Positive logic
Timing chart	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} d \\ 1 \\ \vdots \\ d \\ +3 \\ d \\ +4 \\ to \\ d \\ +7 \\ H \\ to \\ bange \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Explanation	Data latched at LOW level is held	Data latched at HIGH level is held
Logic check		

## 4. Selection of parameter n

Select by referring to the table below depending on the positive or negative logic of the PLC side, and the positive or negative logic of the 7-segment display side.

PLC output logic	Data input	Strobe signal	Parameter n			
i Lo output logic	Data input	on obe signal	4 digits × 1 set	4 digits × 2 sets		
	Negative logic (coinciding)	Negative logic (coinciding)	0	4		
Negative logic	Negative logic (coniciding)	Positive logic (not coinciding)	1	5		
Negative logic	Positive logic (not coinciding)	Negative logic (coinciding)	2	6		
		Positive logic (not coinciding)	3	7		
	Positive logic (coinciding)	Positive logic (coinciding)	0	4		
Positive logic	r ositive logic (coniciding)	Negative logic (not coinciding)	1	5		
	Negative logic (not coinciding)	Positive logic (coinciding)	2	6		
		Negative logic (not coinciding)	3	7		

# 5. Explanation of selection method of parameter n by exemplary cases

When the following 7-segment display is connected, n=1 in the case of 4 digits  $\times$  1 set, and n=5 in the case of 4 digits  $\times$  2 sets.

- 1) Transistor output of PLC
  - Sync output = negative logic
  - Source output = positive logic

#### 2) 7-segment display

- Data input = negative logic
- Strobe signal = positive logic

PLC output logic	Data input	Strobo signal	Parameter n			
PEC output logic	Data Input	Strobe signal	4 digits × 1 set	4 digits × 2 sets		
	Negative logic (coinciding)		0	4		
Negative logic		Positive logic (not coinciding)	1	5		
Negative logic	Positive logic (not coinciding)	Negative logic (coinciding)	2	6		
		Positive logic (not coinciding)	3	7		

11

Applied Instructions (Data Operation)

12

nstructions

13

Applied Instructions (Handy Instruction)

14

nstructions ining

# 14.6 ARWS / Arrow Switch

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	0	×	×

# Outline

This instruction enters data by arrow switches for digit move and increase and decrease of numerical value of each digit.

## 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language		
name	oporation	form	Structured ladder/FBD	ST		
ARWS	16 bits	Continuous	ARWS – EN ENO – s d1 – n d2	ARWS(EN, s, n, d1, d2);		

## 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	S	Head bit device to be entered (4 points occupied)	ARRAY [03] OF Bit
	n	Digit number specification of 7-segment display	ANY16
	ENO	Execution state	Bit
Output	(d1)	Word device in which BCD converted data is stored	ANY16
variable	<u>d2</u>	Head bit device (Y) for connecting 7-segment display unit (8 points occupied)	ARRAY [07] OF Bit

#### 3. Applicable devices

	Bit Devices									Word Devices													Others					
Operand type			Sy	ste	m	use	ər	Di	Digit designation			System user			m r	Special unit	Index		Con tan		Real Character Po		Pointer					
	X	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р				
s	•	•	٠			•	▲1												•									
n																				•	•							
(d1)												•	•	•	▲2	▲2	•	•	•									
<u>d2</u>		•																	•									

▲: Refer to "Cautions".

# Function and operation explanation

Four arrow switches are connected to the input of the device specified by (s), the 7-segment display unit with BCD decoder is connected to the output of the device specified by (d2), and the numeric value is entered in the device specified by (d1).

# 1. 16-bit operation (ARWS)

In the device specified by d1, 16-bit BIN value of 0 to 9,999 is stored, but for the convenience of explanation, BCD converted value is expressed.

When the command input is ON, then ARWS instruction operates as follows.



11

Applied Instructions (Data Operation)

12

nstructions

13

nstructions

14

Applied (Extern

nal FX

1/O

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

sitioning





- Digit specification n of 7-segment display unit with BCD decoder In the following explanation of operation, four digits (10³ digits) are supposed.
- 2) Operation of digit select switch ((s)+2, (s)+3)
  - Operation when carry-down switch  $\bigcirc$  +2 is ON Every time the switch is pressed, the digit specification changes in the sequence of  $10^3 \rightarrow 10^2 \rightarrow 10^1 \rightarrow 10^0 \rightarrow 10^3$ .
  - When carry-over switch  $\bigcirc$  +3 is ON Every time the switch is pressed, the digit specification changes in the sequence of  $10^3 \rightarrow 10^0 \rightarrow 10^1 \rightarrow 10^2 \rightarrow 10^3$ .
- Operation of LED for selected digit display (<u>d2</u>+4 to <u>d2</u>+7)
   The specified digit is displayed by LED by strobe signals <u>d2</u>+4 to <u>d2</u>+7.
- Operation of data change switch of digit unit (<u>s</u>, <u>s</u>+1) Data changes in the digit specified by the "digit select switch."
  - Operation when increment input is ON Every time the switch is pressed, the content of d changes in the sequence of  $0 \rightarrow 1 \rightarrow 2 \rightarrow ... \rightarrow 8$  $\rightarrow 9 \rightarrow 0 \rightarrow 1$ .
  - Operation when decrement input is ON
     Every time the switch is pressed, the content of (d1) changes in the sequence of 0 → 9 → 8 → 7 ... → 1 → 0 → 9.
     The content can be displayed in 7-segment display unit.

Thus, by a series of operations, desired numeric values can be written into (d) while observing the 7-segment display unit.

373

# Cautions

#### 1. Setting of parameter n

Refer to the parameter setting of SEGL instruction. However, the setting range is 0 to 3.

#### 2. Output format of PLC

Use the PLC of transistor output type.

## 3. Scan time (operation period) and display timing

ARWS instruction is executed in synchronism with the scan time (operation cycle) of the PLC. To execute a series of displays, 10 ms or more is needed in the scan time of the PLC. If less than 10 ms, you must use the constant scan mode and operate in scan time of 10 ms or more.

#### 4. Number of bits occupied in device

- 1) The input of the device specified by s occupies 4 bits.
- 2) The output of the device specified by (d2) occupies 8 bits.

## 5. Limit of times of use of instruction

ARWS instruction can be used only once in the program. When using this instruction two or more times, use index function to program.

#### 6. Some restrictions to applicable devices.

- ▲1: The FX3U and FX3UC PLCs only are applicable.
- However, index modifier (V, Z) is not applicable.
- ▲2: The FX₃U and FX₃UC PLCs only are applicable.

## **Program example**

## 1. When changing the timer setting and displaying the current value

1) Specify the timer number by 3-digit digital switch



2) Setting of constant value of timer by arrow switch



#### **Operation explanation**

Every time read/write key is pressed, the read and write LED is changed over and displayed.

 When reading out Press the setting switch (X003) after setting the timer number by digital switch.

11

Applied Instructions (Data Operation)

12

Applied (High S Proces

edInstructions n Speed essing)

13

(Handy

Applied I nstruction

nstructions

14

Pe/

lice

Applied Instructions (External FX I/O

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

Control

guinoning

ied Instructions

· When writing in Press the X003 by setting the numeric value while observing the 7-segment display by the arrow switch.

#### Program



# 14.7 ASC / ASCII Code Data Input

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	0	×	×

# Outline

This instruction converts the 1-byte alphanumeric character string into ASCII code. This is used when selecting and displaying plural messages in the external display unit.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language				
name	operation	form	Structured ladder	ST				
ASC	16 bits	Continuous	ASC EN ENO s d	ASC(EN, s, d);				

#### 2. Set data

١	/ariable	Description	Data type		
Input	EN	Execution condition	Bit		
variable	S	1-byte alphanumerics of 8 characters entered from personal computer	String(8)		
Output	ENO	Execution state	Bit		
variable	d	Head device for storing ASCII code	ANY_SIMPLE		

## 3. Applicable devices

			Bit D	)ev	ice	S					N	/or	Others										
Operand type		ę	Syste	əm	us	er	Digit designation					System user			Special unit	nit Index		Co ta	ns nt	Real Number	Character String	Pointer	
	Х	Y	мт	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	E	"0"	Р
S																						•	
d											•	•	•	▲1	▲1			•					

▲: Refer to "Cautions".

# Function and operation explanation

#### 1. 16-bit operation (ASC)

1-byte alphanumeric character string specified by  $\underline{\ }$  is converted into ASCII code, and transferred sequentially to the device specified by  $\underline{\ }$ .

In the device specified by <u>s</u>, 1-byte characters of A to Z, 0 to 9, and symbols can be handled. (2-byte characters cannot be handled.)

By the programming tool, the character string is entered when programming.

• In the device specified by d, converted ASCII code is stored by 2 characters/1 byte each in the sequence of lower 8 bits and higher 8 bits.



# **Extension function**

When the extension function is validated by turning ON M8161, the 1-byte alphanumeric character string of the device specified by  $\bigcirc$  is converted into ASCII code, and sequentially transferred into the device specified by  $\bigcirc$  only in the lower 8 bits (1 byte).

The extension function is not available when FXU PLC is V2.30 or earlier.



Higher 8 bits are H00.

			d
	Higher 8 bits	Lower 8 bits	Character string
d	00	41	А
<u>d</u> +1	00	42	В
+2	00	43	С
(d)+3	00	44	D
+4	00	45	E
+5	00	46	F
+6	00	47	G
+7	00	48	Н

# **Related devices**

Device	Name	Content
M8161	Function extension flag	<ul> <li>8-bit processing mode of ASC, RS, ASCI, HEX, CCD instruction</li> <li>OFF : Every 2 characters are stored in the sequence of lower 8 bits, higher 8 bits (2 characters/ word).</li> <li>ON : Characters are stored in lower 8 bits character by character (1 character/word).</li> </ul>

# Cautions

#### 1. Number of bits occupied in device

- 1) When extension function is OFF
  - The device specified by d occpies 4 bits.
- 2) When extension function is ON
  - The device specified by (d) occpies 8 bits.

#### 2. Number of input characters

The number of characters input to the device specified by  $\bigcirc$  is fixed in 8 digit. When ASCII code (7 characters or less) is input, the space (H20) is stored in the remaining device specified by  $\bigcirc$ .

# 3. When using RS, ASCI, HEX, CCD

The extension function flag M8161 is a common flag used in other instructions. When above instructions are used together with ASC instruction, you must execute the program of turning ON or OFF the M8161 immediately before the ASC instruction so as to avoid its effect.

# 4. Object devices are limited.

▲1: FX3U, FX3UC PLCs only are applicable.

11

Applied Instructions (Data Operation)

12

nstr

uctions

nstructions

14

13

# 14.8 PR / Print (ASCII Code)

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	0	×	×

# Outline

This instruction performs parallel output of ASCII code data to the output (Y).

## 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
PR	16 bits	Continuous	PR EN ENO s d	PR(EN, s, d);

## 2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Head device for storing data of ASCII code.	String
Output	ENO	Execution state	Bit
variable	d	Head device for output data of ASCII code.	Bit

## 3. Applicable devices

			Bi	t D	ev	ice	s					Wo	orc	d D	evic	es					Others					
Operand type			Sy	ste	em	us	er	Digit designation					Sy u	ste Ise	em r	Special unit		Index		Cons tant		Real Number	Character String	Pointer		
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	к	н	Е	"0"	Р		
S												•	•	•	▲1				•							
d		•																	•							

▲: Refer to "Cautions".

# Function and operation explanation

#### 1. 16-bit operation (PR)

ASCII code stored in lower 8 bits (1 byte) of  $\underline{s}$  to  $\underline{s}$ +7 is issued to  $\underline{d}$  to  $\underline{d}$ +7 sequentially in time division character by character.



The following timing chart explains the ASCII code stored in the device specified by  $\bigcirc$ .

The transmission sequence begins from s = A, and ends with s + 7 = H, and 8 bytes are transmitted in total.

s	<u>s</u> +1	<u>s</u> +2	<u>s</u> +3	<u>s</u> +4	<u>s</u> +5	<u>s</u> +6	<u>s</u> +7
A(H41)	B(H42)	C(H43)	D(H44)	E(H45)	F(H46)	G(H47)	H(H48)

11

Applied Instructions (Data Operation)

12

d Instructions Speed

13

Applied Instru (Handy Instruction)

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

ed Instructions itioning

# 2. Timing chart



# Type of output signal

- d to d+7 : Transmission output
- d+8 : Strobe signal
- d+9 : Execution busy flag

 $\bigcirc$  is the lower bit side, and  $\bigcirc$  +7 is the higher bit side.

Operation conforms to the timing chart above.

# **Extension function**

# 1. 16-byte serial output

By ON/OFF control of special auxiliary relay M8027, the number of characters of output varies in every two times of instruction drive. In the case of M8027=OFF, the operation is 8-byte serial output (fixed in 8 characters), and in the case of M8027=ON, it is 16-byte serial output (1 to 16 characters).

An example of display of 16 characters or less (1 character/byte) is explained by referring to a display device (example: A6FD type external display unit^{*1}).

The display data is supposed to be stored in hexadecimal code in D300 to D307.

1) A6FD type external display unit^{*1} connection example

The PLC shown below is an example of FX₂N-16EYT (sink output) connected to FX₃U-32M□.



*1. A6FD type external display unit is out of production since November 2002.

#### 2) Timing chart (When M8027=ON)

	Operation sta	rts when chan	ged from X000=OFF	to ON.
Drive input X000		<u></u>		/▼
Data Y007 to Y000	Head character	," XEnd	character*	
	K T K T K T	ľ,	T: Operation cycle or interrupt time	
Strobe Y010		$\Box_{*} \Box$		
Execution busy flag Y011				
Execution complete flag M8	029			

* If H00 (NUL code) exists in the data (in 16 characters), one character before H00 (NUL code) is the end character.

## **Related devices**

Device	Name	Content
M8027*1	PR mode	OFF : 8-byte serial output (fixed in 8 characters) ON : 16-byte serial output (1 to 16 characters)

*1. Cleared when changed from RUN to STOP.

# Cautions

#### 1. Command input and operation of instruction

Command input=ON : Even in the midst of continuous ON or pulse instruction execution, when the output of one cycle is over, the execution is terminated.

M8029 operates only when M8027=ON.

Command input=OFF:All outputs are OFF.

#### 2. Relation with scan time (operation time)

This instruction is executed in synchronism with the scan time. If the scan time is short, it is driven by constant scan mode, or if too long, it is driven by using the timer interrupt mode.

#### 3. Output of PLC

Use the transistor output for the output of the PLC.

#### 4. If 00H (NUL) exists in the data (when M8027=ON)

The instruction execution is completed, and the remaining data is not issued. M8029 remains ON during 1 operation cycle.

#### 5. Some restrictions to applicable devices.

▲1: The FX3U and FX3UC PLCs only are applicable.

# 14.9 FROM / Read From A Special Function Block

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	×	0	0	×	Δ	0	×

# Outline

This instruction reads out the content of buffer memory (BFM) of special extension unit/block to the PLC. If a large quantity of buffer memory (BFM) data is read out in batch by using this instruction, a watchdog timer error may occur. When there is no bad influence for the control if the data is divided and read out, you can use RBFM instruction.

## 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
FROM	16 bits	Continuous	FROM — EN ENO — — n1 d — — n2 — n3	FROM(EN, n1, n2, n3, d);
FROMP	16 bits	Pulse	FROMP – EN ENO – – n1 d – – n2 – n3	FROMP(EN, n1, n2, n3, d);
DFROM	32 bits	Continuous	DFROM = N ENO - n1 d - n2 - n3	DFROM(EN, n1, n2, n3, d);
DFROMP	32 bits	Pulse	DFROMP EN ENO n1 d n2 n3	DFROMP(EN, n1, n2, n3, d);

#### 2. Set data

			Data type			
v	ariable	Description	16-bit operation	32-bit operation		
	EN	Execution condition	Bit			
Input	(n1)	Unit No. of special extension unit/block	ANY16	ANY32 ^{*1}		
variable	<u>(n2)</u>	Transfer origin buffer memory (BFM) number	ANY16	ANY32 ^{*1}		
	<u>(n3)</u>	Number of transfer points	ANY16	ANY32 ^{*1}		
	ENO	Execution state	Bit			
Variable	d	<ul> <li>Transfer destination device</li> <li>16-bit operation: n³ points occupied</li> <li>32-bit operation: 2 × n³ points occupied</li> </ul>	ANY16	ANY32		

*1. In the case of FX1N, FX1NC, FXU, FX2C, FX2N, FX2NC series, the data type of DFROM, DFROMP of 32-bit operation is ANY16.

11

Applied Instructions (Data Operation)

12

# 3. Applicable devices

			Bi	t D	evi	ces	S		Word Devices						Others									
Operand type			Sy	ste	m	use	ər	Dig	jit de	signat	ion	S	yst	em ı	iser	Special unit		Ir	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	Х	Y	Μ	Т	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	V	Ζ	Modifier	к	н	E	"□"	Р
<u>(n1)</u>														<b>▲</b> 1	▲1					•	•			
<u>(n2</u> )														<b>▲</b> 1	▲1					•	•			
<u>n3</u>														<b>▲</b> 1	▲1					•	•			
d									•	•	•	•	•	•	<b>▲</b> 1		•	•	•					

▲: Refer to "Cautions".

# Function and operation explanation

## 1. 16-bit operation (FROM, FROMP)

ightarrow As for the common terms of FROM/TO instruction, refer to section 14.8.1.

#### From special extension (BFM) to PLC (word device)

16-bit data of n3 points starting from buffer memory (BFM) n2 in the special extension unit/block of unit number n1 is transferred (read out) by the portion of n3 points starting from the device specified by d in the PLC.



# 2. 32-bit operation (DFROM, DFROMP)

#### From special extension (BFM) to PLC (word device)

32-bit data of n3 points starting from buffer memory (BFM) [n2+1, n2] in the special extension unit/block of unit number n1 is transferred (read out) by the portion of n3 points starting from the device specified by  $\bigcirc$  in the PLC.

Command input	DFROM EN ENO	
Unit No. of special — extension unit/block Transfer origin buffer — memory (BFM) number	n1 d	Transfer destination device

# **Related devices**

Device	Name	Content
M8028	Interrupt permit flag	Prohibit/permit interruption during execution of FROM/TO instruction. → As for the detail, refer to the following pages "Interrupt accept during execution of FROM/TO (M8028)." OFF : Interrupt prohibit (interrupt executed after FROM/TO instruction process)
		ON : Interrupt permit

# Cautions

- Bit device digits to be specified by d should be K1 to K4 in the case of 16-bit operation instruction, and 1) K1 to K8 in the case of 32-bit operation.
- 2) The instruction is provided in the FXU PLC Ver. 2.10 or later.
- 3) Instructions of pulse operation type are not provided in the FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 4) Some restrictions to applicable devices. ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

## **Program example**

By using direct specification^{*1} of FROM instruction or buffer memory, you can transfer (read out) the content of buffer memory (BFM) of special extension unit/block to the digit specification of data register (D), extension register (R), or auxiliary relay (M).

FX3U, FX3UC PLCs only are available. *1.

Example) Program for reading out BFM#4 (abnormal station information) of CC-Link/LT master (unit No. 0 fixed) built in FX3UC-32MT-LT(-2) to D0.



Unit No. 0

[ST] FROM(X001, K0, K4, K1, D0);

In the case of MOV instruction



[ST] MOV(M8000, U0¥G4, D0);

Transfer

Program for reading out BFM#0 to #3 (remote station connection information) of CC-Link/LT master (unit No. 0 fixed) built in FX3UC-32MT-LT(-2) to D10 to D13.



nstructions 14 Applied Instruction 1/O 15 Applied Instructions (External Device (optional device)) 16 Applied Instructions (External Device) 17 Applied Instructions (Data Transfer 2) 18 (Floating I ed Instri (Point) 19

ed Instructions a Operation 2)

20

nstructions Built

11

Applied Instructions (Data Operation)

12

Speed ssing) Instructions

13

Applied In (Handy

nstruction

# 14.9.1 Common terms of FROM/TO instruction (detail)

#### Specification content of operand

Unit

#### 1. Unit number n1 of special extension unit/block

Unit number is used for specifying which equipment is the object of working for FROM/TO instruction. Setting range: K0 to K7

No. 0 built-in CC-Link/LT		Unit No. 1	Unit No. 2		Unit No. 3
FX3UC-32MT Inp	ut/output	Special	Special	Input/output	Special
-LT(-2) ex	xtension	extension	extension	extension	extension
Basic unit	block	block	block	block	block

The unit number is assigned automatically to the special extension unit/block connected to the PLC. The unit number is given from the one closest to the basic unit in the sequence of No. 0, No. 1, No.2, etc. In the case of the FX_{3UC}-32MT-LT(-2) PLC, since the CC-Link/LT master is built in, the unit number is given from the one closest to the basic unit in the sequence of No. 1, No.2, No. 3, etc.

#### 2. Buffer memory (BFM) number "n2"

In the special extension unit/block, 16-bit RAM is built in, and it is used as the buffer memory. The buffer memory numbers are #0 to #32766, and the content is determined depending on the control purpose of each equipment.

Setting range: K0 to K32766

 When BFM is handled in 32-bit instruction, the specified BFM is lower 16 bits, and the BFM of the next number is higher 16 bits.

Higher 16 bits Lower 16 bits BFM #10 BFM #9 ← Specified BFM number

#### 3. Transfer points "n3"

Setting range: K1 to K32767

Number of transfer words is specified by n3.

"n =2" in a 16-bit instruction indicates the same meaning with "n = 1" in a 32-bit instruction.



#### Interrupt accept during execution of FROM/TO (M8028)

Applicable to the FXU (at Ver. 2.30 or later), FX2C, FX2N, FX2NC, FX3G, FX3GC, FX3U and FX3UC PLCs only.

#### 1. When M8028=OFF

Interrupt is prohibited automatically during execution of FROM/TO instruction, and input interrupt or timer interrupt is not executed.

An interrupt occurring in this period is executed immediately after completion of execution of FROM/TO instruction.

FROM/TO instruction can be used also during the interrupt program.

#### 2. When M8028=ON

When an interrupt occurs during execution of FROM/TO instruction, the execution is suspended, and the interrupt program is executed.

However, FROM/TO instruction cannot be used during interrupt program.

# Handling in the event of occurrence of watchdog timer error

#### 1. Cause of occurrence of watchdog timer error

Watchdog timer error may occur in the following cases.

- When many special extension equipments are connected. In a configuration of a large number of connected units of special extension equipments (positioning, cam switch, link, analog, etc.), the initializing time of the buffer memory executed in PLC RUN mode is long, and the operation time is extended, and a watchdog timer error may occur.
- 2) When FROM/TO instructions are driven simultaneously. When many FROM/TO instructions are executed, or when multiple buffer memories are transferred, the operation time is extended, and a watchdog timer error may occur.

#### 2. Countermeasure

1) Method of using RBFM, WBFM instruction

→ As for BFM divided reading [RBFM], refer to section 31.1. → As for BFM divided writing [WBFM], refer to section 31.2.

2) Method of changing the time of watchdog timer

The detection time of the watchdog timer can be changed by rewriting the content of D8000 (watchdog timer time).

By entering the following program, the subsequent sequence programs are monitored by the new watchdog timer time.



 Change of execution timing of FROM/TO instruction Please shorten the operation time by deviating the execution of FROM/TO instruction.

# Handling of special extension unit/block

As for the connection method of special extension unit/block, the number of units allowed to be connected, and handling of input and output numbers, please refer to the manual of the PLC main body or the manual of each special extension unit/block.

11

nstructions

# 14.10 TO / Write To A Special Function Block

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	×	0	0	×	Δ	0	×

## Outline

This instruction writes data from PLC into the buffer memory (BFM) of special extension unit/block. By this instruction, when data is written into multiple buffer memories (BFM) in batch a watchdog timer error may occur. When there is no bad influence for the control if the data is divided and written in, you can use WBFM instruction.

## 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
то	16 bits	Continuous	TO EN ENO s n1 n2 n3	TO(EN, s, n1, n2, n3);
ТОР	16 bits	Pulse	TOP — EN ENO — s — n1 — n2 — n3	TOP(EN, s, n1, n2, n3);
DTO	32 bits	Continuous	DTO — EN ENO — s — n1 — n2 — n3	DTO(EN, s, n1, n2, n3);
DTOP	32 bits	Pulse	DTOP — EN ENO — s — n1 — n2 — n3	DTOP(EN, s, n1, n2, n3);

# 2. Set data

			Data	i type
v	ariable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input	S	<ul> <li>Transfer source data or device</li> <li>16-bit operation: n3 points occupied</li> <li>32-bit operation: 2 × n3 points occupied</li> </ul>	ANY16	ANY32
variable	<u>(n1)</u>	Unit No. of special extension unit/block (Sequentially from the right side of basic unit, K0 to K7)	ANY16	ANY32 ^{*1}
	(n2)	Transfer destination buffer memory (BFM) number	ANY16	ANY32 ^{*1}
	<u>(n3)</u>	Number of transfer points	ANY16	ANY32 ^{*1}
Output variable	ENO	Execution state	Bit	

*1. In the case of FX1N, FX1NC, FXU, FX2C, FX2N, FX2NC series, the data type of DTO, DTOP of 32-bit operation is ANY16.

11

Applied Instructions (Data Operation)

12

ructions

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

nstructions

13

# 3. Applicable devices

		В	it D	)ev	ice	s					۷	Vor	d D	evice	es				Others					
Operand type		S	/ste	əm	us	er	Dig	git de	signat	ion	S	yst	em	user	Special unit		I	ndex	Co ta	ons Int	Real Number	Character String	Pointer	
	х	Y	ΛТ	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U⊡\G⊡	۷	z	Modifier	κ	н	E	"0"	Р	
S							•	•	•	•	•	•	•	▲1		•	•	•	•	•				
<u>(n1)</u>													▲1	▲1					•	•				
<u>(n2)</u>													▲1	▲1					•	•				
<u>n3</u>													▲1	▲1					•	•				

▲: Refer to "Cautions".

# Function and operation explanation

## 1. 16-bit operation (TO, TOP)

 $\rightarrow$  As for common terms of FROM/TO instruction, refer to section 14.8.1.

## From PLC (word device) to special extension (BFM)

You can transfer (write) 16-bit data for the portion of n3 points starting from buffer memory (BFM) n2 in special extension unit/block of unit number n1, and for the portion of n3 points starting from the device specified by (s) in PLC.

Command input	EN	TO ENO-	
Transfer source data or— device	s		
Unit No. of special — extension unit/block	n1		
Transfer destination buffer— memory (BFM) number	n2		
Number of transfer points-	n3		

# 2. 32-bit operation (DTO, DTOP)

#### From PLC (word device) to special extension (BFM)

You can transfer (write) 32-bit data for the portion of n3 points starting from buffer memory (BFM) [n2+1, n2] in special extension unit/block of unit number n1, and for the portion of n3 points starting from the device specified by  $\bigcirc$  in PLC.

Command input	DTO EN ENC	)
Transfer source data or— device	s	
Unit No. of special — extension unit/block	n1	
Transfer destination buffer — memory (BFM) number	n2	
Number of transfer points-	n3	

# **Related devices**

Device	Name	Content
M8028	Interrupt permit flag	Prohibit/permit interruption during execution of FROM/TO instruction.         → As for detail, refer to Subsection 14.8.1 "Interrupt accept during execution of FROM/TO (M8028)"         OFF : Interrupt prohibit (interrupt executed after FROM/TO instruction process)         ON : Interrupt permit

# Cautions

- About bit device digit specification to be specified by s
   Specify K1 to K4 in the case of 16-bit operation instruction, or K1 to K8 in the case of 32-bit operation.
- 2) The instruction is provided in the FXU PLC Ver. 2.10 or later.
- Instructions of pulse operation type are not provided in the FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 4) Some restrictions to applicable devices.
   ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

# Program example

By using direct specification^{*1} of TO instruction or buffer memory, you can write in (transfer) the digit specification of data register (D), extension register (R), or auxiliary relay (M) or constants (K, H) to the buffer memory (BFM) of special extension unit/block.

*1. The FX3U and FX3UC PLCs only are available.

Example) Program for writing "H0" in BFM #27 (instruction) of CC-Link/LT master (unit No. 0 fixed) built in the FX3UC-32MT-LT(-2).

- In the case of TO instruction

[Structured ladder/FBD]



[ST] TO(M1, H0, K0, K27, K1);

- In the case of MOV instruction

[Structured ladder/FBD]



[ST] MOVP(M1, H0, U0¥G27);

# 15. Applied Instructions (External Device (optional device))

#### This chapter introduces the instructions for special adapters mainly connected to serial ports.

Instruction name	Function	Reference	
RS	Serial Communication	Section 15.1	
PRUN			
PRUNP	Parallol Run (Ostal Mada)	Section 15.2	
DPRUN		Section 15.2	
DPRUNP			
ASCI	Havadagimal to ASCII Conversion	Section 15.2	
ASCIP		360101115.5	
HEX	ASCII to Hevadecimal Conversion	Section 15.4	
HEXP		000101110.4	
CCD	Check Code	Section 15.5	
CCDP		Section 15.5	
VRRD	Volume Read	Section 15.6	
VRRDP	volume Reau	360101115.0	
VRSC	Volumo Scolo	Section 15.7	
VRSCP		Secuol 15.7	
RS2	Serial Communication 2	Section 15.8	
PID	PID Control Loop	Section 15.9	

sitioning

# 15.1 RS / Serial Communication

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	Δ	Δ	×

# Outline

This instruction sends and receives data in no-protocol communication by way of a serial port (only the ch1) in accordance with RS-232C or RS-485 provided in the main unit.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
RS	16 bits	Continuous	RS EN ENO s d m n	RS(EN, s, m, n, d);

# 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input	S	Head device storing data to be sent	ANY16
variable	m	Number of bytes of data to be sent	ANY16
	n	Number of bytes to be received	ANY16
Output	ENO	Execution state	Bit
variable	d	Head device storing received data when receiving is completed	ANY16

#### 3. Applicable devices

			Bi	t D	evi	ce	S					W	ord	1 D	evi	ces				Others				
Operand type			Sy	ste	m	us	er	Dig	git de	signat	ion		Sy: u	ste sei	m r	Special unit		I	Index	Co ta	ons Int	Real Number	Character String	Pointer
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	Κ	н	Е	"0"	Р
S														•	<b>\</b>				•					
m														•	<b>\</b>					•	•			
n														•	<b>\</b>					•	•			
d														•	<b>A</b> ′				•					

▲: Refer to "Cautions".

# Function and operation explanation

#### 1. 16-bit operation (RS)

This instruction sends and receives data in no-protocol communication by way of serial ports in accordance with RS-232C or RS-485 provided in the main unit.

#### $\rightarrow$ For detailed explanation, refer to the Data Communication Edition manual.



# **Related devices**

#### ightarrow For detailed explanation, refer to the Data Communication Edition manual.

Operation mode display

Device	Name	Device	Name
M8063	Serial communication error 1	D8120	Communication format setting
M8121	Sending wait flag	D8122	Remaining number of data to be sent
M8122	Sending request	D8123	Monitor for number of received data
M8123	Receiving complete flag	D8124	Header
M8124 ^{*1}	Carrier detection flag	D8125	Terminator
M8129 ^{*2}	Time-out check flag	D8129 ^{*2}	Time-out time setting
M8161	8-bit processing mode	D8063	Error code number of serial communication error 1
		D8405 ^{*3}	Communication parameter display

D8419^{*3}

- *1. Not supported by the FX0N PLC.
- *2. The FXU, FX2C PLCs are applicable at Ver.3.30 or later.
- *3. Not supported by the FXon, FX1s, FX1n, FX1nc, FXU, FX2c, FX2n and FX2nc PLCs.

#### System configuration

To use this instruction, it is necessary to attach one of the products shown in the table below to the main unit.  $\rightarrow$  For the system configuration, refer to the respective PLC Hardware Edition manual.  $\rightarrow$  For detailed explanation, refer to the Data Communication Edition manual.

# Differences between RS instruction and RS2 instruction

RS2 instruction is not provided in the FX0N, FX1S, FX1N, FX1NC, FXU, FX2C, FX2N and FX2NC PLCs.

Item	RS2 instruction	RS instruction	Remarks
Header size	1 to 4 characters (bytes)	Up to 1 character (byte)	For the RS2 instruction, up to 4 characters (bytes) can be
Terminator size	1 to 4 characters (bytes)	Up to 1 character (byte)	specified as a header or terminator.
Attachment of check The check sum can be automatically attached. The check sum can be attacher program.		The check sum should be attached by a user program.	For the RS2 instruction, the check sum can be automatically attached to the sent and received data. In this case, however, make sure to use a terminator with the communication frame to be sent and received.
Used channel number	ch0, ch1, ch2	ch1	For the RS2 instruction: Ch0 is available only in FX3G and FX3GC PLCs. Ch2 is not available in FX3G PLC (14-point and 24-point type) and FX3S PLCs.

11

Applied Instructions (Data Operation)

12

# Cautions

#### $\rightarrow$ For other cautions, refer to the Data Communication Edition manual.

- 1) RS instruction can be used for ch1 only (cannot be used for  $ch0^{*1}$  and  $ch2^{*1}$ ).
- 2) Do not drive two or more RS and/or RS2^{*2} instructions for the same port at the same time.
- 3) It is not permitted to use an "RS or RS2^{*2}" instruction and a following instruction for the same port:
  - "IVCK*2, IVDR*2, IVRD*2, IVWR*2, IVBWR*3 or IVMC*2" instruction
  - "ADPRW^{*2}" instruction
  - "FLCRT^{*3}, FLDEL^{*3}, FLWR^{*3}, FLRD^{*3}, FLCMD^{*3} or FLSTRD^{*3}" instruction
- 4) The instruction is provided in the FXU PLC Ver. 3.07 or later.
- 5) The instruction is provided in the FX0N PLC Ver. 1.20 or later.
- 6) Number of bytes of data to be sent(m), Number of bytes to be received(n)
  - a) For FX2N, FX2NC, FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs
     m, n: 0 to 4096 points
     (However, "m + n" should not be more than 8000 points in FX2N and FX2NC PLCs.)
  - b) For FX0N, FX1S, FX1N, FX1NC, FXU and FX2C PLCs m, n: 0 to 256 points
- 7) Some restrictions to applicable devices.
   ▲1: FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- *1. Ch0 is available only in FX3G and FX3GC PLCs. Ch2 is not available in FX3G PLC (14-point and 24-point type) and FX3S PLCs.
- *2. The instruction is not provided in the FX0N, FX1S, FX1N, FX1NC, FXU, FX2C, FX2N and FX2NC PLCs.
- *3. The instruction is not provided in the FX0N, FX1S, FX1N, FX1NC, FXU, FX2C, FX2N, FX2NC, FX3S, FX3G and FX3GC PLCs.

# 15.2 PRUN / Parallel Run (Octal Mode)

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)	
0	0	0	0	0	0	0	×	×	

# Outline

This instruction handles the device number specified by  $\underline{s}$  and  $\underline{d}$  specified by digits as octal number, and transfers data.

## 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language
name	operation	form	Structured ladder/FBD	ST
PRUN	16 bits	Continuous	PRUN — EN ENO — — s d —	PRUN(EN, s, d);
PRUNP	16 bits	Pulse	PRUNP — EN ENO — — s d —	PRUNP(EN, s, d);
DPRUN	32 bits	Continuous	DPRUN — EN ENO — — s d —	DPRUN(EN, s, d);
DPRUNP	32 bits	Pulse	DPRUNP — EN ENO — s d	DPRUNP(EN, s, d);

## 2. Set data

V	ariable	Description	Data type			
		Decemption	16-bit operation	32-bit operation		
Input variable	EN	Execution condition	Bit			
	S	Specification of digits (the lowest digit of specified device number is 0.)	ANY16	ANY32		
Output	ENO	Execution state	Bit			
variable	d	Transfer destination device (the lowest digit of specified device number is 0.)	ANY16	ANY32		

# 3. Applicable devices

Operand type	Bit Devices							Word Devices												Others			
	System User					ser	Di	Digit designation			System User			Special Unit	cial it Index		Con Real Charact stant Number String		Character String	Pointer			
	х	Y	М		) S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	Z	Modifier	κ	Η	E	"0"	Р
S							•		•									•					
d								•	•									•					

# Function and operation explanation

## 1. 16-bit operation(PRUN, PRUNP)

#### From octal number bit device to decimal number bit device


# 15.3 ASCI / Hexadecimal to ASCII Conversion

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)
0	0	0	0	0	0	Δ	Δ	×

# Outline

This instruction converts HEX code into ASCII code.

Also available are BINDA instruction for converting BIN data into ASCII code, and DESTR instruction for converting binary floating decimal point data into ASCII code.

 $\rightarrow$  As for BINDA instruction, refer to section 29.6.

#### $\rightarrow$ As for DESTR instruction, refer to section 18.4.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language			
name	operation	form	Structured ladder/FBD	ST			
ASCI	16 bits	Continuous	ASCI – EN ENO – s d – n	ASCI(EN, s, n, d);			
ASCIP	16 bits	Pulse	ASCIP — EN ENO — s d — n	ASCIP(EN, s, n, d);			

# 2. Set data

	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	S	Head device in which HEX code to be converted is stored	ANY16
Vallabio	n	Number of characters in HEX code to be converted (number of digits)	ANY16
Output	ENO	Execution state	Bit
variable	d	Head device for storing converted ASCII code	ANY16

# 3. Applicable devices

	Bit Devices						es		Word Devices											Others				
Operand type		5	Sys	ste	m	Us	er	Dię	git de	signat	tion	s	yst	em l	Jser	Special Unit		I	ndex	Co sta	on ant	Real Number	Character String	Pointer
	х	Y	М	Т	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	v	Z	Modifier	κ	н	E	"□"	Р
S								•	•	•	•	•	•	•	▲2	▲3	٠	•	•	٠	•			
n														▲1	▲2					•	•			
d									•	•	•	•	•	•	▲2	▲3			•					

▲: Refer to "Cautions".

# Function and operation

# 1. 16-bit operation(ASCI/ASCIP)

Of the HEX code stored after the device specified by  $\bigcirc$ , n characters (digits) are converted into ASCII code, and stored in the device after the one specified by  $\bigcirc$ .

In this instruction, the mode usable when converting includes 16-bit mode and 8-bit mode. As for the operation of each mode, refer to the following pages.



11

# 2. <16-bit conversion mode> When M8161=OFF(M8161 is used commonly with RS, HEX, CCD, CRC instructions)

Each digit of HEX data stored after the device specified by  $\bigcirc$  is converted into ASCII code, and transferred to lower and higher 8 bits (bytes) each in each device after the one specified by  $\bigcirc$ . The number of digits (characters) to be converted is specified by n.

The device specified by (d) is divided into lower 8 bits and higher 8 bits, and ASCII data is stored.

M8161 is used commonly with RS, HEX, CCD, CRC instructions. When using in 16 bits, you must keep always OFF.

M8161 is cleared when changed from RUN to STOP.



#### Operation

In the case of the program shown below, the conversion is executed as follows.

M8000 /ſ		M8161 —( )- 16-bit mode
X10	D100 — s K4 — n	ASCI ENO d D200

Devices after S

(D100)=0ABCH (D101)=1234H (D102)=5678H

#### Number of digits (characters) specified and result of conversion

n	K1	K2	КЗ	K4	K5	K6	K7	K8	К9				
D 200 lower	C)	B)	A)	0)	4)	3)	2)	1)	8)				
D 200 higher		C)	B)	A)	0)	4)	3)	2)	1)				
D 201 lower			C)	B)	A)	0)	4)	3)	2)				
D 201 higher				C)	B)	A)	0)	4)	3)				
D 202 lower					C)	B)	A)	0)	4)				
D 202 higher						C)	B)	A)	0)				
D 203 lower			Not ch	anged			C)	B)	A)				
D 203 higher	C)												
D 204 lower													

#### Bit composition in the case of n=K4



ASCII code 0)=30H 1)=31H 5)=35H A)=41H 2)=32H 6)=36H B)=42H 3)=33H 7)=37H C)=43H 4)=34H 8)=38H

- When issuing as BCD data by printer or the like, before execution of this instruction, you must convert from BIN to BCD.
- 3. <8-bit conversion mode> When M8161=ON (M8161 is used commonly with RS, HEX, CCD, CRC instructions)

Each digit of HEX data stored after the device specified by  $\bigcirc$  is converted into ASCII, and stored in lower 8 bits (bytes) in each device after the one specified by  $\bigcirc$ . The number of digits (characters) to be converted is specified by n.

In the device specified by d, higher 8 bits are 0.

M8161 is used commonly with RS, HEX, CCD, CRC instructions. When using in 8 bits, you must keep always ON.

M8161 is cleared when changed from RUN to STOP.



When M8161=ON, 8-bit mode is established, and the conversion is executed as follows.



#### Operation

In the case of the program shown below, the conversion is executed as follows.



11

Applied Instructions (Data Operation)

12

Speed

13

nstructions

Devices after s (D100)=0ABCH (D101)=1234H (D102)=5678H

### Number of digits (characters) specified and result of conversion

n	К1	К2	КЗ	КА	K5	KG	K7	K8	Кð				
d		112	110					110					
D 200	C)	B)	A)	0)	4)	3)	2)	1)	8)				
D 201		C)	B)	A)	0)	4)	3)	2)	1)				
D 202			C)	B)	A)	0)	4)	3)	2)				
D 203				C)	B)	A)	0)	4)	3)				
D 204					C)	B)	A)	0)	4)				
D 205						C)	B)	A)	0)				
D 206		Not ch	anged				C)	B)	A)				
D 207	C)												
D 208	1												

#### Bit composition in the case of n=K2

D 100=0ABCH 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 А В С ASCII code of D200=B=42H 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 4 2 ASCII code of D201=C=43H 

	0 0 1	0	0 0	0 1	
	1	4	1	2	
	I	4		3	
<ul> <li>When issuing as BCD</li> </ul>	data by	orinte	r or the	like, b	efore execution of this instruction, you must convert fro

 When issuing as BCD data by printer or the like, before execution of this instruction, you must convert from BIN to BCD.

ASCII code 0)=30H

A)=41H

B)=42H

C)=43H

1)=31H

2)=32H

3)=33H

4)=34H

5)=35H

6)=36H

7)=37H

8)=38H

# Cautions

- The instruction is provided in the FXU PLC Ver. 3.07 or later. The instruction is provided in the FX0N PLC Ver. 1.20 or later.
- Instructions of pulse operation type are not provided in the FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 3) Some restrictions to applicable devices.
  - ▲1: The FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  - ▲2: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  - ▲3: The FX3U and FX3UC PLCs only are applicable.

# 15.4 HEX / ASCII to Hexadecimal Conversion

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	Δ	Δ	×

# Outline

This instruction converts ASCII code into HEX code.

Also available are DABIN instruction for converting ASCII code into BIN data, and DEVAL instruction for converting ASCII code into binary floating decimal point data.

#### $\rightarrow$ As for DABIN instruction, refer to section 29.5.

#### $\rightarrow$ As for DEVAL instruction, refer to section 18.5.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language
name	operation	form	Structured ladder/FBD	ST
HEX	16 bits	Continuous	HEX EN ENO s d n	HEX(EN, s, n, d);
HEXP	16 bits	Pulse	HEXP EN ENO s d n	HEXP(EN, s, n, d);

# 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	S	Head device in which ASCII code to be converted is stored	ANY16
Vallabio	n	Number of characters in ASCII code to be converted (number of bytes)	ANY16
Output	ENO	Execution state	Bit
variable	d	Head device for storing converted HEX code	ANY16

#### 3. Applicable devices

-			_	_	_			-				_								_		_			
			Bit	De	evi	ce	s					V	No	rd D	evice	S				Others					
Operand type		;	Sys	ter	n۱	Js	er	Dig	git des	signat	ion	s	yst	tem	User	Special Unit		I	ndex	Co sta	on ant	Real Number	Character String	Pointer	
	х	Y	м	Т	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"□"	Р	
S								•	•	•	٠	•	•	•	▲2	▲3			•	•	٠				
n														▲1	▲2					•	•				
d									٠	•	٠	•	•	٠	▲2	▲3	•	•	•						

▲: Refer to "Cautions".

# Function and operation explanation

# 1. 16-bit operation(HEX/HEXP)

Of the ASCII code stored after the device specified by (s), n characters are converted into HEX code, and stored in the device after the one specified by (d). In this instruction, the mode usable when converting includes 16-bit mode and 8-bit mode. As for the operation of each mode, refer to the following pages.



11

# 2. <16-bit conversion mode> When M8161=OFF(M8161 is used commonly with RS, ASCI, CCD, CRC instructions)

ASCII characters stored in higher and lower 8 bits (bytes) in the device specified by  $\underline{s}$  are converted into HEX data, and transferred to the device specified by  $\underline{d}$  in every four digits. The number of characters to be converted is specified by n.

M8161 is used commonly with RS, ASCI, CCD, CRC instructions. When using in 16 bits, you must keep always OFF.

M8161 is cleared when changed from RUN to STOP.



### Operation

In the case of the program shown below, the conversion is executed as follows.



#### **Conversion source data**

S	ASCII code	HEX conversion
D 200 lower	30H	0
D 200 higher	41H	A
D 201 lower	42H	В
D 201 higher	43H	С
D 202 lower	31H	1
D 202 higher	32H	2
D 203 lower	33H	3
D 203 higher	34H	4
D 204 lower	35H	5

11

Applied Instructions (Data Operation)

12

nstructions

13

Applied Instru (Handy Instruction)

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

nstructions ning

"." is 0.				_																
d	D 102	D 101	D 100	In the o	case	e of	n=K	4												
n		2	2.00	D 200	0	1	0	0	0	0	0	1	0	0	1	1	0	0	0	0
1			0H	-		41H→ A)								30H→0)						
2	Notob	anged	0AH	-								_								
3	NOT CL	langeo	.0ABH	D 201	0	1	0	0	0	0	1	1	0	1	0	0	0	0	1	0
4			0ABCH	-	43H→ C)						42H→B)									
5		0H	ABC1H	- 		0	0	~	4	_	4		4	_	4	4	4	4	0	0
6		0AH	BC12H	- D 100	0	0	0	0	1	0	1	0	1	0	1	1	1	1	0	0
7		.0ABH	C123H	-			0				Ą				В			(	C	
8		0ABCH	1234H	-																
9	0H	ABC1H	2345H	-																

#### Number of characters specified and result of conversion

- When the input data is BCD, after execution of this instruction, you must convert from BCD to BIN.
- In the case of HEX instruction, if the data stored in the device specified by s is not ASCII code, it is an operation error, and HEX conversion is disabled. In particular, if M8161 is OFF, you must store the ASCII code also in the higher 8 bits of the device specified by s.
- 3. <8-bit conversion mode> When M8161=ON(M8161 is used commonly with RS, ASCI, CCD, CRC instructions)

ASCII characters stored in lower 8 bits in  $\bigcirc$  are converted into HEX data, and transferred to  $\bigcirc$  in every four digits. The number of characters to be converted is specified by n.

M8161 is used commonly with RS, ASCI, CCD, CRC instructions. When using in 8 bits, you must keep always ON.

M8161 is cleared when changed from RUN to STOP.

M8000	M8161	← 16 bits →
		Ignored Lower 8 bits
		Source data
Command input	HEX	
	EN ENO	
Head device in which ASCII — code to be converted is stored	s d Head device for storing converted HEX code	
Number of characters in — ASCII code to be converted (number of bytes)	n	
Operation		

In the case of the program shown below, the conversion is executed as follows.



#### **Conversion source data**

S	ASCII code	HEX conversion
D 200	30H	0
D 201	41H	А
D 202	42H	В
D 203	43H	С
D 204	31H	1
D 205	32H	2
D 206	33H	3
D 207	34H	4
D 208	35H	5

# Number of characters specified and result of conversion

. 13 0.																				
D	D 102	D 101	D 100	In the	cas	e o	f n=	K2												
n	5 102	5.01	2.00	D 200									0	0	1	1	0	0	0	0
1			0H	-			•	•	•	•					30	)н-	→ 0)			
2	Not of	angod	0AH	-	·												•)			ا 
3	NULLI	langeu	.0ABH	D 201									0	1	0	0	0	0	0	1
4			0ABCH	•											4	1H-	→ A)			
5		0H	ABC1H	D 400		0	0	0	0	0	0	0	0	0	0	0	4	0	4	
6		0AH	BC12H	- D 100	0	0	0	0	0	0	0	0	0	0	0	0		0	<u> </u>	0
7		.0ABH	C123H	-											0			,	4	
8		0ABCH	1234H	•																
9	0H	ABC1H	2345H	•																

• When the input data is BCD, after execution of this instruction, you must convert from BCD to BIN.

# Cautions

- The instruction is provided in the FXU PLC Ver. 3.07 or later. The instruction is provided in the FX0N PLC Ver. 1.20 or later.
- Instructions of pulse operation type are not provided in the FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 3) Some restrictions to applicable devices.
  ▲1: The FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  ▲2: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  ▲3: The FX3U and FX3UC PLCs only are applicable.

# 15.5 CCD / Check Code

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	Δ	Δ	×

# Outline

This instruction calculates the horizontal parity value or check sum value of error check method used in communication or the like. The error check method also includes cyclic redundancy check (CRC). Use the CRC instruction when determining the CRC value.

# ightarrow As for CRC instruction, refer to section 24.4.

# $\rightarrow$ As for complementary number [NEG instruction], refer to section 9.10.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language
name	operation	form	Structured ladder/FBD	ST
CCD	16 bits	Continuous	CCD EN ENO s d n	CCD(EN, s, n, d);
CCDP	16 bits	Pulse	CCDP EN ENO s d n	CCDP(EN, s, n, d);

#### 2. Set data

١	/ariable	Description	Data type		
	EN	Execution condition	Bit		
Input variable	S	Head object device	ANY16		
Vallabio	n	Number of data (n=1 to 256)	ANY16		
Output	ENO	Execution state	Bit		
variable	d	Head storage destination device of calculated data (2 points occupied)	ARRAY [01] OF ANY16		

#### 3. Applicable devices

			Bi	it C	)ev	ice	s		Word Devices							Others								
Operand type			Sy	ste	em	Us	er	Di	git de	signat	tion	Sy	yste	em I	User	Special Unit		I	Index	Co sta	on ant	Real Number	Character String	Pointer
	Х	Y	Μ	Т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	E	"0"	Р
S								•	•	•	•	•	•	•	▲1	▲2			•					
n														•	▲1					•	•			
d									٠	•	•	٠	•	•	▲1				•					

▲: Refer to "Cautions".

# Function and operation explanation

#### 1. 16-bit operation(CCD/CCDP)

The addition data and horizontal parity of the data stored in the device specified by  $\bigcirc$  are calculated, and the addition data and the horizontal parity are stored in the device specified by  $\bigcirc$ . In this instruction, the mode usable when calculating includes 16-bit mode and 8-bit mode. As for the operation of each mode, refer to the following pages.



11

Applie (Data

nstructions

# 2. <16-bit conversion mode> When M8161=OFF(M8161 is used commonly with RS, ASCI, HEX, CRC instructions)

Of the data of n points starting from the device specified by  $\underline{s}$ , the addition data and the horizontal parity data of higher and lower 8 bits are stored in the device specified by  $\underline{d}$ .

M8161 is used commonly with RS, ASCI, HEX, CRC instructions. When using in 16 bits, you must keep always OFF.

M8161 is cleared when changed from RUN to STOP.



#### Example of 16-bit conversion

In the case of the program shown below, the conversion is executed as follows.



S	Exa	ample of data content	
D 100 lower	K100	= 01100100	_
D 100 higher	K111	= 0110111①	•
D 101 lower	K100	= 01100100	_
D 101 higher	K 98	= 01100010	
D 102 lower	K123	= 0111101①	•
D 102 higher	K 66	= 01000010	_
D 103 lower	K100	= 01100100	
D 103 higher	K 95	= 0101111①	•
D 104 lower	K210	= 11010010	
D 104 higher	K 88	= 01011000	
Total	K1091		
Horizontal parity		1000010①	+

When the number of "1" is an odd number, the horizontal parity is 1.
When the number of "1" is an even number, the horizontal parity is 0.

D0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 <del>c</del> 1091 in BCD.

D 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 C + Horizontal parity

# 3. <8-bit conversion mode> When M8161=ON(M8161 is used commonly with RS, ASCI, HEX, CRC instructions)

Of the data of n points (lower 8 bits only) starting from the device specified by (s), the addition data and the horizontal parity data are stored in the device specified by (d).

M8161 is used commonly with RS, ASCI, HEX, CRC instructions. When using in 8 bits, you must keep always ON.

M8161 is cleared when changed from RUN to STOP.



#### Example of 8-bit conversion

In the case of the program shown below, the conversion is executed as follows.



S	Exan	nple of data content	
D 100	K100	= 01100100	-
D 101	K111	= 0110111①	_ ←
D 102	K100	= 01100100	-
D 103	K 98	= 01100010	-
D 104	K123	= 0111101①	←
D 105	K 66	= 01000010	-
D 106	K100	= 01100100	
D 107	K 95	= 0101111①	←
D 108	K210	= 11010010	-
D 109	K 88	= 01011000	
Total	K1091		
Horizontal parity		1000010 <b>①</b>	<i>~</i>

When the number of "1" is an odd number, the horizontal parity is 1.

When the number of "1" is an even number, the horizontal parity is 0.

D 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 C == 1091 in BCD.

D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Horizontal parity 1 1

#### Cautions

- 1) The instruction is provided in the FXU PLC Ver. 3.07 or later. The instruction is provided in the FX0N PLC Ver. 1.20 or later.
- Instructions of pulse operation type are not provided in the FX0N PLC. To execute pulse operation, make the instruction execution condition pulse type.
- 3) Some restrictions to applicable devices.
  ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  ▲2: The FX3U and FX3UC PLCs only are applicable.

20

nstructions ning

# 15.6 VRRD / Volume Read

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
Δ	Δ	0	Δ	Δ	0	0	×	×

# Outline

This instruction reads out the value determined by the variable resistor.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language
name	operation	form	Structured ladder/FBD	ST
VRRD	16 bits	Continuous	VRRD — EN ENO — s d	VRRD(EN, s, d);
VRRDP	16 bits	Pulse	VRRDP — EN ENO — — s d —	VRRDP(EN, s, d);

# 2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Variable resistor No. to be read out	ANY16
Output	ENO	Execution state	Bit
variable	d	Storage destination of variable resistor value	ANY16

#### 3. Applicable devices

			Bi	t D	evi	ice	s					N	/or	d De	vices	6						0	thers	
Operand type			Sys	ste	m	Use	er	Di	git des	signat	ion	S	yst	em l	Jser	Special Unit		I	ndex	Co sta	on ant	Real Number	Character String	Pointer
	х	Y	Μ	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	н	Е	"0"	Р
S														▲1	▲2				•	•	•			
d									•	•	•	•	•	●	▲2		•	•	•					

▲: Refer to "Cautions".

# Function and operation explanation



The analog value of variable resistor No. is converted into BIN 8 bits, and 0 to 255 are transferred to D0.

As an application example, D0 is used as timer preset value.

The analog timer is obtained by this operation.

As the timer constant value, if a value of more than 256 is necessary, the product of take-in value multiplied by the constant by MUL instruction is set indirectly as the timer constant.

# Cautions

- 1) The FX1NC, FX2NC and FX3GC PLCs are not provided with variable resistors for reading out by this instruction, and hence do not function even if programmed.
- In FX3S PLCs, the variable analog potentiometer board can be connected to the option connector. In this case, the communication function is not available when the VRRD or VRSC instruction is used.
- 3) In 14-point and 24-point type FX3G PLCs, the variable analog potentiometer board can be connected to the option connector 1, and occupies communication channel ch1. In this case, the communication function using communication channel ch1 is not available when the VRRD or VRSC instruction is used.
- In 40-point and 60-point type FX3G PLCs, the variable analog potentiometer board can be connected only to the option connector 2, and occupies communication channel ch2.
   In this case, the communication function using communication channel ch2 is not available when the VRRD or VRSC instruction is used.
- 5) The communication function is not available for ch1 when the VRRD or VRSC instruction is used in the program in FX3s, FX3U and FX3UC PLCs.

#### $\rightarrow$ For details, refer to the Communication Control Edition manual.

- 6) FX3S and FX3G PLCs support the FX3G-8AV-BD.
- 7) FX3U and FX3UC-32MT-LT(-2) PLCs support the FX3U-8AV-BD.
- The instruction is provided in the FX3G PLC Ver. 1.10 or later. The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.70 or later.
- 9) Some restrictions to applicable devices.
  ▲1: The FX3S, FX3G, FX3U and FX3UC PLCs only are applicable.
  ▲2: The FX3G, FX3U and FX3UC PLCs only are applicable.

19

a Operation 2)

20

nstructions

#### **Program example**

Variable resistor values are read out sequentially. Depending on variable resistors VR0 to VR7, the specified values of VRRD instruction are K0 to K7. In the example below, being decorated by index (Z = 0 to 7), K0Z is K0 to K7.



# 15.7 VRSC / Volume Scale

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
Δ	$\triangle$	0	Δ	Δ	0	0	×	×

# Outline

This instruction reads out the value determined in the variable resistor graduations.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language
name	operation	form	Structured ladder/FBD	ST
VRRD	16 bits	Continuous	VRSC — EN ENO — s d	VRSC(EN, s, d);
VRRDP	16 bits	Pulse	VRSCP — EN ENO— — s d—	VRSCP(EN, s, d);

# 2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Variable resistor number for reading out the graduations	ANY16
Output	ENO	Execution state	Bit
variable	d	Storage destination of variable resistor graduations	ANY16

# 3. Applicable devices

			Bit	t D	evi	ces	S					W	or	d De	vices	;						0	thers	
Operand type			Sys	ste	m l	Use	ər	Di	git de	signat	ion	S	yst	em l	Jser	Special Unit		I	ndex	Co ta	ons Int	Real Number	Character String	Pointer
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
S														▲1	▲2				•	•	•			
d									•	•	٠	•	•	•	▲2		•	•	•					

▲: Refer to "Cautions".

# Function and operation explanation



This instruction reads the value of a variable analog potentiometer on the variable analog potentiometer board attached to the main unit as a numeric value in the range from 0 to 10.

However, the actual scale value does not always correspond to the switching position of the variable analog potentiometer scale (0 to 10). This instruction converts into a binary value the scale value of a variable analog potentiometer specified in (s), and transfers the converted binary value to (d).

11

Applied Instructions (Data Operation)

# Cautions

- 1) The FX1NC, FX2NC and FX3GC PLCs are not provided with variable resistors for reading out by this instruction, and hence do not function even if programmed.
- In FX3S PLCs, the variable analog potentiometer board can be connected to the option connector. In this case, the communication function is not available when the VRRD or VRSC instruction is used.
- In 14-point and 24-point type FX3G PLCs, the variable analog potentiometer board can be connected to the option connector 1, and occupies communication channel ch1. In this case, the communication function using communication channel ch1 is not available when the VRRD or VRSC instruction is used.
- 4) In 40-point and 60-point type FX3G PLCs, the variable analog potentiometer board can be connected only to the option connector 2, and occupies communication channel ch2.
   In this case, the communication function using communication channel ch2 is not available when the VRRD or VRSC instruction is used.
- 5) The communication function is not available for ch1 when the VRRD or VRSC instruction is used in the program in FX3s, FX3u and FX3uc PLCs.

 $\rightarrow$  For details, refer to the Communication Control Edition manual.

- 6) FX3S and FX3G PLCs support the FX3G-8AV-BD.
- 7) FX3U and FX3UC-32MT-LT(-2) PLCs support the FX3U-8AV-BD.
- The instruction is provided in the FX3G PLC Ver. 1.10 or later. The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.70 or later.
- 9) Some restrictions to applicable devices.
  ▲1: The FX3S, FX3G, FX3U and FX3UC PLCs only are applicable.
  ▲2: The FX3G, FX3U and FX3UC PLCs only are applicable.

#### **Program example**

This is an example of use as rotary switch.

Depending on variable resistor graduations 0 to 10, any one of auxiliary relays M0 to M10 is turned ON. By DECO instruction, the auxiliary relays are occupied from M0 to M15.

[Structured ladder/FBD]



[ST]

VRSC(X000, K1, D1); DECO(X001, D1, K4, M0); OUT(M0, ...); OUT(M1, ...); OUT(M10, ...);

#### **RS2 / Serial Communication 2** 15.8

-

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	×	×	×	×	×	×

# Outline

This instruction transmits and receives data by no-procedure communication via serial port of RS-232C or RS-485 installed in the basic unit.

In the case of FX3G and FX3GC PLCs, data can be transmitted and received by no-procedure communication also via standard built-in port (RS-422).

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	ach language
name	Operation	form	Structured ladder/FBD	ST
RS2	16 bits	Continuous	RS2 - EN ENO - s d - m - n - n1	RS2(EN, s, m, n, n1, d);

# 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input	S	<ul> <li>Head device in which transmission data is stored</li> <li>16-bit processing mode: m÷2 points ^{*1} occupied</li> </ul>	ANY16
variable	m	Number of transmission data bytes [Setting range: 0 to 4096]	ANY16
	n	Number of reception data bytes [Setting range: 0 to 4096]	ANY16
	(n1)	Used channel number [Setting content: K0: ch0, K1: ch1, K2: ch2]*2	ANY16
Output	ENO	Execution state	Bit
variable	d	<ul> <li>Head device for storing reception data upon completion of reception</li> <li>16-bit processing mode: n÷2 points ^{*1} occupied</li> </ul>	ANY16

*1. Rounding up below the decimal point

*2. Ch0 is applicable to FX3G and FX3GC PLCs only. In the case of FX3S and FX3G (14-point and 24-point type) PLCs, ch2 cannot be used.

### 3. Applicable devices

			Bi	t D	evi	ice	S					W	oro	d D	evice	es						0	thers	
Operand type			Sy	ste	m	Use	ər	Dig	jit des	signat	ion		Sy U	ste sei	m	Special Unit		I	ndex	Co ta	ons Int	Real Number	Character String	Pointer
	x	Y	м	т	с	s	D□.b	KnX	KnY	Kn M	KnS	т	С	D	R	U⊡\G⊡	v	z	Modifier	κ	н	E	"□"	Ρ
S														•	▲1				•					
m														•	▲1					•	•			
n														•	▲1					•	•			
<u>(n1)</u>																				•	•			
d														•	<b>▲</b> 1				•					

▲: Refer to "Cautions".

11

Applied Instructions (Data Operation)

12

edInstructions Speed essing)

13

nstructions

4 P R P lied nal FX I/O

15

@₽

nstruction blied

App

# Function and operation explanation

## 1. 16-bit operation(RS2)

This instruction transmits and receives data by no-procedure communication via serial port of RS-232C or RS-485 installed in the basic unit.

 $\rightarrow$  As for the detailed explanation, refer to the communication control manual.



# **Related devices**

#### $\rightarrow$ As for the detailed explanation, refer to the communication control manual.

	Device		Nama		Device		Nama
ch0*1	ch1	ch2*1	Name	ch0 ^{*1}	ch1	ch2*1	Name
M8371	M8401	M8421	Transmission waiting flag ^{*2}	D8370	D8400	D8420	Communication format setting
M8372	M8402	M8422	Transmission request ^{*2}	-	-	-	-
M8373	M8403	M8423	Reception complete flag ^{*2}	D8372	D8402	D8422	Transmission data remainder points ^{*2}
-	M8404	M8424	Carrier detection flag	D8373	D8403	D8423	Reception points monitor ^{*2}
-	M8405	M8425	Data set ready (DSR) flag ^{*3}	-	D8405	D8425	Communication parameter display
-	-	-	-	D8379	D8409	D8429	Time out time setting
M8379	M8409	M8429	Time out judging flag	D8380	D8410	D8430	Headers 1, 2
				D8381	D8411	D8431	Headers 3, 4
				D8382	D8412	D8432	Terminators 1, 2
				D8383	D8413	D8433	Terminators 3, 4
-	-	-	-	D8384	D8414	D8434	Reception sum (reception data)
				D8385	D8415	D8435	Reception sum (calculation result)
				D8386	D8416	D8436	Transmission sum
				D8389	D8419	D8439	Operation mode display
M8062	M8063	M8438	Serial communication error ^{*4}	D8062	D8063	D8438	Error code number of serial communication error ^{*4}

*1. Ch0 is applicable to FX3G and FX3GC PLCs only. In the case of FX3S and FX3G (14-point and 24-point type) PLCs, ch2 cannot be used.

- *2. Cleared when changed from RUN to STOP.
- *3. The FX3U, FX3UC PLCs are applicable at Ver.2.30 or later.

*4. Cleared when PLC power supply is turned from OFF to ON.

# System configuration

In order to use this instruction, you must install any one of the following products in the basic unit.  $\rightarrow$  As for the system configuration, refer to the hardware manual of the corresponding

PLC main unit.

As for the detailed explanatior	n, refer to the	communication	control manual.
---------------------------------	-----------------	---------------	-----------------

PLC	Type of communication	Option					
FX3U,	RS-232C communication	FX3U-232-BD or FX3U-232ADP(-MB)					
FX3UC-32MT-LT(-2)	RS-485 communication	FX3U-485-BD or FX3U-485ADP(-MB)					
	RS-232C communication	FX3U-232ADP(-MB)					
T X30C(D, D3, D33)	RS-485 communication	FX3U-485ADP(-MB)					
	PS 232C communication	FX3G-232-BD or FX3U-232ADP(-MB) (FX3G-CNV-ADP is needed)					
FX3G		RS-232C/RS-422 converter ^{*1} (FX-232AW, FX-232AWC and FX-232AWC-H)					
	RS-485 communication	FX3G-485-BD(-RJ) or FX3U-485ADP(-MB) (FX3G-CNV-ADP is needed)					
	PS 232C communication	FX3U-232ADP(-MB)					
FX3GC	KS-252C COMMUNICATION	RS-232C/RS-422 converter ^{*1} (FX-232AW, FX-232AWC and FX-232AWC-H)					
	RS-485 communication	FX3U-485ADP(-MB)					
EV39	RS-232C communication	FX3G-232-BD or FX3U-232ADP(-MB) (FX3S-CNV-ADP is needed)					
1 / 30	RS-485 communication	FX3G-485-BD(-RJ) or FX3U-485ADP(-MB) (FX3S-CNV-ADP is needed)					

*1. Required to use ch0 (standard built-in RS-422 port) in FX3G and FX3GC PLCs.

# Difference between RS instruction and RS2 instruction

Item	RS2 instruction	RS instruction	Remarks			
Header size	1 to 4 characters (bytes)	Up to 1 character (byte)	For the RS2 instruction, up to 4 characters (bytes) can			
Terminator size	1 to 4 characters (bytes)	Up to 1 character (byte)	be specified as a header or terminator.			
Attachment of check sum	The check sum can be automatically attached.	The check sum should be attached by a user program.	For the RS2 instruction, the check sum can be automatically attached to the sent and received data. In this case, however, make sure to use a terminator with the communication frame to be sent and received.			
Used channel number	ch0, ch1, ch2	ch1	For the RS2 instruction: Ch0 is applicable to FX3G and FX3GC PLCs only. In the case of FX3S and FX3G (14-point and 24-point type) PLCs, ch2 cannot be used.			

# Function change by version

	Corres	sponding v	ersion		Itom	Outline of function		
FX3S	FX3G	FX3GC	FX3U	FX3UC	item	Outline of function		
Ver. 1.00	Ver. 1.00	Ver. 1.40	Ver. 2.30	Ver. 2.30	ch1 Data set ready (DSR) flag	When DR (DSR) signal of ch1 is ON, special device M8405 is turned ON.		
or later	or later	or later	or later	or later	ch2 Data set ready (DSR) flag	When DR (DSR) signal of ch2 is ON, special device M8425 is turned ON.		

## Cautions

#### $\rightarrow$ As for other cautions, refer to the communication control manual.

- 1) With RS, RS2 instructions, do not drive the same port simultaneously by plural instructions.
- 2) It is not permitted to use an "RS or RS2" instruction and a following instruction for the same port:
  - "IVCK, IVDR, IVRD, IVWR, IVBWR*1 or IVMC" instruction
  - "ADPRW" instruction
  - "FLCRT^{*1}, FLDEL^{*1}, FLWR^{*1}, FLRD^{*1}, FLCMD^{*1} or FLSTRD^{*1}" instruction
- 3) When using the header or terminator, please set the data of the header or terminator in the special D before driving the RS2 instruction. Do not change the values of the header or terminator during driving of RS2 instruction.
- 4) Some restrictions to applicable devices.
   ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- *1. The instruction is not provided in the FX3S, FX3G and FX3GC PLCs.

11

nstructions

# 15.9 PID / PID Control Loop

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	Δ	×	×

# Outline

This instruction executes PID control for changing the output values depending on the change value of the input.

#### $\rightarrow$ As for the detail, refer to the analog control manual.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in ea	Expression in each language						
name	Operation	form	Structured ladder/FBD	ST						
PID	16 bits	Continuous	PID — EN ENO — s1 d — s2 — s3	PID(EN, s1, s2, s3, d);						

# 2. Set data

,	Variable	Description	Data type
	EN	Execution condition	Bit
Input	<u>(s1)</u>	Data register for storing the target value (SV)	ANY16
variable	<u>(s2</u> )	Data register for storing the measured value (PV).	ANY16
	<u>(s3)</u>	Data register for storing the parameter [29 points occupied] ^{*1}	ANY16
Output	ENO	Execution state	Bit
variable	d	Data register for storing the output value (MV)	ANY16

*1. Variable depending on the setting content of the parameter.

### 3. Applicable devices

	Bit Devices						s		Word Devices									Others						
Operand type		ų	Sy	ste	m	Us	er	Dig	git de	signat	ion	Sy	/ste	m l	Jser	Special Unit		I	ndex	Co sta	on ant	Real Number	Character String	Pointer
	Х	Y	м	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	к	н	E	"0"	Р
<u>(s1</u> )														•	▲1	▲2								
<u>s2</u>														•	▲1	▲2								
<u>(s3)</u>														•	▲1									
d														•	<b>▲</b> 1	▲2								

▲: Refer to "Cautions".

# Function and operation explanation

#### 1. 16-bit operation(PID)

When the program is executed by setting the target value of the device specified by  $(s_1)$ , the measured value of the device specified by  $(s_2)$ , and the parameter of the device specified by  $(s_3)$ , at every sampling time of the device specified by  $(s_3)$ , the calculation result (MV) is stored in the output value of the device specified by (d).



# 2. Setting items

ę	Setting items	Content	No. of points occupied	a Oper
		<ul> <li>To set the target value (SV).</li> <li>PID instruction does not change the contents of setting.</li> </ul>		ation)
<u>(s1</u> )	Target value(SV)	<ul> <li>Cautions when using auto-tuning (limit cycle method) If the target value for auto-tuning and the target value for PID control are different, the</li> </ul>	1 point	12
		value to which the bias value is added is set, and the actual target value must be stored when the auto-tuning flag is turned OFF.		Applie (High Proce
<u>(s2</u> )	Measured value(PV)	Input value of PID operation.	1 point	dInstruc Speed ssing)
		1) Auto-tuning: In the case of limit cycle method		tions
	Parameter ^{*1}	<ul> <li>The devices are occupied by 29 points from the head device specified by <u>(s3)</u>.</li> <li>Auto-tuning: In the case of step response method</li> <li>a) Action setting (ACT) setting: When all of bit1, bit2, bit5 are other than "0"</li> </ul>	29 points	13
	raiameter	The devices are occupied by 25 points from the head device specified by (s3). b) Action setting (ACT) setting: When all of bit1, bit2, bit5 are "0"	25 points	Applied In: (Handy Instruction
		The devices are occupied by 20 points from the head device specified by $(s_3)$ .	20 points	struct on)
		1) In the case of PID control (in ordinary processing)		ions
		The initial output value is set at the user side before instruction drive. Thereafter, operation results are stored.		14
		2) Auto-tuning: In the case of limit cycle method		
d	Output value(MV)	ULV value or LLV value is automatically issued during auto-tuning, and specified MV	1 point	Exte
		Value is set after auto-tuning.		ernal
		Please set the step output value at the user side before instruction drive.		FX
		During auto-tuning, the MV output cannot be changed at the PID instruction side.		l/O

*1. When the auto-tuning is not used, the same number of points as in the step response method are occupied.

# 3. List of parameters s to s +28

(3)Sampling time(TS)1 to 32767 [ms]Value shorter than operation cycle cannot be excuted.(3)Sampling time(TS)1 to 32767 [ms]Value shorter than operation cycle cannot be excuted.(3)Direction of actionDirection of action(3)(3)0: Input change amount alarm absent 1: Input change amount alarm validDirection of action(3)bit10: Input change amount alarm absent 1: Output change amount alarm validDo not turn ON bit2 and bit5 simultaneously.(3)bit3Not usable.Do not turn ON bit2 and bit5 simultaneously.(3)bit4*20: Auto-tuning executeDo not turn ON bit2 and bit5 simultaneously.(4)bit6*2*30: Step response methodSelection of auto-tuning mode(5)+2Input filter constant ( $\alpha$ )0 to 99 [%]No input filter in the case of 0(5)+3Proportional gain (KP)1 to 32767 [%]Selection of action in the case of 0(3)+5Differential gain (KD)0 to 100 [%]No differential gain in the case of 0(3)+6Differential gain (KD)0 to 32767 [×10ms]No differential gain in the case of 0(3)+1Input change amount (increases gi of PID operation. Do not change the data.Side) alarm setting value(3)+21*1Input change amount (increase side) alarm setting valueDirection of action(ACT): valid if (s3 + 1 bit1 is 1(3)+21*1Input change amount (increase side) alarm setting valueDirection of action(ACT): valid if (s3 + 1 bit1 is 1(3)+21*1Input change amount (i		Setting items		Content of setting	Remarks
$ (s3 + 1) \  \  \  \  \  \  \  \  \  \  \  \  \ $	<u>(s3)</u>	Sampling time(TS)		1 to 32767 [ms]	Value shorter than operation cycle cannot be executed.
$ (s) +1  \begin{cases} sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1 \\ sigma +1$			bit0	0: Normal action 1:Reverse action	Direction of action
(s3 +1)bit20: Output change amount alarm absent 1: Output change amount alarm valid bit3Do not turn ON bit2 and bit5 simultaneously.(s3 +1)Action setting (ACT)0: Auto-tuning inaction 1: Auto-tuning execute0: Output value upper and lower limit setting absent 1: Output value upper and lower limit setting validDo not turn ON bit2 and bit5 simultaneously.(s3 +2)Input filter constant (α)0: Step response method 1: Limit cycle methodSelection of auto-tuning mode(s3 +2)Input filter constant (α)0 to 99 [%]No input filter in the case of 0(s3 +3)Proportional gain (KP)1 to 32767 [%]Integral time(TI)(s3 +4)Integral time(TI)0 to 100 [%]No differential gain in the case of 0(s3 +4)Differential gain (KD)0 to 100 [%]No differential gain in the case of 0(s3 +4)Differential time(TD)0 to 32767 [×100ms]Handled as ∞ in the case of 0(s3 +4)Integral time(T)0 to 32767 [×100ms]No differential gain in the case of 0(s3 +2)^1Input change amount (increase)0 to 32767Direction of action(ACT): valid if (s3) + 1 bit1 is 1(s3 +20^11Input change amount (idcrease)0 to 32767Direction of action(ACT): valid if (s3) + 1 bit1 is 1(s3 +21)^1Input change amount (idcrease)0 to 32767Direction of action(ACT): valid if (s3) + 1 bit1 is 1(s3 +21)^1Input change amount (idcrease)0 to 32767Direction of action(ACT): valid if (s3) + 1 bit1 is 1			bit1	0: Input change amount alarm absent 1: Input change amount alarm valid	
$ (s3 + 1) \begin{array}{ c c c } & Action setting \\ (ACT) & bit3 & Not usable. \\ \hline bit4 & 2 & 0: Auto-tuning inaction \\ 1: Auto-tuning execute \\ \hline bit4'^2 & 0: Output value upper and lower limit setting absent \\ 1: Output value upper and lower limit setting valid \\ \hline bit6''^2 & 0: Step response method \\ 1: Limit cycle method \\ \hline bit6''^2 & 0: Step response method \\ 1: Limit cycle method \\ \hline bit6''^2 & 0: Step response method \\ 1: Limit cycle method \\ \hline bit6''^2 & 0: Step response method \\ 1: Limit cycle method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline bit6''^2 & 0: Step response method \\ \hline Step response method \\ \hline Step response method \\ \hline Step response method \\ \hline Step response method \\ \hline Step response method \\ \hline Step response method \\ \hline Step response method \\ \hline Step response method \\ \hline Step response method \\ \hline Step response method \\ \hline Step response method \\ \hline Step response method \\ \hline Step response method \\ \hline St$			bit2	0: Output change amount alarm absent 1: Output change amount alarm valid	Do not turn ON bit2 and bit5 simultaneously.
(s3)+1Action setting (ACT)bit4*20: Auto-tuning inaction 1: Auto-tuning execute(s3)+1Action setting (ACT)bit4*20: Auto-tuning execute(bit4*20: Auto-tuning execute0: Output value upper and lower limit setting value upper and lower limit setting valueDo not turn ON bit2 and bit5 simultaneously.(s3)+2Input filter constant (α)0: Step response method 1: Limit cycle methodSelection of auto-tuning mode(s3)+2Input filter constant (α)0 to 99 [%]No input filter in the case of 0(s3)+3Proportional gain (KP)1 to 32767 [%](s3)+4Integral time(TI)0 to 32767 [×100ms]Handled as ∞ in the case of 0 (No integral)(s3)+5Differential gain (KD)0 to 100 [%]No differential gain in the case of 0(s3)+7.Occupied by the internal processite of PID operation. Do not change the data.(s3)+19Input change amount (increase 			bit3	Not usable.	
$ \left  \begin{array}{c} \left  \begin{array}{c} \left  \begin{array}{c} \left  \begin{array}{c} \left  \begin{array}{c} \left  \begin{array}{c} \left  \begin{array}{c} \left  \begin{array}{c} \left  \begin{array}{c} \left  \right  \right  \right  \right  \right  \right  \\ \text{bit5}^{*2} \end{array} \right  \\ \text{bit5}^{*2} \end{array} \right  \\ \begin{array}{c} \left  \begin{array}{c} \left  \begin{array}{c} \left  \begin{array}{c} \left  \begin{array}{c} \left  \begin{array}{c} \left  \begin{array}{c} \left  \left  \right  \right  \right  \\ \text{setting absent} \\ 1: \left  \left  \left  \left  \left  \left  \right  \right  \right  \\ \text{setting valied} \right  \\ \text{setting valied} \end{array} \right  \\ \begin{array}{c} \left  \left  \left  \left  \left  \left  \left  \left  \right  \right  \right  \\ \text{setting valied} \right  \\ \text{setting valied} \end{array} \right  \\ \begin{array}{c} \left  \left  \left  \left  \left  \left  \left  \left  \left  \left  \left  \left  \left  $	<u>s</u> 3)+1	Action setting	bit4 ^{*2}	0: Auto-tuning inaction 1: Auto-tuning execute	
$\frac{bit6^{+2,+3}}{53} = \frac{0: Step response method}{1: Limit cycle method}$ Selection of auto-tuning mode $\frac{bit6^{+2,+3}}{51 \\ bit7 to bit15} = \frac{0: Step response method}{1: Limit cycle method}$ Selection of auto-tuning mode $\frac{bit6^{+2,+3}}{51 \\ bit7 to bit15} = \frac{0: Step response method}{1: Limit cycle method}$ No input filter of auto-tuning mode $\frac{si3}{51} + 2i $ Input filter constant ( $\alpha$ ) 0 to 99 [%] No input filter in the case of 0 $\frac{si3}{53} + 4i $ Integral time(TI) 0 to 32767 [×100ms] Handled as $\infty$ in the case of 0 (No integral) No differential gain in the case of 0 $\frac{si3}{53} + 5i $ Differential gain (KD) 0 to 100 [%] No differential gain in the case of 0 $\frac{si3}{53} + 7i $ $\frac{si3}{53} + 20^{+1}} = \frac{1i \text{put change amount (increase side) alarm setting value}}{53} + 20^{+1} = \frac{1i \text{put change amount (decrease side) alarm setting value}}{53} = 0 \text{ to 32767}$ $\frac{1i \text{ sige alarm setting value}}{53} = 0 \text{ to 32767} = 0 \text{ to 32767}$ $\frac{1i \text{ put change amount (decrease side) alarm setting value}}{53} = 0 \text{ to 32767}$ $\frac{1i \text{ put change amount (decrease side) alarm setting value}}{53} = 0 \text{ to 32767}$ $\frac{1i \text{ put change amount (decrease side) alarm setting value}}{53} = 0 \text{ to 32767}$ $\frac{1i \text{ put change amount (decrease side) alarm setting value}}{53} = 0 \text{ to 32767}$ $\frac{1i \text{ put change amount (decrease side) alarm setting value}}{53} = 0 \text{ to 32767}$ $\frac{1i \text{ put change amount (decrease side) alarm setting value}}{53} = 0 \text{ to 32767}$ $\frac{1i \text{ put change amount (decrease side) alarm setting value}}{53} = 0 \text{ to 32767}$ $\frac{1i \text{ put change amount (decrease side) alarm setting value}}{53} = 0 \text{ to 32767}$ $\frac{1i \text{ put change amount (decrease side) alarm setting value}}{53} = 0 \text{ to 32767}$ $\frac{1i \text{ put change amount (decrease side) alarm setting value}}{53} = 0 \text{ to 32767}$ $\frac{1i \text{ put change amount (decrease side) alarm setting value}}{53} = 0 \text{ to 32767}$ $\frac{1i \text{ put change amount (decrease side) alarm setting value}}{53} = 0 \text{ to 32767}$ $1i \text{ put change amount (decrease side)$			bit5 ^{*2}	<ol> <li>Output value upper and lower limit setting absent</li> <li>Output value upper and lower limit setting valid</li> </ol>	Do not turn ON bit2 and bit5 simultaneously.
bit7 to bit15Not usable.(s3) +2Input filter constant ( $\alpha$ )0 to 99 [%]No input filter in the case of 0(s3) +3Proportional gain (KP)1 to 32767 [%]Handled as $\infty$ in the case of 0 (No integral)(s3) +4Integral time(TI)0 to 32767 [×100ms]Handled as $\infty$ in the case of 0 (No integral)(s3) +5Differential gain (KD)0 to 100 [%]No differential gain in the case of 0(s3) +6Differential time(TD)0 to 32767 [×10ms]No differentiation in the case of 0(s3) +7.Occupied by the internal processing of PID operation. Do not change the data.(s3) +19(s3) +20*1Input change amount (increase side) alarm setting value0 to 32767(s3) +21*1Input change amount (decrease side) alarm setting value0 to 32767(s3) +21*1Input change amount (decrease side) alarm setting value0 to 32767(s3) +21*1Input change amount (decrease side) alarm setting value0 to 32767(s3) +21*1Input change amount (decrease side) alarm setting value0 to 32767(s3) +21*1Input change amount (decrease side) alarm setting value0 to 32767(s3) +21*1Input change amount (decrease side) alarm setting value0 to 32767(s3) +21*1Input change amount (decrease side) alarm setting value0 to 32767			bit6 ^{*2,*3}	0: Step response method 1: Limit cycle method	Selection of auto-tuning mode
$(s3) + 2$ Input filter constant ( $\alpha$ )0 to 99 [%]No input filter in the case of 0 $(s3) + 3$ Proportional gain (KP)1 to 32767 [%]Handled as $\infty$ in the case of 0 (No integral) $(s3) + 4$ Integral time(TI)0 to 32767 [×100ms]Handled as $\infty$ in the case of 0 (No integral) $(s3) + 5$ Differential gain (KD)0 to 100 [%]No differential gain in the case of 0 $(s3) + 6$ Differential time(TD)0 to 32767 [×10ms]No differentiation in the case of 0 $(s3) + 7$ .Occupied by the internal processing of PID operation. Do not change the data. $(s3) + 19$ $(s3) + 20^{*1}$ Input change amount (increase of 0 to 32767Direction of action(ACT): valid if $(s3) + 1$ bit1 is 1 $(s3) + 21^{*1}$ Input change amount (decrease of 0 to 32767Direction of action(ACT): valid if $(s3) + 1$ bit1 is 1 $(s3) + 21^{*1}$ Input change amount (decrease of 0 to 32767Direction of action(ACT): valid if $(s3) + 1$ bit1 is 1			bit7 to bit15	Not usable.	
$(\underline{s3}) + 3$ Proportional gain (KP)1 to 32767 [%] $(\underline{s3}) + 4$ Integral time(TI)0 to 32767 [×100ms]Handled as $\infty$ in the case of 0 (No integral) $(\underline{s3}) + 5$ Differential gain (KD)0 to 100 [%]No differential gain in the case of 0 $(\underline{s3}) + 5$ Differential time(TD)0 to 32767 [×10ms]No differential gain in the case of 0 $(\underline{s3}) + 6$ Differential time(TD)0 to 32767 [×10ms]No differentiation in the case of 0 $(\underline{s3}) + 7$ .Occupied by the internal processing of PID operation. Do not change the data. $(\underline{s3}) + 19$ . $(\underline{s3}) + 20^{*1}$ Input change amount (increase side) alarm setting value0 to 32767 $(\underline{s3}) + 20^{*1}$ Input change amount (decrease side) alarm setting value0 to 32767 $(\underline{s3}) + 21^{*1}$ Input change amount (decrease side) alarm setting value0 to 32767	<u>s</u> 3)+2	Input filter constan	t (α)	0 to 99 [%]	No input filter in the case of 0
$(\underline{s3}) + 4$ Integral time(TI)0 to 32767 [×100ms]Handled as $\infty$ in the case of 0 (No integral) $(\underline{s3}) + 5$ Differential gain (KD)0 to 100 [%]No differential gain in the case of 0 $(\underline{s3}) + 6$ Differential time(TD)0 to 32767 [×10ms]No differentiation in the case of 0 $(\underline{s3}) + 7$ .Occupied by the internal processing of PID operation. Do not change the data. $(\underline{s3}) + 19$ Input change amount (increase side) alarm setting value0 to 32767 $(\underline{s3}) + 20^{*1}$ Input change amount (idecrease side) alarm setting value0 to 32767 $(\underline{s3}) + 21^{*1}$ Input change amount (decrease side) alarm setting value0 to 32767 $(\underline{s3}) + 21^{*1}$ Input change amount (idecrease side) alarm setting value0 to 32767 $(\underline{s3}) + 21^{*1}$ Input change amount (idecrease side) alarm setting value0 to 32767	<u>(s3)</u> +3	Proportional gain (	KP)	1 to 32767 [%]	
$(\underline{s3}) + 5$ Differential gain (KD)0 to 100 [%]No differential gain in the case of 0 $(\underline{s3}) + 6$ Differential time(TD)0 to 32767 [×10ms]No differential in the case of 0 $(\underline{s3}) + 7$ .Occupied by the internal processing of PID operation. Do not change the data. $(\underline{s3}) + 19$ . $(\underline{s3}) + 20^{*1}$ Input change amount (increase side) alarm setting value0 to 32767 $(\underline{s3}) + 20^{*1}$ Input change amount (decrease side) alarm setting value0 to 32767 $(\underline{s3}) + 21^{*1}$ Input change amount (decrease side) alarm setting value0 to 32767 $(\underline{s3}) + 21^{*1}$ Input change amount (decrease side) alarm setting value0 to 32767 $(\underline{s3}) + 21^{*1}$ Input change amount (decrease side) alarm setting value0 to 32767	<u>s</u> 3)+4	Integral time(TI)		0 to 32767 [×100ms]	Handled as $\infty$ in the case of 0 (No integral)
$(\underline{S3}) + 6$ Differential time(TD)0 to 32767 [×10ms]No differentiation in the case of 0 $(\underline{S3}) + 7$ $(\underline{S3}) + 19$ $(\underline{S3}) + 20^{*1}$ Input change amount (increase side) alarm setting value0 to 32767Direction of action(ACT): valid if $\underline{S3} + 1$ bit1 is 1 $(\underline{S3}) + 21^{*1}$ Input change amount (decrease side) alarm setting value0 to 32767Direction of action(ACT): valid if $\underline{S3} + 1$ bit1 is 1 $(\underline{S3}) + 21^{*1}$ Input change amount (decrease side) alarm setting value0 to 32767Direction of action(ACT): valid if $\underline{S3} + 1$ bit1 is 1	<u>s</u> 3)+5	Differential gain (K	D)	0 to 100 [%]	No differential gain in the case of 0
(s3) +7        Occupied by the internal processing of PID operation. Do not change the data.         (s3) +19          (s3) +20*1       Input change amount (increase side) alarm setting value       0 to 32767         (s3) +21*1       Input change amount (decrease side) alarm setting value       0 to 32767         (s3) +21*1       Input change amount (decrease side) alarm setting value       0 to 32767	<u>s</u> 3+6	Differential time(TI	))	0 to 32767 [×10ms]	No differentiation in the case of 0
$(s_3) + 20^{*1}$ Input change amount (increase side) alarm setting value0 to 32767Direction of action(ACT): valid if $(s_3) + 1$ bit1 is 1 $(s_3) + 21^{*1}$ Input change amount (decrease side) alarm setting value0 to 32767Direction of action(ACT): valid if $(s_3) + 1$ bit1 is 1	( <u>s3</u> )+7 : ( <u>s3</u> )+19	Occupied by the in	ternal process	sing of PID operation. Do not change the	e data.
$(s3) + 21^{*1}$ Input change amount (decrease side) alarm setting value0 to 32767Direction of action(ACT): valid if $(s3) + 1$ bit1 is 1	<u>s</u> 3)+20 ^{*1}	Input change amo side) alarm setting	unt (increase value	0 to 32767	Direction of action(ACT): valid if <u>3</u> + 1 bit1 is 1
	(s3)+21 ^{*1}	Input change amou side) alarm setting	unt (decrease value	0 to 32767	Direction of action(ACT): valid if <u>(3)</u> +1 bit1 is 1

 $(s_3)$  + 20 to + 24 will be occupied in the case of bit1 = 1, bit2 = 1, or bit5 = 1 of  $(s_3)$  + 1 action setting *1. (ACT)

- *2. FXU, FX2C PLCs are not usable.
- FX1S, FX1N, FX1NC, FX2N, FX2NC PLCs are not usable. *3.

20

Applied Instructions (Positioning Control)

11

Applied Instructions (Data Operation)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

	Setting item	S	Content of setting	Remarks		
	Output change ar	mount (increase	0 to 32767	Direction of action (ACT):		
(s3)+22 ^{*1}	side) alarm settin	g value		<u>(s3)</u> +1 bit2 = 1, bit5 = 0; valid		
<u> </u>	Output upper limi	t setting value	-32768 to 32767	Direction of action (ACT):		
				$(\underline{s3})$ +1 bit2 = 0, bit5 = 1; valid		
	Output change an	nount (decrease	0 to 32767	Direction of action (ACT):		
<u>s</u> 3)+23 ^{*1}		g value		$(s_3)$ + 1 bit 2 - 1, bit 3 - 0, value		
	Output lower limit	setting value	-32768 to 32767	(3) + 1 bit $2 = 0$ bit $5 = 1$ : valid		
		bit0	0: Input change amount (increase side) not over			
	Alarm output		0: Input change amount (decrease side) over			
(The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco		bit1	1: Input change amount (decrease side) over	Direction of action (ACT):		
<u>(\$3</u> )+24 ·		bit2	0: Output change amount (increase side) not over	( <u>s</u> 3)+1 bit1 = 1 or bit2 = 1; valid		
			1: Output change amount (increase side) over			
		bit3	1: Output change amount (decrease side) not over			
The following	g setting is required	d when using the lin	nit cycle method (in the case of action direction (ACT	) b6: ON).		
(s3)+25 ^{*2}	PV value thresho	ld (hysteresis)	To be set according to fluctuation of measured			
	width (SHPV)		value (PV).			
<u>s</u> 3)+26 ^{*2}	Output value upp	er limit (ULV)	value (MV)	Action setting (ACT) b6:		
<u>s</u> 3)+27 ^{*2}	Output value lowe	er limit (LLV)	Setting of minimum output value (LLV) of output value (MV)	Occupied when limit cycle method (ON) is selected.		
(s3)+28 ^{*2}	Weight setting pa of tuning cycle to	rameter from end start of PID control	-50 to 32717%			
	(KW)					

- *1. (s3) + 20 to + 24 will be occupied in the case of bit1 = 1, bit2 = 1, or bit5 = 1 of (s3) + 1 action setting (ACT)
- *2. FX2N, FX2NC, FX1N, FX1NC, FX1S, FXU, FX2C PLCs are not usable.

# Cautions

#### 1. Cautions when using a plurality of instructions

Possible to execute plural times simultaneously (the number of loops is not limited), but you must be careful so that the device numbers may not be overlapped in the devices used in <u>s</u> or <u>d</u> used in operation.

#### 2. Number of parameters 3 occupied

- 1) In the case of limit cycle method
  - Devices are occupied by 29 points from the head device specified by s3.
- 2) In the case of step response method
  - Action setting (ACT) setting: when all of bit1, bit2, bit5 are other than "0" Devices are occupied by 25 points from the head device specified by s3.
  - Action setting (ACT) setting: when all of bit1, bit2, bit5 are "0"
     Devices are occupied by 20 points from the head device specified by s3.

# 3. When specifying a device in power failure hold region

As for the output value (MV) of PID instruction, specify the data register d excluding the power failure hold region.

(When specifying the data register in the power failure hold region, you must clear the content of backup while the PLC is ON by the following program.)

Program example			_
M8002		RST	
	EN	ENO	
Initial pulse		d	_D <b>***</b>
			$\Lambda$

Data register number of battery backup region specified by

- 4. The instruction is provided in the FXU and FX2C PLCs Ver. 2.70 or later.
- 5. FX2N PLC supports the upper and lower limit setting functions of the auto-tuning and output value at Ver. 2.00 or later.

#### 6. Some restrictions to applicable devices.

- ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲2: The FX3U and FX3UC PLCs only are applicable.

#### Error

If an operation error occurs, special auxiliary relay M8067 is turned ON, and the error code is stored in special data register D8067.

# 16. Applied Instructions (External Device)

This chapter introduces the instructions for control of F2 PLC special extension equipment.

Instruction name	Function	Reference	
MNET		Section 16.1	
MNETP			
ANRD	Read from E2.6A	Section 16.2	
ANRDP		360101110.2	
ANWR		Section 16.3	
ANWRP		360101110.5	
RMST	F2-32RM start	Section 16.4	
RMWR			
RMWRP	Write to Eq. 32PM	Section 16 5	
DRMWR		Section 10.5	
DRMWRP			
RMRD			
RMRDP	Pead from E2 32PM	Section 16.6	
DRMRD		360101110.0	
DRMRDP			
RMMN	Ea 22PM monitor	Section 16.7	
RMMNP		360101110.7	
BLK	Specify E2 30GM	Section 16.8	
BLKP		00000110.0	
MCDE	E2-30GM code	Section 16.9	
MCDEP		00000110.9	

# 16.1 MNET / F-16NP/NT communication

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
Х	×	×	×	×	×	Δ	×	×

# Outline

This instruction exchanges ON/OFF signals between the FXU, FX2C PLCs, and F-16NP/NT type interface unit.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language		
name	Operation	form	Structured ladder/FBD	ST		
MNET	16 bits	Continuous	MNET — EN ENO — s d —	MNET(EN, s, d);		
MNETP	16 bits	Pulse	MNETP — EN ENO — s d	MNETP(EN, s, d);		

# 2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Head input number of FX2-24EI connected to F-16NP/NT (16 points occupied)	Bit
Output	ENO	Execution state	Bit
variable	d	Head output number of FX2-24EI connected to F-16NP/NT (8 points occupied)	Bit

# 3. Applicable devices

			Bit	De	vice	s					W	ord	l De	Word Devices										
Operand type		S	Syst	err	ı Us	er	Di	git de	signat	tion	Sy	ste	тl	Jser	Special Unit		h	ndex	Co sta	on ant	Real Number	Character String	Pointer	
	X	Y	M.	Г	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	н	E	"0"	Р	
S	•																							
d		•																						

# Function and operation explanation



- To exchange signals with
  - F-16NP/NT.
- Head input and output numbers are determined by the connection position of FX2-24EI type special block.

#### The following signals are exchanged by the above instruction.



11

Applied Instructions (Data Operation)

# Cautions

- 1) In the case of FX-16NP/NT, FX-16NP/NT-S3 type interface block, this instruction is not used, and FX2-24EI is not needed.
- 2) The instruction is not provided in the FXU and FX2c PLCs Ver. 3.30 or later. This instruction is disused from V3.30 and later.

#### ANRD / Read from F2-6A 16.2

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
×	×	×	×	×	×	Δ	×	×

# Outline

This instruction writes the analog input of F2-6A type analog input and output unit.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST
ANRD	16 bits	Continuous	ANRD — EN ENO — s d1 — n d2	ANRD(EN, s, n, d1, d2);
ANRDP	16 bits	Pulse	ANRDP — EN ENO — — s d1 — — n d2 —	ANRDP(EN, s, n, d1, d2);

# 2. Set data

,	Variable	Description	Data type
	EN	Execution condition	Bit
Input variable	S	Head input number of FX2-24EI connected to F2-6A (16 points occupied)	Bit
	n	Channel number of analog input (n=10,11,12,13)	ANY16
	ENO	Execution state	Bit
Output variable	(d1)	Head output number of FX2-24EI connected to F2-6A (8 points occupied)	Bit
	<u>d</u> 2	Device storing analog input value (8-bit binary)	ANY16

#### 3. Applicable devices

			Bi	t D	ev	ice	s					N	/orc	l De	evic	es	_			Others				
Operand type			Sy	ste	m	us	er	Dig	git des	signat	ion		Sys us	ten ser	1	Special unit		l	ndex	Co sta	on ant	Real Number	Character String	Pointer
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	н	E	"0"	Р
S	•																							
n																				•	•			
<u>d1</u> )		•																						
<u>d2</u> )									•	•	•	•	•	•			•	•	•					

# Function and operation explanation



- · To read in analog input of F2-6A type analog input and output unit.
- The content of the device specified by (s), (d1) is determined by the connection position of FX2-24EI type special adapter.
- In the device specified by (d2), 8-bit binary analog data is stored.

#### Caution

The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later. This instruction is disused from V3.30 and later.

11

# **Program example**

This is intended to determine the average of three points of time series data in 100 ms unit in order to suppress fluctuations of the analog input.



[ST]

ANRD(M8000, X040, K10, Y030, D20); WSFLP(M8012, D20, K3, K1, D0); MEANP(M8012, D0, K3, D10); To store the data of input channel 10 of F₂-6A type analog input and output unit connected from X040, Y030, in the D20.

The content of D20 is shifted to D0, D1, D2 in 100 ms unit.

The average of D0, D1, D2 is stored in the D10.

# 16.3 ANWR / Write to F2-6A

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
×	×	×	×	×	×	Δ	×	×

# Outline

This instruction writes data from the PLC in the F2-6A type analog input and output unit, and issues as analog data.

### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
ANWR	16 bits	Continuous	ANWR — EN ENO — — s1 d — — s2 — n	ANWR(EN, s1, s2, n, d);
ANWRP	16 bits	Pulse	ANWRP EN ENO s1 d s2 n	ANWRP(EN, s1, s2, n, d);

# 2. Set data

۱ ۱	/ariable	Description	Data type
	EN	Execution condition	Bit
Input	<u>(s1)</u>	Device for storing analog output data (8-bit binary)	ANY16
variable	<u>(s2</u> )	Head input number of FX2-24EI connected to F2-6A	Bit
	n	Channel number of analog output	ANY16
Output	ENO	Execution state	Bit
variable	d	Head output number of FX2-24EI connected to F2-6A	Bit

# 3. Applicable devices

			Bit	De	əvi	се	S					٧	Vor	d D	evi	ces						0	thers	
Operand type		;	Sys	ste	m ı	us	er	Dig	git des	signat	ion		Sys us	ster ser	n	Special unit		I	ndex	Co sta	on ant	Real Number	Character String	Pointer
	X	Y	М	Т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
<u>(s1)</u>								•	•	•	•	•	•	•			•	•	•	•	٠			
<u>s2</u>	•																		•					
n																				•	•			
d	•																							

# Function and operation explanation



- Data is written in from PLC into F2-6A type analog input and output unit, and issued as analog data.
- The content of the device specified by (s2), (d) is determined by the connection position of FX2-24EI type special adapter.
- In the device specified by (s1), 8-bit binary data is stored.

Caution

The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later. This instruction is disused from V3.30 and later.

11

# 16.4 RMST / F2-32RM start

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
×	×	×	×	×	×	0	×	×

# Outline

This instruction gives start signal from the PLC or receives status information, in the F2-32RM type programmable cam switch.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
RMST	16 bits	Continuous	RMST — EN ENO — s d1 — n d2	RMST(EN, s, n, d1, d2);

# 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	S	Head input number of FX2-24EI connected to F2-32RM (16 points occupied)	Bit
	n	Program (bank) number of F2-32RM (n = 0, 1).	ANY16
	ENO	Execution state	Bit
Output variable	<u>(d1)</u>	Head output number of FX2-24EI connected to F2-32RM (8 points occupied)	Bit
	(d2)	Head of device storing status information (8 points occupied)	Bit

#### 3. Applicable devices

			Bit	De	vic	es					V	/ore	d De	evic	es						0	thers	
Operand type		5	Sys	ter	n us	ser	Dig	git des	signat	ion		Sys us	ten ser	I	Special unit		h	ndex	Co sta	on ant	Real Number	Character String	Pointer
	х	Y	M.	T	cs	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
s	•																						
n																			•	•			
<u>d1</u>		•																					
(d2)		•	•		•													•					

#### Function and operation explanation



- This instruction gives start command from the PLC or receives status information, in the F2-32RM type programmable cam switch.
- The content of the device specified by <u>s</u>, <u>d1</u> is determined by the connection position of FX2-24EI type special adapter.

 $\begin{array}{lll} \mathsf{FX} \cup \to \mathsf{FX} 2\text{-}32 \mathsf{RM} & \text{Start command} \\ \mathsf{F2}\text{-}32 \mathsf{RM} \to \mathsf{FX} \cup & \text{Status information} \end{array}$ 

 In the device specified by d2, the status information is stored as follows.

		M307	M306	M305	M304	M303	M302	M301	M300
ON	$\longrightarrow$	Normal	Normal	CW	Normally	1.0°	START		BANK1
OFF	$\longrightarrow$	S/W error	H/W error	CCW		0.5°	STOP	Normally OFF	BANK0

As for the meaning of each status, please refer to the user's manual of F2-32RM type programmable cam switch.

#### RMWR / Write to F2-32RM 16.5

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
×	×	×	×	×	×	0	×	×

# Outline

# 1. Format and operation, execution form

ne This instru switch. Format a	iction send	ds output p ation. exe	prohibit information from the PLC to t	he F2-32RM type programmable cam	Applied Instruction (High Speed Processing)
Instruction		Execution	Expression in	each language	13
name	Operation	form	Structured ladder/FBD	ST	T⊂≥
RMWR	16 bits	Continuous	RMWR — EN ENO — — s1 d — — s2	RMWR(EN, s1, s2, d);	pplied Instructions Handy Istruction)
					14
RMWRP	16 bits	Pulse	RMWRP EN ENO s1 d 	RMWRP(EN, s1, s2, d);	Applied Instructi (External FX Device)
			DRMWR		0/IO
DRMWR	32 bits	Continuous	EN ENO	DRMWR(EN, s1, s2, d);	15
			s1 d s2		Applied (Exterr (option
DRMWRP	32 bits	Pulse	DRMWRP EN ENO	DRMWRP(EN, s1, s2. d);	Instructions nal Device al device))
			s2		16

# 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	( <u>s1</u> )	<ul> <li>Head bit device of output prohibit table</li> <li>16-bit operation: 16 points occupied</li> <li>32-bit operation: 32 points occupied</li> </ul>	Bit
	<u>(s2</u> )	Head input number of FX2-24EI connected to F2-32RM (16 points occupied)	Bit
Output	ENO	Execution state	Bit
variable	d	Head output number of FX2-24EI connected to F2-32RM (8 points occupied)	Bit

# 3. Applicable devices

			Bit	D	ev	ice	s					N	/or	d De	evic	es						0	thers	
Operand type		5	Sys	ste	m	us	er	Dig	git des	signat	ion	.,	Sys us	ten ser	I	Special unit		h	ndex	Co sta	on ant	Real Number	Character String	Pointer
	X	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	н	E	"0"	Р
<u>(s1</u> )	•	•	•			•													•					
<u>(s2</u> )	•																							
d		•																						

11

Applied Instructions (Data Operation)

12

# Function and operation explanation



- This instruction sends output prohibit information from the PLC to the F2-32RM type programmable cam switch.
- The content of the device specified by <u>s2</u>, <u>d</u> is determined by the connection position of FX2-24EI type special adapter.
- Writing of output prohibit information

٠

The device specified by <u>s</u> is an output prohibit table, and is handled as octagonal number as shown in the example below.



11

Applied Instructions (Data Operation)

12

Applied Instructions (High Speed Processing)

13

AppliedInstructions (Handy Instruction)

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

# 16.6 RMRD / Read from F2-32RM

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
Х	×	×	×	×	×	0	×	×

# Outline

This instruction reads out the ON/OFF state of output of the F2-32RM type programmable cam switch to the PLC.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
RMRD	16 bits	Continuous	RMRD — EN ENO — s d1 — d2	RMRD(EN, s, d1, d2);
RMRDP	16 bits	Pulse	RMRDP 	RMRDP(EN, s, d1, d2);
DRMRD	32 bits	Continuous	DRMRD — EN ENO — — s d1 — d2 —	DRMRD(EN, s, d1, d2);
DRMRDP	32 bits	Pulse	DRMRDP — EN ENO — — s d1 — d2 —	DRMRDP(EN, s, d1, d2);

# 2. Set data

'	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Head input number of FX2-24EI connected to F2-32RM (16 points occupied)	Bit
	ENO	Execution state	Bit
Output	<u>(d1)</u>	Head output number of FX2-24EI connected to F2-32RM (8 points occupied)	Bit
variable	<u>d2</u> )	Bit device for storing output status (ON/OFF).         • 16-bit operation: 16 points occupied         • 32-bit operation: 32 points occupied	Bit

# 3. Applicable devices

			-	_																	0/1					
			Bit	D	evi	ce	S					N	or	d De	evic	es				Others						
Operand type		;	Sys	te	m	us	er	Digit designation				:	System user			Special unit		I	ndex	Con stant		Real Number	Character String	Pointer		
	х	Y	М	т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	Η	E	"0"	Р		
s	•																									
<u>d1</u>		•																								
(d2)		•	•			•													•							

# Function and operation explanation



- This instruction reads out the ON/OFF state of output of the F2-32RM type programmable cam switch to the PLC.
- The content of the device specified by (s), (d1) is determined by the connection position of FX2-24EI type special adapter.
- Reading of ON/OFF information
- If X000 is turned OFF, the content of the device specified by (d2) is not changed.
- The ON/OFF information being read out is stored in the device specified by d2, and is handled as octagonal number as shown in the example below.



# 16.7 RMMN / F2-32RM monitor

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
×	×	×	×	×	×	0	×	×

# Outline

This instruction reads out the rotating speed (rpm) or present angle of the resolver connected to the F2-32RM type programmable cam switch to the PLC.

### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language				
name	operation	form	Structured ladder/FBD	ST				
RMMN	16 bits	Continuous	RMMN 	RMMN(EN, s, d1, d2);				
RMMNP	16 bits	Pulse	RMMNP EN ENO s d1 d2	RMMNP(EN, s, d1, d2);				

# 2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Head input number of FX2-24EI connected to F2-32RM.	Bit
	ENO	Execution state	Bit
Output	<u>d1</u>	Head output number of FX2-24EI connected to F2-32RM.	Bit
Variable	<u>d</u> 2	Device for storing data of rotating speed and present angle (2 points occupied)	ANY16

#### 3. Applicable devices

			Bi	t D	ev	ice	s		Word Devices													Others					
Operand type	rand System user			Digit designation					System user			Special unit	Index		Con stan		Real Number	Character String	Pointer								
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р			
S	•																										
<u>d1</u> )		•																									
<u>d2</u> )									٠	٠	٠	•	•	•			•	•	•								

# Function and operation explanation

	00 F EN X040 s	RMMN ENO d1 d2	— —Y030 —D100	• The rotating speed (rpm) or present angle of the resolver connected to the F2-32RM type programmable cam switch is read out to the PLC. Whether the rotating speed or the present angle is determined by the setting switch #4 of F2-32RM, whether OFF or ON.
	Monitor of ro	otating		• The content of the device specified by (s), (d1) is determined by the connection position of FX2-24EI type special adapter.
	speed of pre	sent angle		<ul> <li>In the device specified by <u>d</u>, the data of the rotating speed or the present angle being read out is stored.</li> </ul>
D100	8	3	0	In the case of rotating speed (rpm) (actually binary value)
D100	3	5	0	$\sim$ In the case of present angle (deg) (binary value by rounding down 0.5°)

dInstructions

# 16.8 BLK / Specify F2-30GM

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
×	×	×	×	×	×	Δ	×	×

# Outline

This instruction specifies the block number for the F2-30GM type pulse output unit from the PLC.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
BLK	16 bits	Continuous	BLK — EN ENO — s1 d — s2	BLK(EN, s1, s2, d);
BLKP	16 bits	Pulse	BLKP EN ENO s1 d s2	BLKP(EN, s1, s2, d);

### 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	<u>(s1)</u>	Block number (K0 to K31)	ANY16
	<u>(s2</u> )	Head input number of FX2-24EI connected to F2-30GM	Bit
Output	ENO	Execution state	Bit
variable	d	Head output number of FX2-24EI connected to F2-30GM	Bit

# 3. Applicable devices

			Bi	t D	ev	ice	s		Word Devices													Others					
Operand type		;	Sy	ste	m	us	er	Digit designation					System user			Special unit	Index		Con stan		Real Number	Character String	Pointer				
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	E	"0"	Р			
<u>(s1</u> )								٠	٠	٠	٠	•	•	•			•	•	•	•	•						
<u>(s2</u> )	•																		•								
d		•																									
1	X000		BLK																								
---	--------	----	-----	----------																							
		ΕN	ENO	<u> </u>																							
	K0 —	s1	d	_Y030																							
	X040 —	s2																									
1				•																							

• The block number is specified from the PLC to the F2-30GM type pulse output unit.

The block number is the content of the device specified by (s1), and the value is BIN, but is valid in a range of 0 to 31 as converted to BCD.

 $FX_{U}$ ,  $FX_{2C} \rightarrow FX_{2}$ -30GM Block numbers 0 to 31 (decimal)

- When using the BCD digital switch as store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the second store of the sec
- The content of the device specified by s1 and d is determined by the connection position of the FX2-24EI type special block.
- You must always use this instruction when using the F2-30GM. If block number specification is not needed from FXU, FX2c PLCs to F2-30GM, please program as follows.

M8000		BLK	
—и	ΕN	ENO	_
K0—	s1	d	—Y030
X040 —	s2		

In the FX-1GM type pulse output unit, TO instruction is used instead of BLK instruction, and the FX2-24EI type interface block is not needed.

# Caution

The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later. This instruction is disused from V3.30 and later.

# 16.9 MCDE / F2-30GM code

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
×	×	×	×	×	×	Δ	×	×

# Outline

This instruction sends the M code numbers M0 to M77 to the PLC from the F2-30GM type pulse output unit.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
MCDE	16 bits	Continuous	MCDE EN ENO s d1 d2	MCDE(EN, s, d1, d2);
MCDEP	16 bits	Pulse	MCDEP EN ENO s d1 d2	MCDEP(EN, s, d1, d2);2

# 2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Head input number of FX2-24EI connected to F2-30GM	Bit
	ENO	Execution state	Bit
Output variable	<u>d1</u>	Head output number of FX2-24EI connected to F2-30GM	Bit
	(d2)	Bit device for issuing M code number (78 points occupied)	Bit

# 3. Applicable devices

			Bi	t D	ev	ice	s					V	/or	d De	evic	ces						0	thers	
Operand type		System			m	us	er	Digit designatio			ion	System user			I	Special unit	Index		Index		on ant	Real Number	Character String	Pointer
	Х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
S	•																							
(d1)		•																						
(d2)		•	•			•																		

# Function and operation explanation



- From F2-30GM type pulse output unit, M code number M0 to M77 is sent out to the PLC.
- FX2-30GM $\rightarrow$ FXu,FX2c V M code number M0 to 77 (octal) X
- The content of the device specified by s, d1 is determined by the connection position of FX2-24EI type special block.
  When M code output instruction is executed at the F2-30GM side, input
  - X is operated according to the value 0 to 77 (octal), and the result is stored in M500 to M577 in octal notation. For example, in the case of M code 23, M523 is turned ON.
- For the ease of understanding of correspondence of M code number between the PLC side and the F2-30GM side, it is recommended to set 00 in the lower two digits of device M, S specified by d2.
- In the FX-1GM type pulse output unit, FROM instruction is used instead of MCDE instruction.

# Cautions

The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later. This instruction is disused from V3.30 and later.

# 17. Applied Instructions (Data Transfer 2)

This chapter introduces the instructions for executing complicated processing for fundamental applied instructions and for executing special processing.

Instruction name	Function	Reference
ZPUSH	Batch Store of Index Register	Section 17.1
ZPUSHP		
ZPOP	Ratch DOR of Index Pegister	Section 17.2
ZPOPP	Dater FOF OF Index Register	Section 17.2



11

sitioning

# 17.1 ZPUSH / Batch Store of Index Register

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
$\Delta$	×	×	×	×	×	×	×	×

# Outline

This instruction temporarily retracts the present values of index registers V0 to V7, Z0 to Z7. To return the retracted present values to the original values, use the ZPOP instruction.

# $\rightarrow$ As for ZPOP instruction, refer to section 17.2.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
ZPUSH	16 bits	Continuous	ZPUSH — EN ENO d —	ZPUSH(EN, d);
ZPUSHP	16 bits	Pulse	ZPUSHP — EN ENO d	ZPUSHP(EN, d);

# 2. Set data

١	/ariable	Description	Data type
Input variable	EN	Execution condition	Bit
Output	ENO	Execution state	Bit
variable	d	Head device for retracting contents of index registers V0 to V7, Z0 to Z7 temporarily [(1+16 $\times$ times of retraction) occupied]	ANY16

# 3. Applicable devices

			Bi	t D	ev	ice	s					V	Vor	d D	evic	es						0	thers	
Operand type			System user					Digit designation			;	System user			Special unit		h	ndex	Co sta	on ant	Real Number	Character String	Pointer	
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	Κ	н	E	"0"	Р
d														•	•									

# 1. 16-bit operation (ZPUSH/ZPUSHP)



- Contents of index registers V0 to V7, Z0 to Z7 are temporarily retracted in and after the device specified by <a>C</a>. When the contents of index registers are retracted, the number of retracting of the device specified by <a>C</a> is incremented by +1.
- 2) To restore the data, use ZPOP instruction. Use ZPUSH, ZPOP instructions in pair.
- By specifying d by the same device, ZPUSH and ZPOP instructions can be used as nesting. In this case, every time the ZPUSH instruction is executed, the region to be used after the device specified by d is added by 16 points each. Hence, you must preliminarily reserve the region for the number of times to be used by nesting.
- 4) The composition of the data to be retracted after the device specified by d is as shown below.



# **Related instructions**

Instruction	Content
ZPOP	This instruction restores the index registers V0 to V7, Z0 to Z7 once retracted by ZPUSH instruction.

# Cautions

- Without action of nesting, please clear the number of retraction of the device specified by d before execution of ZPUSH instruction.
- With action of nesting, please clear the number of retraction of the device specified by (d) before first execution.
- The instruction is provided in the FX3UC PLC Ver. 2.20 or later.

# Error

It is an operation error in the following case, and error flag M8067 is turned ON, and error code is stored in D8067.

- When the range of the number of points used after the device specified by d by ZPUSH exceeds the range of the corresponding device.
   (Error code: K6706)
- In ZPUSH instruction execution, when the number of retraction of the device specified by d is negative. (Error code: K6707)

11

# **Program example**

This is a program for retracting the contents of index registers Z0 to Z7, V0 to V7 before execution of subroutine program after D0, when using the index register in the subroutine after pointer P0.



# 17.2 ZPOP / Batch POP of Index Register

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
$\bigtriangleup$	×	×	×	×	×	×	×	×

# Outline

This instruction returns the contents of index registers V0 to V7, Z0 to Z7 once retracted by the ZPUSH instruction to the original state.

# $\rightarrow$ As for ZPUSH instruction, refer to section 17.1.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST
ZPOP	16 bits	Continuous	EN ENO d	ZPOP(EN, d);
ZPOPP	16 bits	Pulse	EN ENO d	ZPOPP(EN, d);

# 2. Set data

١	/ariable	Description	Data type
Input variable	EN	Execution condition	Bit
Output	ENO	Execution state	Bit
variable	d	Head device once retracting the contents of index registers V0 to V7, Z0 to Z7 [(1+16 $\times$ times of retraction) occupied]	ANY16

# 3. Applicable devices

			Bit	De	evi	ces	5		Word Devices										Others							
Operand type		Ş	Sys	ster	nι	use	ər	Dig	jit des	signat	ion		Sys us	ten ser	n	Special unit		Index		Index		Co sta	on ant	Real Number	Real Character	
	X	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	Е	"0"	Р		
d														•	•											

# Function and operation explanation

# 1. 16-bit operation (ZPOP/ZPOPP)

# $\rightarrow$ As for the function and operation, refer to section 17.1.



- 1) The contents of index registers Z0 to Z7, V0 to V7 once retracted after the device specified by d by ZPUSH instruction are restored in the original index register. When the contents of the index register are restored, the number of retraction of the device specified by d is processed by -1.
- 2) Use ZPUSH instruction for temporary retraction of data. Use ZPUSH, ZPOP instructions in pair.

11

# **Related instructions**

Instruction	Content
ZPUSH	This instruction temporarily retracts the present values of index registers V0 to V7, Z0 to Z7.

# Caution

• The instruction is provided in the FX3UC PLC Ver. 2.20 or later.

# Error

It is an operation error in the following case, and error flag M8067 is turned ON, and error code is stored in D8067.

• When the content of the number of retraction of the device specified by d during execution of ZPOP instruction is 0 or negative. (Error code: K6706)

# **Program example**

 $\rightarrow$  As for program examples, refer to section 17.1.

# **18. Applied Instructions (Floating Point)**

This chapter introduces the instructions for conversion, comparison, arithmetic operations, square root operation, trigonometry, etc. for floating point operations.

Instruction name	Function	Reference
DECMP	Floating Point Compare	Section 18.1
DECMPP		Section 10.1
DEZCP	Electing Point Zone Compare	Section 18.2
DEZCPP		3601011 10.2
DEMOV	Electing Point Move	Section 18 3
DEMOVP		Section 10.5
DESTR	Electing Point to Character String Conversion	Section 18 4
DESTRP	Theating Found to Character String Conversion	Section 10.4
DEVAL	Character String to Electing Point Conversion	Section 18.5
DEVALP		00000110.0
DEBCD	Floating Point to Scientific Notation Conversion	Section 18.6
DEBCDP		Section 10.0
DEBIN	Scientific Notation to Electing Point Conversion	Section 18.7
DEBINP		Section 10.7
DEADD	Floating Point Addition	Section 18.8
DEADDP		
DESUB	Floating Point Subtraction	Section 18.9
DESUBP		
DEMUL	Floating Point Multiplication	Section 18 10
DEMULP		
DEDIV	Floating Point Division	Section 18 11
DEDIVP		
DEXP	Eleating Point Exponent	Section 18 12
DEXPP		00000110.12
DLOGE	Floating Point Natural Logarithm	Section 18 13
DLOGEP		
DLOG10	Floating Point Common Logarithm	Section 18 14
DLOG10P		
DESQR	Floating Point Square Root	Section 18 15
DESQRP		
DENEG	Floating Point Negation	Section 18 16
DENEGP		
INT		_
INTP	Floating Point to Integer Conversion	Section 18 17
DINT		
DINTP		
DSIN	Floating Point Sine	Section 18.18
DSINP		
DCOS	Floating Point Cosine	Section 18.19
DCOSP	-	
DTAN	Floating Point Tangent	Section 18.20
DTANP		
DASIN	Floating Point Arc Sine	Section 18.21
DASINP		
DACOS	Floating Point Arc Cosine	Section 18.22
DACOSP		
DATAN	Floating Point Arc Tangent	Section 18.23
DATANP		

11

Instruction name	Function	Reference	
DRAD	Floating Point Degrees to Radians Conversion	Section 18 24	
DRADP		00000110.24	
DDEG	Floating Point Radians to Degrees Conversion	Section 18 25	
DDEGP		00010110.20	

# 18.1 DECMP / Floating Point Compare

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	Δ	0	0	×	×	×	×	×

# Outline

This instruction compares two data (binary floating decimal point), and issues the result of greater, smaller, or equal to the bit device (3 points).

 $\rightarrow$  As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
DECMP	32 bits	Continuous	DECMP EN ENO s1 d s2	DECMP(EN, s1, s2, d);
DECMPP	32 bits	Pulse	DECMPP — EN ENO — s1 d — s2	DECMPP(EN, s1, s2, d);

# 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	<u>(s1)</u>	Device for storing binary floating point data to be compared	FLOAT(Single Precision)
	<u>(s2</u> )	Device for storing binary floating point data to be compared	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Head bit device for output of result (3 points occupied)	ARRAY [02] OF Bit

# 3. Applicable devices

			Bit	De	evic	ce	s					N	/orc	l De	evice	es			Others					
Operand type		ę	Sys	ter	n u	ISC	er	Dig	git des	signat	ion	Sy	ste	mι	iser	Special unit		h	ndex	Co sta	on ant	Real Number	Character String	Pointer
	х	Y	M	Т	c	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	v	z	Modifier	κ	н	E	"0"	Р
<u>(s1</u> )														•	<b>▲</b> 1	▲2			•			▲4		
(s2)														•	<b>▲</b> 1	▲2			•			▲4		
d		•	•		•	•	▲3												•					

▲: Refer to "Cautions".

20

itioning

# 1. 32-bit operation (DECMP, DECMPP)

The compared value specified by  $\underline{s1}$  and the comparison source specified by  $\underline{s2}$  are compared as floating decimal point data, and depending on the result of greater, smaller, or equal, any bit of devices ( $\underline{d}$ ,  $\underline{d}$ +1, and  $\underline{d}$ +2) specified by  $\underline{d}$  is turned ON.



If the command input is OFF and DECMP instruction cannot be executed, the device specified by d holds the state before the command input is turned OFF.

# Cautions

### 1. Number of devices occupied

d occupies 3 points.Be careful not to overlap with the devices used in other applications.

# 2. The instruction is provided in the FX3G PLC Ver. 1.10 or later.

### 3. Some restrictions to applicable devices.

- ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲2: The FX₃U and FX₃UC PLCs only are applicable.
- ▲3: The FX3U and FX3UC PLCs only are applicable. However, index decoration is not applicable.
- ▲4: The FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

# 18.2 DEZCP / Floating Point Zone Compare

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	×	×	×

# Outline

This instruction compares the comparison range of upper and lower two points and the data (binary floating decimal point), and issues the result to the bit device (3 points) depending on the greater, smaller or the band.  $\rightarrow$  As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
DEZCP	32 bits	Continuous	DEZCP 	DEZCP(EN, s1, s2, s3, d);
DEZCPP	32 bits	Pulse	DEZCPP 	DEZCPP(EN, s1, s2, s3, d);

# 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input	<u>(s1)</u>	Device for storing binary floating point data to be compared	FLOAT(Single Precision)
variable	<u>(s2</u> )	Device for storing binary floating point data to be compared	FLOAT(Single Precision)
	<u>(53)</u>	Device for storing binary floating point data to be compared	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Head bit device for output of result (3 points occupied)	ARRAY [02] OF Bit

# 3. Applicable devices

			Bi	t D	ev	ice	s							d D	evice	es				Others					
Operand type		5	Sy	ste	m	us	er	Dig	git des	signat	ion	Sy	ste	mι	ıser	Special unit		I	ndex	Co sta	on ant	Real Number	Character String	Pointer	
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р	
<u>(s1</u> )														•	▲1	▲1			•			▲1			
<u>(s2</u> )														•	▲1	▲1			•			▲1			
<u>(s3)</u>														•	▲1	▲1			•			▲1			
d		•	•			•	▲2												•						

▲: Refer to "Cautions".

lied Instructions sitioning

# 1. 32-bit operation (DEZCP, DEZCPP)

The compared value specified by  $(s_1)$ ,  $(s_2)$  and the comparison source specified by  $(s_3)$  are compared as floating decimal point data, and depending on the result of smaller, within range, or greater, any bit of devices (d), (d)+1, and (d)+2) specified by (d) is turned ON.



If the command input is OFF and DEZCP instruction cannot be executed, the device specified by d holds the state before the command input is turned OFF.

# Cautions

# 1. Number of devices occupied

(d) occupies 3 points. Be careful not to overlap with the devices used in other applications.

# 2. Comparison data of s1 and s2

The magnitude relation of comparison data is  $\underline{s1} \pm \underline{s2}$ . In the case of  $\underline{s1} > \underline{s2}$ , the value of  $\underline{s2}$  is regarded to be same as  $\underline{s1}$ , and is compared.

### 3. Some restrictions to applicable devices.

- ▲1: The FX3U and FX3UC PLCs only are applicable.
- ▲2: The FX₃U and FX₃UC PLCs only are applicable. However, index decoration is not applicable.

# 18.3 DEMOV / Floating Point Move

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	Δ	0	×	×	×	×	×	×

# Outline

This instruction transfers binary floating point data.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
DEMOV	32 bits	Continuous	DEMOV EN ENO s d	DEMOV(EN, s, d);
DEMOVP	32 bits	Pulse	DEMOVP — EN ENO — s d	DEMOVP(EN, s, d);

# 2. Set data

١	/ariable	Description	Data type
Innut	EN	Execution condition	Bit
variable	S	Binary floating decimal point data of transfer source, or device storing the data	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Transfer destination device of binary floating decimal point data	FLOAT(Single Precision)

# 3. Applicable devices

																			-				
			Bit	De	vic	es					N	Vord	d D	evic	es						0	thers	
Operand type	erand System user		Digit designation					/ste	mı	user	Special unit	Index		Con F stant Nu		Real Number	Character String	Pointe					
	х	Y	М	т	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	к	н	E	"0"	Р
S													•	▲1	▲2			•			•		
d													•	▲1	▲2			•					

▲: Refer to "Cautions".

 $[\]rightarrow$  As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].

# 1. 32-bit operation (DEMOV/DEMOVP)

The content (binary floating decimal point data) of transfer source of device specified by  $\bigcirc$  is transferred to the device specified by  $\bigcirc$ . Real number (E) can be directly specified in the device specified by  $\bigcirc$ .



# Program example

1. This is a program for storing the real number of D11, D10 in D1, D0 when X007 is turned ON.

[Structured ladder/FBD]



[ST]

DEMOVP(X007,D10,D0);

# 2. This is a program for storing the real number -1.23 in D11, D10 when X007 is turned ON.

[Structured ladder/FBD]



[ST]

DEMOVP(X007,E-1.23 ,D10);

# Cautions

# 1. The instruction is provided in the FX3G PLC Ver. 1.10 or later.

# 2. Some restrictions to applicable devices.

- ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲2: The FX3U and FX3UC PLCs only are applicable.

#### 18.4 **DESTR / Floating Point to Character String Conversion**

-

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

# Outline

This instruction converts the binary floating decimal point data into character string (ASCII code) in a specified number of digits. You can also use the STR instruction for converting BIN data into character string (ASCII code).

 $\rightarrow$  As for character string, refer to FX Structured Programming Manual [Device & Common]. ightarrow As for handling of floating decimal point, refer to FX Structured Programming Manual [Device &

Common].  $\rightarrow$  As for STR instruction, see section 26.1.

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
DESTR	32 bits	Continuous	DESTR — EN ENO — s1 d1 — s2	DESTR(EN, s1, s2, d1);
DESTRP	32 bits	Pulse	DESTRP — EN ENO — s1 d1 — s2	DESTRP(EN, s1, s2, d1);

# 1. Format and operation, execution form

# 2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	<u>(s1)</u>	Binary floating decimal point data to be converted, or device storing the data	FLOAT(Single Precision)
	<u>(s2</u> )	Head device storing the display specification of the numeric value to be converted (3 points occupied).	ARRAY [02] OF ANY16
Output	ENO	Execution state	Bit
variable	<u>d1</u>	Head of the storing destination device of the converted character string (all digits + 1) $\div$ 2 points occupied (fractions are rounded up).	String

# 3. Applicable devices

			В	it D	ev	ice	S					V	Vore	d De	evice	es						0	thers	
Operand type			Sy	ste	m	us	er	Dig	git des	signat	ion	System user Special Index		Co sta	on ant	Real Number	Character String	Pointer						
	Х	Y	N	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
(s1)														•	•	•			•			•		
(s2)								•	•	•	٠	•	•	•	•	•			•					
<u>d1</u> )									•	•	•	•	•	۲	•	•			•					

11

# 1. 32-bit operation (DESTR/DESTRP)

The content (binary floating decimal point data) of the device specified by (s) is converted into character string depending on the content of the device specified by (s), and stored in or after the device specified by (d). Real number can be directly specified in the device specified by (s).



• The converted data differs depending on the display specification specified by (s2).



### 2. In the case of decimal point type



To be stored automatically at the end of character string.

- Decimal digits that can be specified by (s2) +2 is 0 to 7 digits. However, please set in the range of decimal digits ≤ (all digits - 3).

11

Applied Instructions (Data Operation)

12

nstr

ructions

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

nstructions ining

13



Binary floating decimal point (real number)

- The converted character string data is stored in the device after d as follows.
  - For the sign, "20H" (space) is stored when the binary floating decimal point data is positive, and "2DH" (-) is stored when negative.
  - When the decimal part of binary floating decimal point data does not settle within the decimal digits, the lower decimal digits are rounded off.



- When the number of decimal digits is set in other than "0", automatically "2EH" (.) is stored at the specified decimal digits + 1 digit.

However, when the number of decimal digits is "0", "2EH" (.) is not stored.



- When the number of digits subtracting the sign, decimal point, and decimal part from the total number of digits is greater than the integer part of the binary floating decimal point data, "20H" (space) is inserted between the sign and the integer part.



- "00H" or "0000H" is automatically stored at the end of the converted character string.

# 3. In the case of exponential type



- The number of all digits that can be specified by S2+1 is as follows. (Maximum: 24 digits)
   When the number of digits below decimal point is "0" .....No. of digits ≥ 6
- When the number of digits below decimal point is other than "0"....No. of digits ≥ (decimal digits + 7)
  Decimal digits that can be specified by (s2)+2 is 0 to 7 digits. Please set within the range of decimal digits



 $\leq$  (total digits - 7).

b15 b8 b7 b0 20H (space) 2DH(-) (d)+1 2EH(.) 31H(1) (d)+2 33H(3) 32H(2) (d)+3 36H(6) 34H(4) <u>d</u>+4 2BH(+) 45H(E) <u>d</u>+5 31H(1) 30H(0) 0000H (d)+6 ♠

Binary floating decimal point (real number)

To be stored automatically at the end of character string.

- The converted character string data is stored in the device after d as follows.
  - For the sign of integer part, "20H" (space) is stored when the binary floating decimal point data is positive, and "2DH" (-) is stored when negative.
  - The integer part is fixed in one digit. Between the integer part and the sign, "20H" (space) is inserted.



- When the decimal part of binary floating decimal point data does not settle within the decimal digits, the lower decimal digits are rounded off.



- When the number of decimal digits is set in other than "0", automatically "2EH" (.) is stored at the specified decimal digits + 1 digit.

However, when the number of decimal digits is "0", "2EH" (.) is not stored.



- For the sign of exponential part, "2BH" (+) is stored when the index is positive, and "2DH" (-) is stored when negative.
- The exponential part is fixed in two digits. When the exponential part is one digit, between the exponential part and the sign, "30H" (0) is inserted.



- "00H" or "0000H" is automatically stored at the end of the converted character string.

# **Related instructions**

Instruction	Content
EVAL	This instruction converts the character string (ASCII code) data into binary floating decimal point data.
STR	This instruction converts BIN data into character string (ASCII code).
VAL	This instruction converts the character string (ASCII code) data into BIN data.

11

20

nstructions ning

# Error

In the following cases, it is an operation error, and error flag (M8067) is turned ON, and error code is stored in D8067.

- When s1 is not within the following range. (Error code: K6706) 0,  $\pm 2^{-126} \le s1 \le \pm 2^{128}$
- When the type specification specified by (s2) is other than 0, 1. (Error code: K6706)
- When the all digits specification specified by (s2)+1 is out of the following range. (Error code: K6706) In the case of decimal point type
  - When the number of digits below decimal point is "0" . . . . . All digits  $\ge 2$ When the number of digits below decimal point is other than "0" . . All digits  $\ge$  (decimal digits + 3) In the case of exponential type
    - When the number of digits below decimal point is "0" ..... All digits  $\geq 6$ When the number of digits below decimal point is other than "0" ... All digits  $\geq$  (decimal digits + 7)
- When the decimal digits specification specified by (s2) +2 is out of the following range. (Error code: K6706) In the case of decimal point type: Decimal digits ≤ (all digits - 3) In the case of index type: Decimal digits ≤ (all digits - 7)
- When the device range for storing the character string specified by d is over the range of the corresponding device. (Error code: K6706)
- When the result of conversion exceeds the specified all digits. (Error code: K6706)

11

Applied Instructions (Data Operation)

12

edInstructions n Speed essing)

13

nstruction

Applied

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

ed Instructions itioning

# **Program example**

1) This is a program for converting the content (binary floating decimal point data) of R0, R1 depending on the content specified by R10 to R12 when the X000 is turned ON, and storing after the D0.



 This is a program for converting the content (binary floating decimal point data) of R0, R1 depending on the content specified by R10 to R12 when the X000 is turned ON, and storing after the D10.



# 18.5 DEVAL / Character String to Floating Point Conversion

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

# Outline

This instruction converts the character string (ASCII code) into binary floating decimal point data. You can also use the VAL instruction for converting the character string (ASCII code) into BIN data.

 $\rightarrow$  As for character string, refer to FX Structured Programming Manual [Device & Common].

 $\rightarrow$  As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].

 $\rightarrow$  As for VAL instruction, refer to section 26.2.

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language					
name	operation	form	Structured ladder/FBD	ST				
DEVAL	32 bits	Continuous	DEVAL —EN ENO — s d —	DEVAL(EN, s, d);				
DEVALP	32 bits	Pulse	DEVALP — EN ENO — s d	DEVALP(EN, s, d);				

# 2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Head device storing the character string to be converted into binary floating point decimal data.	String
Output	ENO	Execution state	Bit
variable	d	Device for storing the converted binary floating point decimal data.	FLOAT(Single Precision)

# 3. Applicable devices

	Bit Devices					Word Devices					Others													
Operand type			Sy	ste	m	us	er	Dig	git de	signat	ion	:	Sys us	ten ser	n	Special unit		I	ndex	Co ta	ons nt	Real Number	Character String	Pointer
	Х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
S								•	•	•	•	•	•	•	•	•			•					
d														•	•	•			•					

# Function and operation explanation

# 1. 32-bit operation (EVAL/EVALP)

The character string stored after the device specified by  $\bigcirc$  is converted into binary decimal floating point data, and stored in the device specified by  $\bigcirc$ .



The character string specified can be converted into binary floating point decimal data whether in decimal point type or in specified type.

b	15 —————b8	b7 ———— b	0	
S	ASCII code of first character	ASCII code of the sign		
<u>s</u> +1	ASCII code of third character	ASCII code of second character		
<u>s</u> +2	ASCII code of fifth character	ASCII code of fourth character		
<u>s</u> +3	ASCII code of seventh character	ASCII code of sixth character		Binary floating decimal point (real number)
<u>s</u> +4		00H		penn (. ear namber)
		<u>^</u>	1	

Showing the end of character string.

### a) In the case of decimal point type



- 1 . 0 7 8 1 2

b) In the case of exponential type

b1	15———— b8	b7 b	0	
S	20H(space)	2DH(-)		
<u>s</u> +1	2EH(.)	31H(1)		
<u>s</u> +2	32H(2)	33H(3)		$(\underline{d})+1$ $(\underline{d})$
<u>s</u> +3	31H(1)	30H(0)		
<u>s</u> +4	2BH(+)	45H(E)		Binary floating decimal point (real number)
<u>s</u> +5	30H(0)	31H(1)		(
<u>s</u> +6		00H		

# - 11.32011E+10

- When the character string to be converted into the binary floating decimal point specified by <u>s</u> is more than 7 digits excluding the sign, decimal point, and the exponential part, the data after the seventh digit is cut off.
  - a) In the case of decimal point type

b	15———— b8	b7 ———— b	0	
S	20H(space)	2DH(-)		
<u>s</u> )+1	31H(1)	20H(space)		
<u>s</u> +2	33H(3)	2EH(.)		<u>d</u> +1 <u>d</u>
<u>s</u> +3	31H(1)	30H(0)	$ \Longrightarrow $	-1.30156
<u>s</u> +4	36H(6)	35H(5)		Matched exactly up to the sixth digit.
<u>s</u> +5	31H(1)	38H(8)		Pipery fleating desimal point (real number)
<u>s</u> +6	00H	32H(2)		Binary hoating decimal point (real number)
	- [ ] [ ] [ ] 3 [0	156812 To be cut off.		

siled Instructions **4** Applied Instructions **5** Applied Instructions **6** Applied Instructions andy (External FX I/O **1** (External Device) **16** (External Device) **17** (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

nstructions

11

Applied Instructions (Data Operation)

12

Instructions

13

455

b) In the case of exponential type

b1	15———— b8	b7 ———— b	0	
S	20H(space)	2DH(-)		
<u>s</u> +1	2EH(.)	31H(1)		
<u>s</u> +2	35H(5)	33H(3)		
<u>s</u> +3	33H(3)	30H(0)		(d)+1 $(d)$
<u>s</u> +4	31H(1)	34H(4)		-1.35034E-2
<u>s</u> +5	45H(E)	32H(2)		Binary floating decimal point (real number)
<u>s</u> +6	30H(0)	2DH(-)		point (roai namoor)
	00H	32H(2)		
		3412百一02 不 To be cut off.	-	

- To be converted as positive value when "2BH" (+) is specified by the sign or the sign is omitted in the decimal point type. To be converted as negative value when "2DH" (-) is specified by the sign.
- To be converted as positive value when "2BH" (+) is specified in the exponential part sign or the sign is omitted in the exponential type. To be converted as negative value when "2DH" (-) is specified in the exponential part sign.
- When "20H" (space) or "30H" (0) is present among the numeric values except for the first "0" in the character string specified by (s), "20H" or "30H" is ignored in the converting operation.

b1	15———— b8	b7 — — — — — b	0	
S	20H(space)	2DH(-)		
<u>s</u> +1	31H(1)	30H(0)		<u>d</u> +1 <u>d</u>
<u>s</u> +2	32H(2)	2EH(.)		-1.231
<u>s</u> +3	31H(1)	33H(3)		Binary floating decimal
<u>s</u> +4		00H		point (real number)
		[		

• When "30H" (0) is present between "E" and the numeric value in the character string in the exponential type, "30H" is ignored in the converting operation.

b	15———— b8	b7 ———— b	0
	20H(space)	2DH(-)	
	2EH(.)	31H(1)	
	34H(4)	30H(0)	<u>d</u> +1 <u>d</u>
	33H(3)	35H(5)	-1.0453E+3
	2BH(+)	45H(E)	
	33H(3)	30H(0)	
		00H	
	-][][1][][0][4	153目于[0]3 下	
		i o be ignore	ea.

• The character string can be set in a maximum of 24 characters. In the character string, "20H" (space) or "30H" (0) is counted as one character.

# **Related devices**

 $\rightarrow$  As for the manner of using the zero, borrow, or carry flag, refer to the FX Structured Programming Manual [Device & Common].

Device	Namo	Content				
Device	Name	Condition	Operation			
M8020	Zero	The conversion result is really zero (when the mantissa part is "0")	Zero flag (M8020) is ON.			
M8021	Borrow	Absolute value of conversion result < 2 ⁻¹²⁶	The value of $\bigcirc$ is the smallest value (2 ⁻¹²⁶ ) of 32-bit real number, and borrow flag (M8021) is ON.			
M8022	Carry	Absolute value of conversion result $\ge 2^{128}$	The value of $\bigcirc$ is the largest value (2 ¹²⁸ ) of 32-bit real number, and carry flag (M8022) is ON.			

# **Related instructions**

Instruction	Content
ESTR	This instruction converts the binary floating decimal point data into character string (ASCII code).
STR	This instruction converts BIN data into character string (ASCII code).
VAL	This instruction converts the character string (ASCII code) data into BIN data.

# Error

In the following cases, it is an operation error, error flag (M8067) is turned ON, and error code is stored in D8067.

- When other characters than "30H" (0) to "39H" (9) are present in the integer part or the decimal part. (Error code : K6706)
- When two or more "2EH" (.) are present in the character string specified by s. (Error code : K6706)
- When other characters than "45H" (E), "2BH" (+), or "2DH" (-) are present in the exponential part, or when there are plural exponential parts. (Error code : K6706)
- When "00H" is not present in the corresponding device range from <u>S</u>. (Error code : K6706)
- When the number of characters after s is 0 or exceeds 24 characters. (Error code : K6706)

# **Program example**

1) This is a program for converting the character string stored after R0 when the X000 is turned ON, into binary floating decimal point, and storing in D0, D1.



2) This is a program for converting the character string stored after D10 when the X000 is turned ON, into binary floating decimal point, and storing in D100, D101.

[Structured ladder	/FBD]	[ST]							
X000	DEVALP EN ENO- 10 s d	- - D100	P(X000,D10,D100);						
b1	5———— b8	b7 ———— t	<u>0</u> 0						
D10	20H(space)	20H(space)							
D11	2EH(.)	31H(1)							
D12	33H(3)	32H(2)		D101 D100					
D13	35H(5)	34H(4)		1.2345E-2					
D14	2DH(-)	45H(E)							
D15	32H(2)	30H(0)							
D16		00H							
	∏∏[1],]2]3 ↑ To be ignored	[4]5]匡[-]0]2 不 I. To be ignore	- ed.						

Operation in overflow, underflow, zero mode

Condition	Operation
Absolute value of conversion result $< 2^{-126}$	The value of $\bigcirc$ is the smallest value (2 ⁻¹²⁶ ) of 32-bit real number, and borrow flag (M8021) is ON.
Absolute value of conversion result $\geq 2^{128}$	The value of $\bigcirc$ is the largest value (2 ¹²⁸ ) of 32-bit real number, and carry flag (M8022) is ON.
The conversion result is really zero (when the mantissa part is "0")	Zero flag (M8020) is ON.

# 18.6 DEBCD / Floating Point to Scientific Notation Conversion

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	×	×	×

# Outline

This instruction converts the binary floating decimal point in the device into decimal floating decimal point.  $\rightarrow$  As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST
DEBCD	32 bits	Continuous	DEBCD EN ENO s d	DEBCD(EN, s, d);
DEBCDP	32 bits	Pulse	DEBCDP — EN ENO — s d	DEBCDP(EN, s, d);

# 2. Set data

١	Variable	Description	Data type
Input	EN	Execution condition	Bit
Input variable	S	Device for storing binary floating decimal point data.	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Device for storing the converted decimal floating decimal point data.	ANY32

# 3. Applicable devices

			Bi	t D	evi	ces	S		Word Devices											Others				
Operand type			Sy	ste	m	use	er	Dig	jit des	signat	tion		Sys u	ste ser	m	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointe
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	v	z	Modifier	κ	н	E	"0"	Р
S														•	▲1	▲1			•					
d														•	▲1	▲1			•					

▲: Refer to "Cautions".

# 1. 32-bit operation (DEBCD, DEBCDP)

The binary floating decimal point of the device specified by  $\bigcirc$  is converted into decimal floating decimal point, and is transferred to the device specified by  $\bigcirc$ .

Commar input	DEBCD EN ENO		[ <u>(s)</u> +1, <u>(s)</u> ] →	→ [+1,]
Device for floating d	r storing the binary s d Device for ecimal point data decimal fic	storing the converted bating decimal point data	Binary floating decimal point	Decimal floating decimal point
	Higher position		Lower posi	tion
Before	b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b1	6 b15 b14 b13 b12 b11 b10 b9 b8	b7 b6 b5 b4 b3 b2 b1	b0
execution	Exponential part (8 bits)	Mantissa part (23 bits	;)	
	Sign (1 bit)			
	s)+1	↑ 	5	1
		After execution		
	Higher position	$\checkmark$	Lower posi	tion
After	b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b1	6 b15 b14 b13 b12 b11 b10 b9 b8	b7 b6 b5 b4 b3 b2 b1	b0
execution	Exponential part	Mantis	sa part	
	d+1		Ð	<b>—</b>
		10		->

# Cautions

 In the floating decimal point operation, all operations are executed at the binary floating decimal point. However, since the binary floating decimal point is a difficult numeric value (exclusive monitor method), by converting it into decimal floating decimal point, it is easier for monitoring by peripheral devices or the like.

Meanwhile, GX Works 2 or GOT is provided with a function for monitoring or displaying the binary floating decimal point directly.

2) Some restrictions to applicable devices.
 ▲1: The FX₃U and FX₃UC PLCs only are applicable.

#### **DEBIN / Scientific Notation to Floating Point Conversion** 18.7

-

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	×	×	×

# Outline

This instruction converts the decimal floating decimal point in the device into binary floating decimal point. → As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST
DEBIN	32 bits	Continuous	DEBIN EN ENO s d	DEBIN(EN, s, d);
DEBINP	32 bits	Pulse	DEBINP — EN ENO — s d	DEBINP(EN, s, d);

# 2. Set data

١	/ariable	Description	Data type
Input	ENO	Execution condition	Bit
variable	S	Device for storing decimal floating decimal point data.	ANY32
Output	ENO	Execution state	Bit
variable	d	Device for storing the converted binary floating decimal point data.	FLOAT(Single Precision)

# 3. Applicable devices

			Bit	D	evi	се	s						Wo	rd	Devic	es				Others				
Operand type			Sys	ste	m	us	er	Dig	it des	signat	ion		Sy ι	/ste Jse	em r	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	к	н	E	"0"	Р
S														•	▲1	▲1			•					
d														۲	<b>▲</b> 1	▲1			•					

▲: Refer to "Cautions".

11

Bull

# 1. 32-bit operation (DEBIN, DEBINP)

The decimal floating decimal point of the device specified by  $\bigcirc$  is converted into binary floating decimal point, and is transferred to the device specified by  $\bigcirc$ .



# Cautions

- 1) Some restrictions to applicable devices.
  - ▲1: The FX₃U and FX₃UC PLCs only are applicable.

# **Program example**

By using the DEBIN instruction, the numeric value including the decimal point can be directly converted into the binary floating decimal point.

Example: Binary floating decimal point conversion of 3.14

3.14=314×10⁻² (Decimal floating decimal point)

[Structured ladder/FBD]



[ST]

MOVP(X002,K314,D0); MOVP(X002,K-2,D1); DEBIN(Y002,D0,D10);

ightarrow As for program example of floating decimal point operation, refer to section 11.10.

#### 18.8 **DEADD / Floating Point Addition**

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)	
0	Δ	0	0	×	×	×	×	×	

# Outline

This instruction adds two binary floating decimal points.

 $\rightarrow$  As for program example of floating decimal point operation, refer to section 11.10. → As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].

ightarrow As for the operation of the flag, refer to the FX Structured Programming Manual [Device & Common].

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
DEADD	32 bits	Continuous	DEADD 	DEADD(EN, s1, s2, d);
DEADDP	32 bits	Pulse	DEADDP EN ENO s1 d s2	DEADDP(EN, s1, s2, d);

# 2. Set data

	/orioble	Description	Dete turne
	ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	<u>(s1)</u>	Device for storing binary floating decimal point data to be added.	FLOAT(Single Precision)
	<u>(s2</u> )	Device for storing binary floating decimal point data to be added.	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Device for storing the added binary floating decimal point data.	FLOAT(Single Precision)

# 3. Applicable devices

Operand type			Bi	t D	evi	се	s						Wo	rd	Others									
	System user							Digit designation				System user			em r	Special unit	Index		Cons tant		Real Number	Character String	Pointer	
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	Н	E	"0"	Р
<u>(s1)</u>														•	▲1	▲2			•			▲3		
<u>(s2</u> )														•	▲1	▲2			•			▲3		
d														•	▲1	▲2			•					

▲: Refer to "Cautions".

# Function and operation explanation

# 1. 32-bit operation (DEADD, DEADDP)

The binary floating decimal point data in the device specified by s1 and in the device specified by s2 are added, and the result is transferred to the device specified by d in binary floating decimal point.



Applied Instructions (Data Operation) 12 edInstructions n Speed essing) 13 Applied nstruction Tandy nstructions 4 ण्रि ed al FX 1/O 15 Applied Instructions (External Device (optional device)) 1 6 Applied Instru (External De structions I Device) 7 Applied (Data T d Instructions Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

(Ppp Control ositioning

liedInstructions

11

# Cautions

- When the same devices are specified, the same device numbers can be specified in <u>s</u> and <u>s</u> and <u>d</u>. In this case, when the continuous execution type instruction (DEADD) is used, it must be noted that the addition result changes in every operation cycle.
- 2) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
- 3) Some restrictions to applicable devices.
  - ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  - ▲2: The FX3U and FX3UC PLCs only are applicable.
  - ▲3: The FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

# 18.9 DESUB / Floating Point Subtraction

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	Δ	0	0	×	×	×	×	×

# Outline

This instruction subtracts two binary floating decimal points.

→ As for program example of floating decimal point operation, refer to section 11.10. → As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].

 $\rightarrow$  As for the operation of the flag, refer to the FX Structured Programming Manual [Device & Common].

# 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST
DESUB	32 bits	Continuous	DESUB EN ENO s1 d s2	DESUB(EN, s1, s2, d);
DESUBP	32 bits	Pulse	DESUBP EN ENO s1 d s2	DESUBP(EN, s1, s2, d);

# 2. Set data

'	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	<u>(s1)</u>	Device for storing binary floating decimal point data to be subtracted.	FLOAT(Single Precision)
	<u>(s2</u> )	Device for storing binary floating decimal point data to be subtracted.	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Device for storing the subtracted binary floating decimal point data.	FLOAT(Single Precision)

# 3. Applicable devices

Operand type			Bit	D	evi	ce	s						Wo	rd	Others									
	System user								Digit designation					/ste Jse	em r	Special unit	Index		Co ta	ns nt	Real Number	Character String	Pointer	
	X	Υ	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
(s1)														•	▲1	▲2			•			▲3		
<u>(s2</u> )														•	▲1	▲2			•			▲3		
d														•	▲1	▲2			•					

▲: Refer to "Cautions".

20

Instructions

# 1. 32-bit operation (DESUB, DESUBP)

The binary floating decimal point data in the device specified by  $\underline{s2}$  are subtracted from the device specified by  $\underline{s1}$ , and the result is transferred to the device specified by  $\underline{d}$  in binary floating decimal point.



# Cautions

- When the same devices are specified, the same device numbers can be specified in <u>s</u> and <u>s</u> and <u>d</u>. In this case, when the continuous execution type instruction (DESUB) is used, it must be noted that the subtraction result changes in every operation cycle.
- 2) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
- 3) Some restrictions to applicable devices.
  - ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  - ▲2: The FX₃U and FX₃UC PLCs only are applicable.
  - ▲3: The FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
## 18.10 DEMUL / Floating Point Multiplication

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	Δ	0	0	×	×	×	×	×

#### Outline

This instruction multiplies two binary floating decimal points.

 $\rightarrow$  As for program example of floating decimal point operation, refer to section 11.10.  $\rightarrow$  As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
DEMUL	32 bits	Continuous	DEMUL — EN ENO — s1 d — s2	DEMUL(EN, s1, s2, d);
DEMULP	32 bits	Pulse	DEMULP – EN ENO – s1 d – s2	DEMULP(EN, s1, s2, d);

#### 2. Set data

,	Variable	Description	Data type
	EN	Execution condition	Bit
Input variable	<u>(s1)</u>	Device for storing binary floating decimal point data to be multiplied.	FLOAT(Single Precision)
	<u>s2</u>	Device for storing binary floating decimal point data to be multiplied.	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Device for storing the multiplied binary floating decimal point data.	FLOAT(Single Precision)

#### 3. Applicable devices

			Bi	t D	evi	ce	s					1	Wo	rd	Devic	es				Others						
Operand type		;	Sys	ste	m	us	er	Dig	jit des	signat	ion		Sy ι	/ste Jse	em r	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer		
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р		
<u>(s1</u> )														٠	▲1	▲2			•			▲3				
<u>(s2</u> )														٠	▲1	▲2			•			▲3				
d														•	▲1	▲2			•							

▲: Refer to "Cautions".

#### Function and operation explanation

#### 1. 32-bit operation (DEMUL, DEMULP)

The binary floating decimal point data in the device specified by (s1) and in the device specified by (s2) are multiplied, and the result is transferred to the device specified by (d) in binary floating decimal point.



#### Cautions

- 1) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
- 2) Some restrictions to applicable devices.

▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

▲2: The FX₃U and FX₃UC PLCs only are applicable.

▲3: The FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

## 18.11 DEDIV / Floating Point Division

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	Δ	0	0	×	×	×	×	×

#### Outline

This instruction divides two binary floating decimal points.

→ As for program example of floating decimal point operation, refer to section 11.10. → As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].

 $\rightarrow$  As for the operation of the flag, refer to the FX Structured Programming Manual [Device & Common].

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST
DEDIV	32 bits	Continuous	DEDIV — EN ENO — s1 d — s2	DEDIV(EN, s1, s2, d);
DEDIV	32 bits	Pulse	DEDIVP EN ENO s1 d s2	DEDIVP(EN, s1, s2, d);

#### 2. Set data

,	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	<u>(s1)</u>	Device for storing binary floating decimal point data to be divided.	FLOAT(Single Precision)
Vallable	<u>s2</u>	Device for storing binary floating decimal point data to be divided.	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Device for storing the divided binary floating decimal point data.	FLOAT(Single Precision)

#### 3. Applicable devices

		I	Bit	D	evi	ce	s						Wo	rd	Devic	es						0	thers	
Operand type		S	iys	te	m	us	er	Digit designation		System user			em r	Special unit	Index		Index		ns nt	Real Number	Character String	Pointer		
	X	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
(s1)														•	▲1	▲2			•			▲3		
<u>(s2</u> )														•	▲1	▲2			•			▲3		
d														•	▲1	▲2			•					

▲: Refer to "Cautions".

20

nstructions ning

#### Function and operation explanation

#### 1. 32-bit operation (DEDIV, DEDIVP)

The binary floating decimal point data in the device specified by (s1) and in the device specified by (s2) are divided, and the result is transferred to the device specified by (d) in binary floating decimal point.



#### Cautions

- 1) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
- 2) Some restrictions to applicable devices.

▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

▲2: The FX3U and FX3UC PLCs only are applicable.

▲3: The FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

## 18.12 DEXP / Floating Point Exponent

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

#### Outline

This instruction executes exponential operation whose base is "e (2.71828)".  $\rightarrow$  As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST
DEXP	32 bits	Continuous	EN ENO s d	DEXP(EN, s, d);
DEXPP	32 bits	Pulse	DEXPP EN ENO s d	DEXPP(EN, s, d);

#### 2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Head device for storing binary floating decimal point data for exponential operation.	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Head device for storing the operation result.	FLOAT(Single Precision)

#### 3. Applicable devices

			Bit	t D	evi	ce	s						Wo	rd	Devic	es					Others					
Operand type		System user Digit designation							Sy ι	/ste Jse	em r	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer						
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	н	E	"0"	Р		
S														•	٠	•			•			•				
d														•	•	•			•							

#### Function and operation explanation

#### 1. 32-bit operation (DEXP/DEXPP)

By exponential operation of the device specified by (s), the operation result is stored in the device specified by (d). Real number can be directly specified in the device specified by (s).



• In exponential operation, the bottom (e) is supposed to be 2.71828.



#### Error

In the following cases, it is an operation error, error flag (M8067) is turned ON, and error code is stored in D8067.

- When the operation result is out of the following range. (Error code: K6706)  $2^{-126} \leq$  | Operation result | <  $2^{128}$ 

#### Program example

This is a program for executing exponential operation of the values set in BCD two digits in X020 to X027 when the X000 is turned ON, and storing in binary floating decimal points D0, D1.

[Structured ladder/FBD]



[ST]

The Load compare instruction (LD>) is not available in ST.

#### Operation when 13 is specified in X020 to X027.



The operation result is less than 2¹²⁸ only when the BCD value of X020 to X027 is smaller than 88, because log e 2¹²⁸ = 88.7. When a value greater than 89 is specified, it is an operation error, and therefore when a value greater than 89 is specified, M0 is turned ON, so that the operation is not carried out.

 2) Conversion from natural logarithm into common logarithm The CPU operates in natural logarithm.
 To determine value in common logarithm, please specify the value of common logarithm divided by 0.4342945 in s+1, s.

$$10^{X} = e^{\frac{x}{0.4342945}}$$

## 18.13 DLOGE / Floating Point Natural Logarithm

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	х	×	×	×	×	×	×

#### Outline

This instruction executes natural logarithm operation.

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
DLOGE	32 bits	Continuous	DLOGE EN ENO s d	DLOGE(EN, s, d);
DLOGEP	32 bits	Pulse	DLOGEP — EN ENO — s d	DLOGEP(EN, s, d);

#### 2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Head device for storing the binary floating decimal point data for natural logarithm operation.	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Head device for storing the operation result.	FLOAT(Single Precision)

#### 3. Applicable devices

			Bit	D	evi	ce	S					١	Wo	rd	Devic	es					Others					
Operand type		ę	Sys	ste	m	us	er	Digit designation					System user			Special unit		Index		Co ta	ns nt	Real Number	Character String	Pointer		
	X	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	E	"0"	Р		
S														•	•	•			•			•				
d														•	•	•			•							

#### Function and operation explanation

#### 1. 32-bit operation (DLOGE/DLOGEP)

By natural logarithm operation of the device specified by  $\underline{s}$  (logarithm supposing e (2.71828) to be the bottom), the operation result is stored in the device specified by  $\underline{d}$ . Real number can be directly specified in the device specified by  $\underline{s}$ .



• The value to be specified by s can be set in positive number only. (Negative number cannot be operated.)

11

itioning

#### Error

In the following cases, it is an operation error, error flag (M8067) is turned ON, and error code is stored in D8067.

- When the value specified by s is negative. (Error code: K6706)
- When the value specified by s is 0. (Error code: K6706)

#### **Program example**

This is a program for determining the natural logarithm of "10" set in D50 when the X000 is turned ON, and storing in D30, D31.

[Structured ladder/FBD]



## 18.14 DLOG10 / Floating Point Common Logarithm

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

#### Outline

This instruction executes common logarithm operation.

```
\rightarrow As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].
```

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST
DLOG10	32 bits	Continuous	DLOG10 EN ENO s d	DLOG10(EN, s ,d);
DLOG10P	32 bits	Pulse	DLOG10P — EN ENO — s d	DLOG10P(EN ,s ,d);

#### 2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Head device for storing the binary floating decimal point data for common logarithm operation.	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Head device for storing the operation result.	FLOAT(Single Precision)

#### 3. Applicable devices

	Bit Devices												Wo	rd	Devic	es					Others					
Operand type		System user Digit designa						tion		S) เ	/ste Jse	em r	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer					
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р		
S														•	٠	•			•			•				
d														•	•	•			•							

#### Function and operation explanation

#### 1. 32-bit operation (DLOG10/DLOG10P)

By common logarithm operation of the device specified by s (logarithm supposing 10 to be the bottom), the operation result is stored in the device specified by d.

Real number can be directly specified in the device specified by  $\bigcirc$ .



• The value to be specified by (s) can be set in positive number only. (Negative number cannot be operated.)

11

d Instructions

#### Error

In the following cases, it is an operation error, error flag (M8067) is turned ON, and error code is stored in D8067.

- When the value specified by s is negative. (Error code: K6706)
- When the value specified by s is 0. (Error code: K6706)

#### **Program example**

This is a program for determining the common logarithm of "15" set in D50 when the X000 is ON, and storing in D30, D31.

[Structured ladder/FBD]





## 18.15 DESQR / Floating Point Square Root

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	$\triangle$	0	0	×	×	×	×	×

#### Outline

This instruction executes the square root operation of binary floating decimal point. → As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
DESQR	32 bits	Continuous	DESQR EN ENO s d	DESQR(EN, s, d);
DESQRP	32 bits	Pulse	DESQRP EN ENO s d	DESQRP(EN, s, d);

#### 2. Set data

,	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Device for storing binary floating decimal point data for square root operation	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Device for storing binary floating decimal point data after square root operation	FLOAT(Single Precision)

#### 3. Applicable devices

			Bit	De	vic	es						١	Wo		Others									
Operand type		ę	Syst	ten	n u	ser		Digit designation					Sy ι	/ste Jse	em r	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	Χ	Υ	Μ.	T	С	SC	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U⊟\G□	۷	z	Modifier	κ	н	E	"0"	Р
S														•	▲1	▲2			•			▲3		
d														•	▲1	▲2			•					

▲: Refer to "Cautions".

#### Function and operation explanation

#### 1. 32-bit operation (DESQR, DESQRP)

The data in the device specified by so is operated by square root (binary floating decimal point), and the result is transferred to the device specified by d.



#### **Related devices**

ightarrow As for the manner of using the zero flag, refer to the FX Structured Programming Manual [Device &

Common].

(Positioning

lied Instructions

Device	Name	Content	
M8020	Zero	To be turned ON when the operation result is true 0.	

11

#### Cautions

- 1) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
- 2) Some restrictions to applicable devices.
  - ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
  - ▲2: The FX3U and FX3UC PLCs only are applicable.
  - ▲3: The FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

#### Error

The content of the device specified by <u>s</u> is valid only in positive number, and negative number leads to operation error (M8067), and the instruction is not executed.

11

Applie (Data

ata Operation)

12

edInstructions n Speed essing)

13

nstructions

**14** Applied Instruc (External FX Device)

ିଆ 15

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

ed Instructions itioning

Applied Instructions External Device optional device))

## 18.16 DENEG / Floating Point Negation

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

#### Outline

This instruction inverts the sign of binary floating decimal point (real number) data. → As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].

#### 1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
DENEG	32 bits	Continuous	DENEG EN ENO d	DENEG(EN, d);
DENEGP	32 bits	Pulse	DENEGP — EN ENO d	DENEGP(EN, d);

#### 2. Set data

```	/ariable	Description	Data type
Input variable	EN	Execution condition	Bit
Output	ENO	Execution state	Bit
variable	d	Head device for storing the binary floating decimal point data of which sign is to be inverted.	FLOAT(Single Precision)

3. Applicable devices

			Bi	t D	ev	ice	s						Wo	rd I	Devic	es				Others						
Operand type			Sy	ste	m	use	ər	Dig	it des	signat	tion		Sy ι	/ste Ise	r r	Special unit		Index		Index		Co ta	ns nt	Real Number	Character String	Pointer
	X	Y	Μ	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"□"	Р		
d														•	•	•			•							

Function and operation explanation

1. 32-bit operation (DENEG/DENEGP)

The sign of the binary floating decimal point data of the device specified by \bigcirc is inverted, and stored in the device specified by \bigcirc .

-	- Head device for storing the binary floating decir	mal
	point data of which sign is to be inverted	

Program example

This is a program for inverting the sign of the binary floating decimal point data of D100, D101 when the X000 is turned ON, and storing in D100, D101.

[Structured ladder/FBD]

[ST]

DENEGP(X000,D100);

18.17 INT / Floating Point to Integer Conversion

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	Δ	0	0	×	×	×	×	×

Outline

This instruction converts the binary floating decimal point into BIN integer in normal data type in the PLC. (From binary floating decimal point data to BIN integer)

 \rightarrow As for program example of floating decimal point operation, refer to section 11.10. \rightarrow As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
INT	16 bits	Continuous	INT — EN ENO — s d	INT(EN, s, d);
INTP	16 bits	Pulse	INTP EN ENO s d	INTP(EN, s, d);
DINT	32 bits	Continuous	DINT EN ENO s d	DINT(EN, s, d);
DINTP	32 bits	Pulse	DINTP EN ENO s d	DINTP(EN, s, d);

2. Set data

			Data type				
Va	riable	Description	16-bit operation	32-bit operation			
Input	EN	Execution condition	Bit				
variable	S	Device for storing the binary floating decimal point data to be converted into BIN integer.	FLOAT(Single F	Precision)			
Output	ENO	Execution state	Bit				
variable	D	Device for storing the converted BIN integer.	ANY16	ANY32			

3. Applicable devices

			Bi	t D	evi	ice	s						Wo	rd	Devic	es						0	thers	
Operand type		System user						Digit designation				System user		Special unit	Index		Index		ns nt	Real Number	Character String	Pointer		
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
S														•	▲1	▲2			•					
d														•	▲1	▲2			•					

▲: Refer to "Cautions".

Instr

ructions

Applied

nstructions

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

ed Instructions a Operation 2)

20

nstructions

Related devices

\rightarrow As for the manner of using the zero, borrow, and carry flag, refer to the FX Structured Programming Manual [Device & Common].

Device	Name	Content
M8020	Zero	To be turned ON when the operation result is 0.
M8021	Borrow	To be turned ON when less than 1 is discarded in convertion.
M8022	Carry	To be turned ON when the operation result overflows by exceeding the range of -32, 768 to 32, 767 (in 16-bit operation), or -2, 147, 483, 583 to 2, 147, 483, 583 (in 32-bit operation). (Operation result is not reflected.)

Cautions

- 1) Fractions below the decimal point are discarded in operation.
- 2) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
- 3) Some restrictions to applicable devices.

▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

▲2: The FX₃U and FX₃UC PLCs only are applicable.

18.18 DSIN / Floating Point Sine

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	×	×	×

Outline

This instruction determines the SIN value of angle (RAD). \rightarrow As for handling of floating decimal point, refer to FX Structure

```
\rightarrow As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].
```

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
DSIN	32 bits	Continuous	EN ENO s d	DSIN(EN, s, d);
DSINP	32 bits	Pulse	EN ENO s d	DSINP(EN, s, d);

2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Device for storing the RAD (angle) of binary floating decimal point.	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Device for storing the SIN value of binary floating decimal point.	FLOAT(Single Precision)

3. Applicable devices

	evi	ce	s						Wo	rd	Devic	es				Others								
Operand type			Sys	ste	m	use	er	Dig	it des	signat	tion		Sy ι	/ste Jse	r r	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	κ	Η	E	"0"	Р
S														•	▲1	▲1			•			▲1		
d														•	▲1	▲1			•					

▲: Refer to "Cautions".

Function and operation explanation

1. 32-bit operation (DINT, DINTP)

The value of angle (binary floating decimal point) specified by \bigcirc is converted into SIN value, and is transferred to the device specified by \bigcirc .

11

Applied Instructions (Data Operation)

12

Cautions

1) Some restrictions to applicable devices.

▲1: The FX3U and FX3UC PLCs only are applicable.

Program example

[Structured ladder/FBD]

[ST]

MOVP(X001,K45,D0); MOVP(X002,K90,D0); FLTP(M8000,D0,D4); DMOV(M8000,K31415926,D50); DFLT(M8000,D50,D52); DMOV(M8000,K180000000,D54); DFLT(M8000,D54,D56); DEDIV(M8000,D52,D56,D20); DEMUL(M8000,D4,D20,D30); DSIN(M8000,D30,D100);

19

Applied Instructions (Data Operation 2)

20

Control guinoning ied Instructions

18.19 DCOS / Floating Point Cosine

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	×	×	×

Outline

This instruction determines the COS value of angle (RAD).

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
DCOS	32 bits	Continuous	DCOS — EN ENO — s d	DCOS(EN, s, d);
DCOSP	32 bits	Pulse	DCOSP — EN ENO — s d	DCOSP(EN, s, d);

2. Set data

١	/ariable	Description	Data type
Innut	EN	Execution condition	Bit
variable	S	Device for storing the RAD (angle) of binary floating decimal point.	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Device for storing the COS value of binary floating decimal point.	FLOAT(Single Precision)

3. Applicable devices

			Bit	D	evi	ce	s						Wo	rd I	Devic	es						0	thers	
Operand type			Sys	ste	mı	use	ər	Dig	it des	signat	tion		Sy ι	/ste Jse	r r	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	Х	Y	М	т	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	v	z	Modifier	κ	Н	E	"0"	Р
s														•	▲1	▲1			•			▲1		
d														•	▲1	▲1			•					

▲: Refer to "Cautions".

Function and operation explanation

1. 32-bit operation (DCOS, DCOSP)

The value of angle (binary floating decimal point) specified by \underline{s} is converted into COS value, and is transferred to the device specified by \underline{d} .

Cautions

Some restrictions to applicable devices.
 ▲: The FX₃U and FX₃UC PLCs only are applicable.

 $[\]rightarrow$ As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].

18.20 DTAN / Floating Point Tangent

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	×	×	×

Outline

This instruction determines the TAN value of angle (RAD).

```
\rightarrow As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].
```

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
DTAN	32 bits	Continuous	DTAN — EN ENO— — s d—	DTAN(EN, s, d);
DTANP	32 bits	Pulse	DTANP — EN ENO — s d	DTANP(EN, s, d);

2. Set data

'	/ariable	Description	Data type
Innut	EN	Execution condition	Bit
variable	S	Device for storing the RAD (angle) of binary floating decimal point.	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Device for storing the TAN value of binary floating decimal point.	FLOAT(Single Precision)

3. Applicable devices

			Bit	t D	evi	ice	s						Wo	rd I	Devic	es						0	thers	
Operand type		ę	Sys	ste	m	us	er	Dig	it de	signat	tion		Sy ι	/ste Jse	em r	Special unit		I	ndex	Co ta	ons nt	Real Number	Character String	Pointer
	X	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
S														●	▲1	▲1			•			▲1		
b														•	▲1	▲1			•					

▲: Refer to "Cautions".

Function and operation explanation

1. 32-bit operation (DTAN, DTANP)

The value of angle (binary floating decimal point) specified by \underline{s} is converted into TAN value, and is transferred to the device specified by \underline{d} .

Cautions

Some restrictions to applicable devices.
 ▲1: The FX3U and FX3UC PLCs only are applicable.

11

Applied Instructions (Data Operation)

ning

18.21 DASIN / Floating Point Arc Sine

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction executes SIN⁻¹ operation.

```
\rightarrow As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].
```

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language				
name	operation	form	Structured ladder/FBD	ST				
DASIN	32 bits	Continuous	DASIN EN ENO s d	DASIN(EN, s, d);				
DASINP	32 bits	Pulse	DASINP EN ENO s d	DASINP(EN, s, d);				

2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Head device for storing the SIN value for SIN ⁻¹ (reverse sine) operation.	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Head device for storing the operation result.	FLOAT(Single Precision)

3. Applicable devices

			Bi	t D	evi	се	s						Wo	rd I	Devic	es				Others				
Operand type			Sys	ste	m	us	er	Dig	jit des	signat	ion		Sy ι	/ste Jse	em r	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
s														•	•	•			•			•		
d														•	٠	•			•					

Function and operation explanation

1. 32-bit operation (DASIN/DASINP)

The angle is determined from the SIN value specified by \underline{s} , and the operation result is stored in the device specified by \underline{o} . In the device specified by \underline{s} , real number can be directly specified.

- The SIN value specified by $\underline{\ s}$ can be set in a range of -1.0 to 1.0.
- The angle (operation result) to be stored in the device specified by _____ stores the value of radian (-π/2 to π/2). As for conversion from radian to angle or vice versa, refer to DRAD instruction or DDEG instruction.
 → As for DRAD instruction, refer to section 18.24.
 - \rightarrow As for DDEG instruction, refer to section 18.25.

Error

In the following cases, it is an operation error, error flag (M8067) is turned ON, and error code is stored in D8067.

• When the value specified by s is out of the range of -1.0 to 1.0. (Error code: K6706)

Program example

This is a program for determining SIN⁻¹ of D0, D1 (binary floating decimal point) when the X000 is ON, and sending the angle to Y040 to Y057 in BCD four digits.

[Structured ladder/FBD]

Calculation of angle (radian) by SIN⁻¹ operation. (1))

Conversion of radian into angle. (2))

Conversion of angle of binary floating decimal point (real number) into integer (BIN). (3))

Output of angle converted to integer (BIN) to display unit. (4))

[ST]

DACOS(X000,D0,D10); DDEG(X000,D10,D20); INT(X000,D20,D30); BCD(X000,D30,K4Y10);

Operation when the value of D0, D1 is 0.5.

11

Applied Instructions (Data Operation)

12

18.22 DACOS / Floating Point Arc Cosine

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction executes COS⁻¹ operation.

```
\rightarrow As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].
```

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language				
name	Operation	form	Structured ladder/FBD	ST				
DACOS	32 bits	Continuous	DACOS EN ENO s d	DACOS(EN, s, d);				
DACOSP	32 bits	Pulse	DACOSP — EN ENO — s d	DACOSP(EN, s, d);				

2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Head device for storing the COS value for COS ⁻¹ (reverse cosine) operation.	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Head device for storing the operation result.	FLOAT(Single Precision)

3. Applicable devices

			Bi	t D	evi	ice	s						Wo	rd	Devic	es						0	thers	
Operand type			Sy	ste	m	us	er	Dig	jit des	signat	ion		Sy L	/ste Jse	em r	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	Н	E	"0"	Р
s														•	•	•			•			•		
d														●	٠	•			•					

Function and operation explanation

1. 32-bit operation (DACOS/DACOSP)

The angle is calculated from the COS value specified by \underline{s} , and the operation result is stored in the device specified by \underline{d} . Real number can be directly specified by the device specified by \underline{s} .

- The COS value specified by s can be set in a range of -1.0 to 1.0.
- The angle (operation result) to be stored in the device specified by \bigcirc stores the value 0 to π in the radian unit.

As for conversion from radian to angle or vice versa, refer to DRAD instruction or DDEG instruction.

- ightarrow As for DRAD instruction, refer to section 18.24.
- \rightarrow As for DDEG instruction, refer to section 18.25.

11

Applied Instructions (Data Operation)

12

AppliedInstructions (High Speed Processing)

13

Applied

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

ed Instructions itioning

nstruction

Error

In the following cases, it is an operation error, error flag (M8067) is turned ON, and error code is stored in D8067.

• When the value specified by s is out of the range of -1.0 to 1.0. (Error code: K6706)

Program example

This is a program for determining COS⁻¹ of D0, D1 (binary floating decimal point) when the X000 is ON, and sending the angle to Y040 to Y057 in BCD four digits.

[Structured ladder/FBD]

Calculation of angle (radian) by COS⁻¹ operation. (1))

Conversion of radian into angle. (2))

Conversion of angle of binary floating decimal point (real number) into integer (BIN). (3))

Output of angle converted to integer to display unit. (4))

[ST]

DACOS(X000,D0,D10); DDEG(X000,D10,D20); INT(X000,D20,D30); BCD(X000,D30,K4Y10);

Operation when the value of D0, D1 is 0.5.

489

18.23 DATAN / Floating Point Arc Tangent

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction executes TAN⁻¹ operation.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
DATAN	32 bits	Continuous	DATAN EN ENO	DATAN(EN, s, d);
DATANP	32 bits	Pulse	DATANP — EN ENO — s d	DATANP(EN, s, d);

2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Head device for storing the TAN value for TAN ⁻¹ operation (reverse tangent).	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Head device for storing the operation result.	FLOAT(Single Precision)

3. Applicable devices

			Bi	t D	ev	ice	s						Wo	rd	Devic	es						C	thers	
Operand type			Sy	ste	m	us	er	Dig	jit de	signat	tion		S) เ	/ste use	em r	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	х	Y	Μ	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
S														•	•	•			•			•		
d														•	•	•			•					

Function and operation explanation

1. 32-bit operation (DATAN/DATANP)

The angle is calculated from the TAN value specified by \underline{s} , and the operation result is stored in the device specified by \underline{d} . Real number can be directly specified by the device specified by \underline{s} .

• The angle (operation result) to be stored in the device specified by \bigcirc stores the value larger than $(-\pi/2)$ and smaller than $(\pi/2)$ in the radian unit.

As for conversion from radian to angle or vice versa, refer to DRAD instruction or DDEG instruction.

- \rightarrow As for DRAD instruction, refer to section 18.24.
- \rightarrow As for DDEG instruction, refer to section 18.25.

[→] As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].

Program example

This is a program for determining TAN⁻¹ of D0, D1 (binary floating decimal point) when the X000 is ON, and sending the angle to Y040 to Y057 in BCD four digits.

[Structured ladder/FBD]

[ST]

DATAN(X000,D0,D10); DDEG(X000,D10,D20); INT(X000,D20,D30); BCD(X000,D30,K4Y10);

Operation when the value of D0, D1 is 1.

11

itioning

Common].

18.24 DRAD / Floating Point Degrees to Radians Conversion

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction converts the value of angle unit to the radian unit. \rightarrow As for handling of floating decimal point, refer to FX Structured Programming Manual [Device &

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language											
name	Operation	form	Structured ladder/FBD	ST										
DRAD	32 bits	Continuous	DRAD EN ENO s d	DRAD(EN, s, d);										
DRADP	32 bits	Pulse	DRADP EN ENO s d	DRADP(EN, s, d);										

2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Head device for storing the angle to be converted to radian unit.	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Head device for storing the value having been converted to radian unit	FLOAT(Single Precision)

3. Applicable devices

			Bi	t D	evi	ice	s		Word Devices													Others					
Operand type	perand System user type				Digit designation					System user			Special Index		Co ta	ns nt	Real Number	Character String	Pointer								
	х	Y	Μ	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U⊡\G□	۷	Z	Modifier	κ	н	E	"0"	Р			
s														•	•	•			•			•					
d														•	•	•			•								

Function and operation explanation

1. 32-bit operation (DRAD/DRADP)

The angle specified by \bigcirc is converted from the degree unit to the radian unit, and is stored in the device specified by \bigcirc . Real number can be directly specified in the device specified by \bigcirc .

• Conversion from degree unit to radian unit is as follows.

Radian unit = degree unit
$$\times \frac{\pi}{180}$$

Program example

This is a program for converting the angle set in BCD four digits in X020 to X037 when the X000 is ON, and storing in binary floating decimal point in D20, D21.

[Structured ladder/FBD]

[ST]

BIN(X000,K4X20,D0); FLT(X000,D0,D10); DRAD(X000,D10,D20);

Operation when 120 is specified in X020 to X037.

11

18.25 DDEG / Floating Point Radians to Degrees Conversion

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction converts the radian unit value into the angle (DEG) unit. → As for handling of floating decimal point, refer to FX Structured Programming Manual [Device & Common].

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language				
name	operation	form	Structured ladder/FBD	ST				
DDEG	32 bits	Continuous	DDEG EN ENO s d	DDEG(EN, s, d);				
DDEGP	32 bits	Pulse	DDEG_P —EN ENO —s d	DDEG_P(EN, s, d);				

2. Set data

١	/ariable	Description	Data type
Innut	EN	Execution condition	Bit
variable	S	Head device for storing the radian angle to be converted to degree unit.	FLOAT(Single Precision)
Output	ENO	Execution state	Bit
variable	d	Head device for storing the value having been converted to degree unit.	FLOAT(Single Precision)

3. Applicable devices

			Bi	t D	ev	ice	s						Wo	rd		Others								
Operand type		System user							Digit designation					/ste Jse	em r	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	Х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Ζ	Modifier	κ	н	E	"0"	Р
S														•	•	•			•			•		
b														•	•	•			•					

Function and operation explanation

1. 32-bit operation (DDEG/DDEGP)

(DDEG/DDEGP)

The unit of the angle specified by \bigcirc is converted from the radian unit to the degree unit, and is stored in the device specified by \bigcirc .

Degree unit = radian unit
$$\times \frac{180}{\pi}$$

Program example

This is a program for converting the radian value set in binary floating decimal point in D20, D21 to the angle when the X000 is ON, and issuing to the Y040 to Y057 in BCD value.

[Structured ladder/FBD]

DDEG(X000,D20,D10); INT(X000,D10,D0); BCD(X000,D0,K4Y40);

Operation when the value of D20, D21 is 1.435792.

11

19. Applied Instructions (Data Operation 2)

This chapter introduces the instructions for executing complicated processing for fundamental applied instructions and for executing special processing.

Instruction name	Function	Reference
WSUM		
WSUMP	Sum of Word Data	Section 10.1
DWSUM		Section 19.1
DWSUMP		
WTOB		Section 10.2
WTOBP	WORD IN BITE	Section 19.2
BTOW		Section 10.2
BTOWP		Section 19.5
UNI	4 hit Linking of Word Data	Section 10.4
UNIP		Section 19.4
DIS	4 bit Grouping of Word Data	Section 19.5
DISP		Section 19.5
SWAP		
SWAPP	Puto Swan	Section 10.6
DSWAP	byte Swap	Section 19.0
DSWAPP		
SORT2	Sort Tabulated Data 2	Section 10.7
DSORT2		

19.1 WSUM / Sum of Word Data

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
\bigtriangleup	×	×	×	×	×	×	×	×

Outline

This instruction calculates the total value of continuous 16-bit data or 32-bit data. Please use the CCD when calculating the sum data (total value) in byte (8-bit) unit.

 \rightarrow As for the CCD, refer to section 15.5.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	each language				
name	operation	form	Structured ladder/FBD	ST				
WSUM	16 bits	Continuous	WSUM EN ENO s d n	WSUM(EN, s, n, d);				
WSUMP	16 bits	Pulse	WSUMP – EN ENO – s d – n	WSUMP(EN, s, n, d);				
DWSUM	32 bits	Continuous	DWSUM EN ENO s d n	DWSUM(EN, s, n, d);				
DWSUMP	32 bits	Pulse	DWSUMP EN ENO s d n	DWSUMP(EN, s, n, d);				

2. Set data

			Data	type
Va	riable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input variable	S	Head device for storing the data for calculating the total value (n points occupied).	ANY16	ANY32
	n	Number of data (0 <n)< td=""><td>ANY16</td><td></td></n)<>	ANY16	
Output	ENO	Execution state	Bit	
variable	d	Head device for storing the total value.	ANY32	ARRAY [14] OF ANY16

3. Applicable devices

			Bit	t D	evi	ces	5					W	ord	Others										
Operand type			Sys	ste	mı	use	er	Digit designation				:	System user			Special unit	Index		ndex	Cons tant		Real Number	Character String	Pointer
	Х	Υ	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	κ	Н	E	"0"	Р
S												•	•	•	•	•			•					
n														•	•					•	•			
d												٠	•	•	•	•			•					

11

Instructions

Function and operation explanation

1. 16-bit operation (WSUM/WSUMP)

The total value of n points of 16-bit data from the device specified by \bigcirc is stored in the device specified by \bigcirc as 32-bit data.

2. 32-bit operation (DWSUM/DWSUMP)

The total value of n points of 32-bit data from the device specified by s is stored in the device specified by d as 64-bit data.

Related instructions

Instruction	Content
CCD	Check code
CCD	This instruction calculates the total value and the horizontal parity of 16-bit data in byte (8-bit) unit.

Cautions

- In 32-bit operation, the total value becomes 64-bit data. FX3U, FX3UC PLCs cannot handle 64-bit data. However, when the total value is in the numeric value range of 32-bit data (K-2,147,483,648 to K2,147,483,647), higher 32-bit data is ignored, and the lower 32-bit data can be handled as the total value.
- 2) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.

Error

In the following case, it is an operation error, error flag M8067 is turned ON, and error code is stored in D8067.

- 1) When n devices from the device specified by s exceed the device range. (Error code: K6706)
- 2) When $n \leq 0$. (Error code: K6706)
- 3) When the device specified by \bigcirc exceeds the range. (Error code: K6706)

Program example

This is a program for storing the total value of 16-bit data of D10 to D14 when the X010 is turned ON to [D101, D100].

[Structured ladder/FBD]

)0]
8

[ST] WSUMP(X10,D10,K5,D100); 11

19.2 WTOB / WORD to BYTE

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)	
Δ	×	×	×	×	×	×	×	×	

Outline

This instruction separates continuous 16-bit data in byte (8-bit) unit.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language											
name	operation	form	Structured ladder/FBD	ST										
WTOB	16 bits	Continuous	WTOB EN ENO s d n	WTOB(EN, s, n, d);										
WTOBP	16 bits	Pulse	WTOBP - EN ENO - s d n	WTOBP(EN, s, n, d);										

2. Set data

١	/ariable	Description	Data type		
	EN	Execution condition	Bit		
Input variable	S	Head device for storing the data to be separated in byte unit.	ANY16		
	n	Number of byte data to be separated. (0≤n)	ANY16		
Output variable	ENO	Execution state	Bit		
	d	Head device for storing the result separated in byte unit.	ANY16		

3. Applicable devices

	Bit Devices								Word Devices													Others				
Operand type	System user						er	Digit designation			System user			Special unit	Index		Cons tant		Real Number	Character String	Pointer					
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р		
S												•	•	•	•				•							
n														•	•					•	•					
d												•	•	•	•				•							

11

Applied Instructions (Data Operation)

12

nstr

uctions

3

nstructions

4

Applied Instructic (External FX I

1/O

15

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

nstructions

Function and operation explanation 1. 16-bit operation (WTOB/WTOBP) 1) This instruction separates n/2 points of 16-bit data stored after the device specified by s into n bytes, and stores into n devices starting from the device specified by d as explained below. Command WTOB input FN ENO -11 Head device of the data to be separated. s d Head device for storing the Number of byte data to be separated. result separated in byte unit. ln b15 ---- b8 b7 ---- b0 b15----- b8 b7----- b0 (s)+0 Higher byte Lower byte 00H Lower byte (d)+0 +1 Higher byte Lower byte +100H Higher byte +2 00H Lower byte 00H +n/2* Higher byte Lower byte +3 Higher byte n bytes +n-2 00H Lower byte * If n is an odd number, +n-1 00H Higher byte fractions are rounded up. In the case of n=5, the result is \bigcirc +3. 00H is stored. 2) 00H is stored in the higher byte (8 bits) of the device for storing the separated byte data (after the device specified by \bigcirc). 3) In the case of n = odd number, the final data of separation source is applicable only to the data in the lower byte (8 bits) as shown below. Applied Instructions (External Device (optional device)) For example, in the case of n=5, data of lower byte (8 bits) of (s) to (s) +2 is stored in (d) to (d)+4. b15 -b8 b7---b0b15--b8 b7b0 <u>s</u>+0 12H 39H (d)+0 00H 39H +156H 78H +1 00H 12H In the case of +2 FEH DCH +2 00H 78H n=5 +3 00H 56H Ignored when n=5 +4 00H DCH 00H is stored. 4) Instruction is not processed in the case of n=0. Related instructions Instruction Content BTOW This instruction couples the lower 8 bits (lower byte) of continuous 16-bit data. Cautions 1) The device storing the separation source data and the device storing the separated data can be used in overlap. However, in the case of n = odd number, it must be noted that the data of the higher byte (8 bits) of the final data of the separation source may be overwritten and erased as shown below. b15---- b8 b7----- b0 b15----b8b7------ b0 **S**=D12 32H 31H 00H 31H D13 34H 33H D13 00H 32H In the case D14 36H 35H D14 00H 33H of n=5 D15 00H 34H Ignored when n=5, and D16 00H 35H devices s and d are overlapped, and "36H" 00H is stored. is overwritten and erased. 2) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.

Error

In the following case, it is an operation error, error flag M8067 is turned ON, and error code is stored in D8067.

- 1) When devices s to s +n/2 of separation source exceed the device range of specified devices. When n is an odd number, the devices are required in the number by rounding up. (Error code: K6706)
- 2) When devices d to d +n-1 for storing the separated data exceed the device range of specified devices. (Error code: K6706)

Program example

This is a program for separating the data of D10 to D12 into byte unit when the X000 is turned ON, and storing in D20 to D25.

[Structured ladder/FBD]

[ST]

WTOBP(X000,D10,K6,D20);
19.3 BTOW / BYTE to WORD

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
\bigtriangleup	×	×	×	×	×	×	×	×

Outline

This instruction couples the lower 8 bits (lower byte) of continuous 16-bit data.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	each language		
name	operation	form	Structured ladder/FBD	ST		
BTOW	16 bits	Continuous	BTOW EN ENO s d n	BTOW(EN, s, n, d);		
BTOWP	16 bits	Pulse	BTOWP — EN ENO — s d — n	BTOWP(EN, s, n, d);		

2. Set data

١	/ariable	Description	Data type
Input variable	EN	Execution condition	Bit
	S	Head device for storing the data to be coupled in byte unit.	ANY16
	n	Number of byte data to be coupled (0≤n)	ANY16
Output variable	ENO	Execution state	Bit
	d	Head device for storing the coupled result in byte unit.	ANY16

3. Applicable devices

	Bit Devices Word Devices								es						0	thers								
Operand type	System user				Dig	git de	signat	on System user		Special unit	Index		Index		ns nt	Real Number	Character String	Pointer						
	X	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	н	E	"0"	Р
S												•	•	•	•				•					
n														•	•					•	•			
d												●	•	•	•				•					

Function and operation explanation

1. 16-bit operation (BTOW/BTOWP)

1) This instruction stores the 16-bit data coupling lower byte (8 bit) of 16-bit data of n points from the device specified by (s), into n/2 devices starting from (d) as follows.

Applied Instructions (Data Operation) 12 nstructions 13 nstructions 14 <u>گۇ</u>گ FX l/O 5 optional nstr al Device I device)) TIONS lice 1 6 Applied (External Instr I Device) 7 Data Instructions Transfer 2) Iranster 18 Applied Instructions (Floating Point) 19 Applied Instructions (Data Operation 2) 20

11

nstructions

Bull

- 2) Higher byte (8 bits) of 16-bit data (after <u>s</u>) in the coupling source is ignored.
- 3) When n is an odd number, as shown below, higher byte (8 bits) of the data coupled in the last place is set to 00H. For example, in the case of n=5, data of lower byte (8 bits) of s to s +4 is stored in d to d +2. Higher byte (8 bits) of d +2 is 00H.

4) Instruction is not processed in the case of n=0.

Related instructions

Instruction	Content
WTOB	This instruction separates continuous 16-bit data in byte (8-bit) unit.

Cautions

 The device storing the coupling source data and the device storing the coupled data can be used in overlap. However, it must be noted that the higher byte (8 bits) of the coupling source data stored in the device used in overlap is erased because the data of the higher byte (8 bits) is overwritten by the coupled data.

2) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.

Error

In the following case, it is an operation error, error flag M8067 is turned ON, and error code is stored in D8067.

- When the devices s to (s +n-1) at the coupling source exceeds the device range of the specified devices. (Error code: K6706)
- When the devices d to (d +n/2) for storing the coupled data exceeds the device range of the specified devices. When n is an odd number, the devices are required in the number by rounding up. (Error code: K6706)

Program example

This is a program for coupling the data of lower byte (8 bits) of D20 to D25 when the X000 is turned ON, and storing into D10 to D12.

[Structured ladder/FBD]

BTOWP(X000,D20,K6,D10);

19.4 UNI / 4-bit Linking of Word Data

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
Δ	×	×	×	×	×	×	×	×

Outline

This instruction couples lower 4 bits of continuous 16-bit data.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	each language
name	Operation	form	Structured ladder/FBD	ST
UNI	16 bits	Continuous	UNI EN ENO s d n	UNI(EN,s,n,d);
UNIP	16 bits	Pulse	UNIP EN ENO s d n	UNIP(EN,s,n,d);

2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	S	Head device for storing the data to be coupled.	ANY16
	n	Number of couples [0 to 4](When "n" is "0", UNI instruction is not executed.)	ANY16
Output variable	ENO	Execution state	Bit
	d	Head device for storing the coupled data.	ANY16

3. Applicable devices

		Bit Devices Word Devices												0	thers									
Operand type	System user			Dig	git de	signat	ion		Sys us	sten ser	1	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer				
	х	Y	М	Т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	Z	Modifier	κ	н	E	"0"	Р
S												•	•	•	•				•					
n														•	•					•	•			
d												●	●	•	•				•					

Function and operation explanation

1. 16-bit operation (UNI/UNIP)

1) 16-bit data coupling lower 4 bits of 16-bit data of n points from the device specified by (s) is stored in the device specified by (d) as shown below.

[ST]

UNIP(X000,D0,K3,D10);

19

Applied Instructions (Data Operation 2)

20

nstructions Built

19.5 DIS / 4-bit Grouping of Word Data

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
Δ	×	Х	×	×	×	×	×	×

Outline

This instruction separates 16-bit data in 4-bit unit.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	each language		
name	operation	form	Structured ladder/FBD	ST		
DIS	16 bits	Continuous	DIS — EN ENO — s d — n	DIS(EN,s,n,d);		
DISP	16 bits	Pulse	DISP — EN ENO — s d — n	DISP(EN,s,n,d);		

2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	S	Device for storing the data to be separated.	ANY16
	n	Number of separates [0 to 4](When "n" is "0", UNI instruction is not executed.)	ANY16
Output variable	ENO	Execution state	Bit
	d	Head device for storing the separated data.	ANY16

3. Applicable devices

			Bi	t D	ev	ice	S					N	/orc	d De	evic	es						0	thers	
Operand type			Sy	ste	m	us	er	Dig	git de	signat	tion		Sys us	ten ser	I	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	н	E	"0"	Р
S												•	•	•	●				•					
n														•	•					•	•			
d												•	•	•	•				•					

Function and operation explanation

1. 16-bit operation (DIS/DISP)

1) This instruction separates 16-bit data of the device specified by s in 4-bit unit, and storing in the device specified by d as follows.

- Any one of 1 to 4 is specified by n. In the case of n=0, instruction is not processed.
- 3) 0 is set in higher 12 bits in the device of n points from the device specified by d.

Related instructions

Instruction	Content
UNI	This instruction couples lower 4 bits of 16-bit data.

Cautions

The instruction is provided in the FX3UC PLC Ver. 2.20 or later.

Error

In the following case, it is an operation error, error flag M8067 is turned ON, and error code is stored in D8067.

- 1) When the range of n points from the device specified by d exceeds the device range of specified device. (Error code: K6706)
- 2) When n is specified other than 0 to 4. (Error code: K6706)

Program example

This is a program for separating D0 in 4 bits each when the X000 is turned ON, and storing in D10 to D13.

DISP(X000,D0,K4,D10);

[Structured ladder/FBD]

[ST]

11

Applied Instructions (Data Operation)

12

19.6 SWAP / Byte Swap

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	0	×	×	×	×	×

Outline

This instruction swaps higher 8 bits and lower 8 bits of word data.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in o	each language
name	operation	form	Structured ladder/FBD	ST
SWAP	16 bits	Continuous	SWAP EN ENO s	SWAP(EN,s);
SWAPP	16 bits	Pulse	SWAPP EN ENO s	SWAPP(EN,s);
DSWAP	32 bits	Continuous	DSWAP — EN ENO — s	DSWAP(EN,s);
DSWAPP	32 bits	Pulse	DSWAPP — EN ENO — s	DSWAPP(EN,s);

2. Set data

				Data	type
	Vai	riable	Description	16-bit operation	32-bit operation
_	Input	EN	Execution condition	Bit	
	variable	S	Device for swapping higher and lower bytes.	ANY16	ANY32
_	Output variable	ENO	Execution state	Bit	

3. Applicable devices

			Bit	t D	evi	ice	s					W	orc	I De	evice	es				Others				
Operand type		;	Sys	ste	m	us	er	Dig	git de	signat	ion	Sp	bec	ial	unit	Index		h	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	X	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	v	z	Modifier	κ	н	E	"0"	Р
S									•	•	•	●	•	•	▲ 1	▲1	•	•	•					

▲: Refer to "Cautions".

Function and operation explanation

1. 16-bit operation (SWAP, SWAPP, DSWAP, DSWAPP)

This instruction swaps lower 8 bits and higher 8 bits.

2. 32-bit operation (DSWAP, DSWAPP)

In the case of 32-bit instruction, too, lower 8 bits and higher 8 bits are swapped individually.

Cautions

- 1) When the continuous execution instruction is used, it must be noted that the swap takes place in every operation cycle.
- Some restrictions to applicable devices.
 ▲1: The FX₃U and FX₃UC PLCs only are applicable.

11

19.7 SORT2 / Sort Tabulated Data 2

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
\triangle	×	×	×	×	×	×	×	×

Outline

This instruction sorts the data table composed of data (rows) and group data (columns) in the ascending order/descending order in row unit on the basis of the specified group data (rows). In this instruction, data (row direction) is stored in continuous devices, and it is easy to add the data (row).

In SORT, sorting is in ascending order only, and data composition is different (data is composed in devices continuous in row direction).

\rightarrow As for SORT, refer to section 13.10.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	n each language			
name	Operation	form	Structured ladder/FBD	ST			
SORT2	16 bits	Continuous	SORT2 — EN ENO — s d — m1 — m2 — n	SORT2(EN,s,m1,m2,n,d);			
DSORT2	32 bits	Continuous	DSORT2 — EN ENO — s d — m1 — m2 — n	DSORT2(EN,s,m1,m2,n,d);			

2. Set data

			Data	a type
Va	riable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
	S	Head device for storing data table [m1 × m2 points occupied]	ANY16	ANY32
Input variable	(m1)	Number of data (rows) [1 to 32]	ANY16	ANY32
	(m2)	Number of group data (columns) [1 to 6]	ANY16	ANY32
	n	Columns of group data (columns) as reference for sorting [1 to m2]	ANY16	ANY32
Output	ENO	Execution state	Bit	
variable	d	Head device for storing operation result [m1 \times m2 points occupied]	ANY16	ANY32

3. Applicable devices

			Bi	t D	evi	ices	S					W	ord	De	evio	ces						0	thers	
Operand type			Sy	ste	m	use	er	Dig	jit de	signat	ion	ę	Sys us	ster ser	n	Special unit		Ir	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	Х	Y	М	т	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	v	z	Modifier	κ	н	E	"0"	Р
S														•	•									
(m1)														•	•					•	•			
(m2)																				•	•			
n														•	•					•	•			
d														•	•									

Function and operation explanation

1. 16-bit operation (SORT2)

This instruction sorts the data rows of data table (sorting source) of $(m1 \times m2)$ points from the device specified by \bigcirc in the ascending order/descending order on the basis of group data of n rows, and stores in data table (after sorting) of $(m1 \times m2)$ points from the device specified by \bigcirc . \rightarrow As for operation example, refer to 3. Operation examples.

The data table is composed of m1=K3, m2=K4 in the sorting source as explained in this case. In the data table after sorting, exchange (s) and (d).

		Number of groups m2 (in the case of m2=K4)									
Colu num	ımn Iber	1	2	3	4						
Row number		Management number	Height	Body weight	Age						
In the	1	S	<u>s</u> +1	<u>s</u> +2	<u>s</u> +3						
case of number of	2	<u>s</u> +4	<u>s</u> +5	<u>s</u> +6	<u>s</u> +7						
data m1=3	3	<u>s</u> +8	<u>s</u> +9	<u>s</u> +10	<u>s</u> +11						

1) Sorting is set depending on the ON/OFF state of M8165.

	Setting of sorting order
M8165=ON	Descending
M8165=OFF	Ascending

2) Data sorting is started when the instruction input is ON, and is completed after m1 scan, and instruction execution complete flag M8029 is turned ON.

 \rightarrow As for the manner of using the instruction execution complete flag, refer to section 1.3.4.

11

Applied Instructions (Data Operation)

12

AppliedInstructions (High Speed Processing)

ning

2. 32-bit operation (DSORT2)

This instruction sorts the data rows of data table (sorting source) of $(m1 \times m2)$ points from the device specified by \bigcirc in the ascending order/descending order on the basis of group data of n rows, and stores in data table (after sorting) of $(m1 \times m2)$ points from the device specified by \bigcirc .

The data table is composed of m1=K3, m2=K4 in the sorting source as explained in this case. In the data table after sorting, exchange \bigcirc and \bigcirc .

			Number of groups m2	(in the case of m2=K4)			
Colu num	mn ber	1	2	3	4		
Row number		Management number	Height	Body weight	Age		
In the	1	[<u>s</u> +1, <u>s</u>]	[<u>s</u> +3, <u>s</u> +2]	[<u>s</u> +5, <u>s</u> +4]	[<u>s</u> +7, <u>s</u> +6]		
case of number of data m1=3	2	[<u>s</u> +9, <u>s</u> +8]	[s+11, s+10]	[s+13, s+12]	[s+15, s+14]		
	3	[s+17, s+16]	[s+19, s+18]	[<u>s</u> +21, <u>s</u> +20]	[s+23, s+22]		

1) Sorting is set depending on the ON/OFF state of M8165.

	Sorting order
M8165=ON	Descending
M8165=OFF	Ascending

- 2) When using data register D or extension register R for m1, the data length is 32 bits. For example, when m1 is specified by D0, m1 is 32-bit data of [D1, D0].
- 3) Data sorting is started when the instruction input is ON, and is completed after m1 scan, and instruction execution complete flag M8029 is turned ON.
 - \rightarrow As for the manner of using the instruction execution complete flag, refer to section 1.3.4.

3. Operation example

The operation is as follows when the following sorting source data is executed in "n=K2 (column number 2)", "n=K3 (column number 3)".

The operation example is a case of 16-bit operation. In the case of 32-bit operation, the data table should be composed of BIN 32 bits.

When a serial number such as management number is entered in the first column, it is convenient because the original row number can be judged from its content.

Sorting source data

		Nui	mber of groups m2	(in the case of m2=	K4)		
	Column number	1	2	3	4		
Row number		Management number	Height	Body weight	Age		
	1	s	<u>s</u> +1	<u>s</u> +2	<u>s</u> +3		
		1	150	45	20		
	2	<u>s</u> +4	<u>s</u> +5	<u>s</u> +6	<u>s</u> +7		
In the	-	2	180	50	40		
case of	3	<u>s</u> +8	<u>s</u> +9	<u>s</u> +10	<u>s</u> +11		
number of	Ŭ	3	160	70	30		
data m1=5	4	<u>s</u> +12	<u>s</u> +13	<u>s</u> +14	<u>s</u> +15		
	-	4	100	20	8		
	5	<u>s</u> +16	<u>s</u> +17	<u>s</u> +18	<u>s</u> +19		
		5	150	50	45		

1) Sorting result when instruction is executed in n=K2 (column number 2) (ascending order)

Column number	1	2	3	4		
Row number	Management number	Height	Body weight	Age		
1	d	<u>d</u> +1	+2	+3		
	4	100	20	8		
2	<u>d</u> +4	<u>d</u> +5	d+6	+7		
	1	150	45	20		
3	<u>d</u> +8	<u>d</u> +9	<u>d</u> +10	<u>d</u> +11		
	5	150	50	45		
4	<u>d</u> +12	<u>d</u> +13	<u>d</u> +14	<u>d</u> +15		
-	3	160	70	30		
5	<u>d</u> +16	<u>d</u> +17	<u>d</u> +18	<u>d</u> +19		
5	2	180	50	40		

2) Sorting result when instruction is executed in n=K3 (column number 3) (descending order)

Column number	1	2	3	4		
Row number	Management number	Height	Body weight	Age		
1	d	<u>d</u> +1	+2	+3		
·	3	160	70	30		
2	+4	<u>d</u> +5	+6	<u>d</u> +7		
	2	180	50	40		
3	d +8	<u>d</u> +9	<u>d</u> +10	+11		
	5	150	50	45		
4	<u>d</u> +12	<u>d</u> +13	<u>d</u> +14	+15		
	1	150	45	20		
5	<u>d</u> +16	<u>d</u> +17	<u>d</u> +18	(d)+19		
	4	100	20	8		

19

Applied Instructions (Data Operation 2)

20

nstructions ning

Related devices

ightarrow As for the manner of using the instruction execution complete flag, refer to section 1.3.4.

Device	Name	Content
M8029	Instruction execution complete	Turned ON when data sorting instruction is complete.
M8165	Descending order	Sorted in descending order when M8165=ON. Sorted in ascending order when M8165=OFF.

Related instructions

Instruction	Content
SORT	Data sorting This instruction sorts the data table composed of data (rows) and group data (columns) in ascending order in row unit on the basis of the specified group data (columns). In this instruction, the group data (column direction) is stored in continuous devices.

Cautions

- 1) During operation, do not change the content of the operand or data.
- 2) When executing again, once turn OFF the command input.
- Limitation of times of instruction Up to two instructions can be driven simultaneously in the program.
- 4) The circuit block including this instruction cannot be written during RUN.
- 5) When specifying same device in s and
 The original data is sorted in the data order after sorting.
 In particular, be careful not to change the content of
 until instruction execution is complete.
- 6) Be careful not to allow overlap of original data and sorted data due to deviation.

7) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.

20. Applied Instructions (Positioning Control)

This chapter introduces the instructions using the built-in pulse output function of the PLC.

Instruction name	Function	Reference	
DSZR	Dog Search Zero Return	Section 20.1	
DVIT	Interrunt Positioning	Section 20.2	
DDVIT	Interrupt rostuorning	Section 20.2	
DTBL	Batch Data Positioning Mode	Section 20.3	
DABS	Absolute Current Value Read	Section 20.4	
ZRN	Zero Beturn	Section 20.5	
DZRN		3601011 20.5	
PLSV	Variable Speed Pulse Output	Section 20.6	
DPLSV		3601011 20.0	
DRVI	Drive to Increment	Section 20.7	
DDRVI		3601011 20.7	
DRVA	Drive to Absolute	Section 20.8	
DDRVA		00000120.0	

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

lied Instructions

20.1 DSZR / Dog Search Zero Return

FX3U(C)	FX3G(C)	FX3S	FX2N(C) FX1N(C		FX1S	FXU/FX2C	FX0N	FX0(S)	
0	0	0	×	×	×	×	×	×	

Outline

This instruction matches the mechanical position and the current value register in the PLC by zero return. This instruction can perform following operation which is not supported by ZRN.

- · Corresponding action of DOG search function
- Zero return is possible by using near-point DOG and zero-point signal. Zero point cannot be determined by counting the zero-point signals.

 \rightarrow As for explanation of the instruction, see the positioning control manual.

\rightarrow As for cautions of use of high speed output special adapter, see the positioning control manual.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language								
name	Operation	form	Structured ladder/FBD	ST							
DSZR	16 bits	Continuous	DSZR — EN ENO — s1 d1 — s2 d2	DSZR(EN,s1,s2,d1,d2);							

2. Set data

·	Variable	Description	Data type
	EN	Execution condition	Bit
Input variable	<u>(s1)</u>	Device for entering the near-point signal (DOG)	Bit
	<u>(s2)</u>	Device for entering zero-point signal	Bit
	ENO	Execution state	Bit
Output variable	(d1)	Device for issuing pulse (Y)	Bit
	<u>d</u> 2	Device of rotating direction signal	Bit

3. Applicable devices

	Bit Devices							Word Devices										Others						
Operand type		S	yst	em	us	ser		Dig	jit des	signat	tion	S	ys us	ten er	n	Special unit		I	ndex	Co ta	ons nt	Real Number	Character String	Pointer
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	E	"0"	Р
<u>(s1)</u>	•	•	•			•	▲1												•					
<u>s2</u>	▲2																		•					
(d1)		▲ 3																	•					
(d2)		▲4	•			•	▲1												•					

▲: Refer to "Cautions".

Function and operation explanation

Cautions

- 1) Some restrictions to applicable devices.
 - ▲1: The FX₃U and FX₃UC PLCs only are applicable, index (V, Z) decoration is disabled.
 - ▲2: Please specify X000 to X007, in the case of FX3G, FX3GC, FX3U and FX3UC PLCs. Please specify X000 to X005, in the case of FX3S PLC.
 - ▲3: Please specify Y000, Y001, Y002^{*1} of transistor output of basic unit, or Y000, Y001, Y002^{*3}, Y003^{*3} of high speed output special adapter^{*2}.
 - *1. The pulse output destination Y002 is not available in FX3S, FX3G (14-point and 24-point type) and FX3GC PLCs.
 - *2. High speed output special adapter can be connected only in FX3U PLC.
 - *3. When using Y002, Y003 in high speed output special adapter, a second high speed output special adapter is needed.

Points

- When using FX3U PLC of relay output type or triac output type, high speed output special adapter is needed.
- The output of high speed output special adapter is a differential line driver.
- ▲4: When high speed output special adapter is used at the pulse output destination in the FX3U PLC, as the rotating direction signal, use the output shown in the table below.

Connection position of high speed output special adapter	Pulse output	Rotating direction signal
Firet unit	(d1)=Y000	<u>(d2</u>)=Y004
	(d1)=Y001	<u>d2</u> =Y005
Second unit	(d1)=Y002	<u>d2</u> =Y006
	<u>d1</u> =Y003	d2)=Y007

When built-in transistor output is used at the pulse output destination in the FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs, as the rotating direction signal, use the transistor output.

2) Output number of rotating direction signal (d2)

Operation changes as follows depending on polarity of output pulse frequency.

- $[+ (Positive)] \rightarrow (d2): ON$
- [- (Negative)] \rightarrow (d2): OFF

Cautions about writing during RUN

Avoid writing during RUN after either of the following operations in a circuit block including the pulse output instruction or positioning instruction.

- Changing a program for a circuit block including a corresponding instruction.
- Changing a program for a circuit block just before or after a circuit block including a corresponding instruction.

 Deleting or adding a circuit block just before or after a circuit block including a corresponding instruction. This caution about the above operations is applicable to the following PLCs and instructions. FX1S, FX1N and FX1NC PLCs

: PLSY, DPLSY, PWM, PLSR, DPLSR, ZRN, DZRN, PLSV,

FX2N and FX2NC PLCs

DPLSV, DRVI, DDRVI, DRVA and DDRVA : PLSY, DPLSY, PWM, PLSR and DPLSR

FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs: DSZR, DVIT*1, DDVIT*1, DTBL*2, ZRN, DZRN, PLSV, DPLSV. DRVI, DDRVI, DRVA and DDRVA

Note that the pulse output will decelerate and stop when writing during RUN is executed in the FX3S, FX3G, FX3GC, FX3U or FX3UC PLC.

- *1. Not available for the FX3S, FX3G or FX3GC PLC.
- Not available for the FX3S PLC. *2

Function changes by version

This instruction includes the function changes as shown in the table below depending on the version. \rightarrow As for the explanation of the instruction and contents of function changes, refer to the positioning

control manual.

	Corres	ponding v	version		Item	Outline of function
FX3S	FX3G	FX3GC	FX3U	FX3UC	item	
Ver. 1.00 or later	Ver. 1.00 or later	Ver. 1.40 or later	Ver. 2.20 or later	Ver.2.20 or later	Clear signal output destination designating function	When special auxiliary relay corresponding to $\underline{d1}$ is turned ON, the clear signal output specification is changed to the output number specified by special data register corresponding to \underline{d}

11 Applied Instructions (Data Operation) 12 Applied (High S Proces edInstructions n Speed essing) 13 Applied (Handy nstruction nstructions 14 Applied Instructions (External FX I/O Device) 15 Applied Instructions (External Device (optional device)) 16 Applied Instructions (External Device) 17 Applied Instructions (Data Transfer 2) 18 Applied Instructions (Floating Point) 19 Applied Instructions (Data Operation 2) 20

20.2 DVIT / Interrupt Positioning

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction executes one-speed interrupt inching.

 \rightarrow As for explanation of the instruction, see the positioning control manual. \rightarrow As for cautions of use of high speed output special adapter, see the positioning control manual.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language		
name operation form			Structured ladder/FBD	ST		
DVIT	16 bits	Continuous	DVIT — EN ENO — s1 d1 — s2 d2	DVIT(EN,s1,s2,d1,d2);		
DDVIT	32 bits	Continuous	DDVIT — EN ENO — s1 d1 — s2 d2	DDVIT(EN,s1,s2,d1,d2);		

2. Set data

			Data	type
Va	riable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input variable	<u>(s1)</u>	Number of output pulses after interrupt (relative address)	ANY16	ANY32
	(s2)	Output pulse frequency	ANY16	ANY32
<u> </u>	ENO	Execution state	Bit	
Output variable	(d1)	Device for issuing pulse (Y)	Bit	
	(d2)	Device of rotating direction signal	Bit	

3. Applicable devices

Bit Devices					Word Devices							Others												
Operand type		S	6ys	ter	n u	sei	r	Dig	git de	signat	tion	;	Sys us	ster ser	n	Special unit		I	Index	Co ta	ons Int	Real Number	Character String	Pointer
	X	Υ	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
<u>(s1</u>)								•	•	•	٠	•	•	•	•	•			•	•	•			
<u>s2</u>								•	•	•	•	•	•	•	•	•			•	•	•			
(d1)		▲1																	•					
(d2)		▲2	•			•	▲3												•					

▲: Refer to "Cautions". Function and operation explanation

Cautions about writing during RUN

Avoid writing during RUN after either of the following operations in a circuit block including the pulse output instruction or positioning instruction.

- Changing a program for a circuit block including a corresponding instruction.
- Changing a program for a circuit block just before or after a circuit block including a corresponding instruction.
- Deleting or adding a circuit block just before or after a circuit block including a corresponding instruction. This caution about the above operations is applicable to the following PLCs and instructions.

: PLSY, DPLSY, PWM, PLSR, DPLSR, ZRN, DZRN, PLSV, DPLSV, DRVI, DDRVI, DRVA and DDRVA

FX2N and FX2NC PLCs

FX1S, FX1N and FX1NC PLCs

: PLSY, DPLSY, PWM, PLSR and DPLSR

FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs: DSZR, DVIT^{*1}, DDVIT^{*1}, DTBL^{*2}, ZRN, DZRN, PLSV, DRVI, DRVI, DDRVI, DRVA and DDRVA

Note that the pulse output will decelerate and stop when writing during RUN is executed in the FX3U or FX3UC PLC.

- *1. Not available for the FX3S, FX3G or FX3GC PLC.
- *2. Not available for the FX3S PLC.

Function changes by version

This instruction includes the function changes as shown in the table below depending on the version. \rightarrow As for the explanation of the instruction and contents of function changes, refer to the positioning

control manual.

Correspond	ling version	Itom	Outline of function		
FX3U	FX3UC	nem	outline of function		
Ver. 2.20 or later	Ver. 1.30 or later	Interrupt input signal designating function	When M8336 is turned ON, the interrupt input signal corresponding to Y000 to Y003 is changed to input number (X000 to X007) specified by D8336. However, Y003 cannot be specified when transistor output of basic unit is used.		
Ver. 2.20 or later	Ver. 2.20 or later	User interrupt mode	When 8 is specified by D8336 in interrupt input signal corresponding to Y000 to Y003 and M8336 is turned ON, the interrupt input signal is changed to special auxiliary relay. When the changed special auxiliary relay is changed from OFF to ON by input interrupt program, the interrupt operation is started. However, when this function is used, the logic of interrupt input cannot be inverted. However, Y003 cannot be specified when transistor output of basic unit is used.		

11

nstructions

Cautions

- 1) Some restrictions to applicable devices.
 - ▲1: Please specify Y000, Y001, Y002 of transistor output of basic unit, or Y000, Y001, Y002^{*2}, Y003^{*2} of high speed output special adapter^{*1}.
 - *1. High speed output special adapter can be connected only in FX3U PLC.
 - *2. When using Y002, Y003 in high speed output special adapter, a second high speed output special adapter is needed.

Points

- When using FX_{3U} PLC of relay output type or triac output type, high speed output special adapter is needed.
- The output of high speed output special adapter is a differential line driver.
- ▲2: When high speed output special adapter is used at the pulse output destination in the FX_{3U} PLC, as the rotating direction signal, use the output shown in the table below.

Connection position of high speed output special adapter	Pulse output	Rotating direction signal		
First unit	<u>d1</u> =Y000	<u>d2</u> =Y004		
i not unit	<u>d1</u> =Y001	<u>d2</u> =Y005		
Second unit	<u>d1</u> =Y002	<u>d2</u> =Y006		
	(d1)=Y003	<u>d2</u> =Y007		

When built-in transistor output is ussed at the pulse output destination in the FX_{3U} and FX_{3UC} PLCs, as the rotating direction signal, use the transistor output.

- ▲3: In D \Box .b, index (V, Z) decoration is disabled.
- 2) Number of output pulses after interrupt is specified (specified by <u>s1</u>). The setting range is as follows.
 - a) In the case of 16-bit operation -32,768 to +32,767 (excluding 0)
 - b) In the case of 32-bit operation -999,999 to +999,999 (excluding 0)
- Output pulse frequency is specified (specified by <u>s</u>). The setting range is as follows.
 - a) In the case of 16-bit operation 10 to 32,767 (Hz)
 - b) In the case of 32-bit operation

Pulse or	Setting range	
FX3U PLC	High speed output special adapter	10 to 200,000 (HZ)
FX3U, FX3UC PLCs	Basic unit (transistor output)	10 to 100,000 (HZ)

4) Output number of rotating direction signal (d2)

Operation changes as follows depending on polarity of output pulse frequency.

 $[+ (Positive)] \rightarrow \textcircled{d2} : ON$

 $[-(Negative)] \rightarrow (d2): OFF$

11

Applie (Data

ita Operation)

12

Speed ssing)

nstructions

13

nstructions

4

٩ ٣

> Tructions FX I/O

> > 5

nstructions al Device al device)

optional

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

20.3 DTBL / Batch Data Positioning Mode

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
\bigtriangleup	0	×	×	×	×	×	×	×

Outline

Instructions should be set in a data table beforehand using GX Works2. This instruction specifies one table and operates instructions in that table.

 \rightarrow As for explanation of the instruction, see the positioning control manual. \rightarrow As for cautions of use of high speed output special adapter, see the positioning control manual.

1. Format and operation, execution form

Instruction	tion Deration Execution		Expression in each language					
name	operation	form	Structured ladder/FBD	ST				
DTBL	32 bits	Continuous	EN ENO n d	DTBL(EN,n,d);				

2. Set data

١	/ariable	Description	Data type		
Input	EN	Execution condition	Bit		
variable	n	Table number to be executed (n=1 to 100)	ANY32		
Output	ENO	Execution state	Bit		
variable	d	Device for issuing pulse (Y)	Bit		

3. Applicable devices

		I	Bit	De	vic	es						Wo	ord	De	evi	ces						0	thers	
Operand type		s	bys ⁻	ten	n u	ser		Dig	jit des	signat	ion	S	iys us	ten er	n	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	X	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	Е	"0"	Р
n																				•	•			
b		▲ 1																						

▲: Refer to "Cautions".

Function and operation explanation

Cautions about writing during RUN

Avoid writing during RUN after either of the following operations in a circuit block including the pulse output instruction or positioning instruction.

- · Changing a program for a circuit block including a corresponding instruction.
- Changing a program for a circuit block just before or after a circuit block including a corresponding instruction.
- Deleting or adding a circuit block just before or after a circuit block including a corresponding instruction.

This caution about the above operations is a	applicable to the following PLCs and instructions.
FX1S, FX1N and FX1NC PLCs	: PLSY, DPLSY, PWM, PLSR, DPLSR, ZRN, DZRN, PLSV,
	DPLSV, DRVI, DDRVI, DRVA and DDRVA
FX2N and FX2NC PLCs	: PLSY, DPLSY, PWM, PLSR and DPLSR
FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs	: DSZR, DVIT ^{*1} , DDVIT ^{*1} , DTBL ^{*2} , ZRN, DZRN, PLSV, DPLSV,
	DRVI, DDRVI, DRVA and DDRVA

- *1. Not available for the FX3S, FX3G or FX3GC PLC.
- *2. Not available for the FX3S PLC.

Cautions

- 1) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.
- 2) Some restrictions to applicable devices.
 - ▲1: Please specify Y000, Y001, Y002^{*1} of transistor output of basic unit, or Y000, Y001, Y002^{*3}, Y003^{*3} of high speed output special adapter^{*2}.
 - *1. Y002 is not available in FX3G PLC (14-point and 24-point type) and FX3GC PLC.
 - *2. High speed output special adapter can be connected only in FX3U PLC.
 - *3. When using Y002, Y003 in high speed output special adapter, a second high speed output special adapter is needed.

Points

- When using a relay output type or triac output type FX3U PLC, a special high-speed output adapter is required.
- The output of high speed output special adapter is a differential line driver.

20.4 DABS / Absolute Current Value Read

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	Δ	0	0	×	×	×

Outline

This instruction connects with our company's MR-J4 \Box A, MR-J3 \Box A, MR-J2(S) \Box A, or MR-H \Box A type servo amplifier (with absolute position detecting function), and reads out the absolute position (ABS) data. The data is read out in pulse converted value.

\rightarrow As for explanation of the instruction, see the positioning control manual.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	each language
name	operation	form	Structured ladder/FBD	ST
DABS	32 bits	Continuous	DABS — EN ENO — s d1 — d2	DABS(EN,s,d1,d2);

2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Head device for entering the output signal for absolute value (ABS) data from the servo amplifier (3 points occupied).	Bit
	ENO	Execution state	Bit
Output variable	<u>(d1)</u>	Head device for issuing the control signal for absolute value (ABS) data to the servo amplifier (3 points occupied).	Bit
	(d2)	Storing destination device of absolute value (ABS) data (32-bit value)	ANY32

3. Applicable devices

		E	Bit	De	vi	ces	Bit Devices								evice	es						0	thers	
Operand type		S	ys	ter	n ı	use	er	Dig	jit des	signat	ion		Sy: u	ste sei	m	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	X	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
S	•	•	•			•	▲2												•					
<u>d1</u>		▲ 1	•			•	▲2												•					
<u>d</u> 2									•	•	•	•	•	•	▲3	▲4	•		•					

▲: Refer to "Cautions".

Function and operation explanation

structions

Cautions

- 1) The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.
- 2) Since ABS data is read out in pulse converted value, please specify "Motor system" for parameter setting (BFM#3) of FX2N-1PG. (FX2N, FX2NC, FX3U, FX3UC PLCs.)
- 3) Writing of ABS data into FX2N-10PG should be addressed to the current value registers (BFM#40, #39) in which the pulse converted values are stored. (FX2N, FX2NC, FX3U, FX3UC PLCs.)
- 4) Some restrictions to applicable devices.
 - ▲1: Please designate the transistor output.
 - ▲2: The FX3U and FX3UC PLCs only are applicable, index (V, Z) decoration is disabled.
 - ▲3: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 - ▲4: The FX3U and FX3UC PLCs only are applicable.

11

Applied Instructions (Data Operation)

12

AppliedInstructions (High Speed Processing)

13

Applied In (Handy nstruction

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

nstructions Bull

20.5 **ZRN / Zero Return**

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	×	0	0	×	×	×

Outline

This instruction matches the mechanical position and the current value register in the PLC by zero return. Please use DSZR when DOG search function is necessary.

 \rightarrow As for explanation of the instruction, see the positioning control manual. \rightarrow As for cautions of use of high speed output special adapter, see the positioning control manual.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	each language
name	operation	form	Structured ladder/FBD	ST
ZRN	16 bits	Continuous	ZRN — EN ENO — s1 d — s2 — s3	ZRN(EN,s1,s2,s3,d);
DZRN	32 bits	Continuous	DZRN — EN ENO — s1 d — s2 — s3	DZRN(EN,s1,s2,s3,d);

2. Set data

			Data	type
Va	riable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input	<u>(s1)</u>	Speed when starting to zero return	ANY16	ANY32
variable	<u>(s2)</u>	Creep speed	ANY16	ANY32
	<u>\$3</u>	Device for entering the near-point signal (DOG)	Bit	•
Output	ENO	Execution state	Bit	
variable	d	Device for issuing pulse	Bit	

3. Applicable devices

			Bit	De	evio	ces	;					W	or	d D	evic	es						0	thers	
Operand type		5	Sys	ter	nι	ise	r	Dig	jit de	signat	tion		Sy u	ste sei	m '	Special unit		I	ndex	Co ta	ons nt	Real Number	Character String	Pointer
	X	Y	Μ	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
<u>(s1</u>)								•	•	•	•	•	•	•	▲3	▲2	•	•	•	•	•			
<u>(s2</u>)								•	•	•	•	•	•	•	▲3	▲2	•	•	•	•	•			
<u>(s3)</u>	•	•	•			•	▲1												•					
b		▲4																	•					

▲: Refer to "Cautions".

Function and operation explanation

Cautions about writing during RUN

Avoid writing during RUN after either of the following operations in a circuit block including the pulse output instruction or positioning instruction.

- Changing a program for a circuit block including a corresponding instruction.
- Changing a program for a circuit block just before or after a circuit block including a corresponding instruction.
- Deleting or adding a circuit block just before or after a circuit block including a corresponding instruction.

This caution about the above operations is applicable to the following PLCs and instructions. FX1s, FX1n and FX1nc PLCs : PLSY, DPLSY, PWM, PLSR, DPLSR, ZRN, DZRN, PLSV,

FX2N and FX2NC PLCs

DPLSV, DRVI, DDRVI, DRVA and DDRVA : PLSY, DPLSY, PWM, PLSR and DPLSR

FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs: DSZR, DVIT^{*1}, DDVIT^{*1}, DTBL^{*2}, ZRN, DZRN, PLSV, DRVI, DRVI, DDRVI, DRVA and DDRVA

Note that the pulse output will decelerate and stop when writing during RUN is executed in the FX3S, FX3G, FX3GC, FX3U or FX3UC PLC.

- *1. Not available for the FX3S, FX3G or FX3GC PLC.
- *2. Not available for the FX3S PLC.

Function changes by version

This instruction includes the function changes as shown in the table below depending on the version. \rightarrow As for the explanation of the instruction and contents of function changes, refer to the positioning

control manual.

1. FX3S PLC, FX3G PLC, FX3GC PLC, FX3U PLC, FX3UC PLC [V2.20 or later]

When the special auxiliary relay corresponding to <u>d</u> is turned ON, the output destination of clear signal is changed to the output number specified by the special data register corresponding to <u>d</u>.

2. FX1s PLC

[Before V2.00]

After resetting the "rotating direction signal" (normal rotation output) used in other positioning instruction by RST, start to zero return.

When started to zero return while the "rotating direction signal" is in normal rotation output state, the motor moves to the normal rotation, not zero return.

[After V2.00]

When driving of other positioning instruction is turned OFF, the rotating direction signal is turned OFF at the same time, and processing of before V2.00 is not required.

3. FX1S, FX1N PLCs

[Before V2.00] If the zero return speed does not reach the speed specified by the instruction, change the acceleration or deceleration speed (D8148) to other value than given below.

(For example, if the current value is 150, change to 149 or 151.)

50, 75, 90, 100, 125, 150, 225, 250, 375, 450, 500, 750, 900, 1120, 1500, 2250, 4499, 4500 [After V2.00]

The above processing is not required.

Cautions

1) Instruction driving timing (FX1S, FX1N, FX1NC PLCs)

This is an instruction allowed to program as many times as desired, but you are advised to design the instruction driving timing according to the following cautions.

- a) Do not drive simultaneously the positioning instruction using the same output relay (Y000 or Y001). If driven simultaneously, it is handled as double coil, and normal function is disabled.
- b) After turning OFF the direction input of the instruction, drive again after the following condition is established.

Condition: Re-driving is allowed after one operation cycle or more from the OFF moment of "pulse output mode monitor (Y000: [M8147], Y001: [M8148]" of the positioning instruction driven previous time.

This is because one or more OFF operation is required for re-driving of the positioning instruction.

- c) We recommend the step-ladder instruction (STL) as a method of programming correctly the positioning instruction according to the cautions mentioned above.
- 2) Not applicable to DOG search function, please start the zero return operation from the front side of the near-point signal. (FX1s, FX1N, FX1NC PLCs.)
- Not applicable to zero-point signal of servo motor, please adjust to the position of near-point signal (DOG) when fine adjustment of zero point is necessary. (FX1s, FX1N, FX1NC PLCs.)
- While zero return, the numeric values of the current value registers (Y000: [D8141, D8140], Y001: [D8143, D8142]) move in the decreasing direction. (FX1s, FX1N, FX1NC PLCs)
 When zero return in reverse direction, please control the output relay (Y) wired as "rotating direction signal" by the program in the following procedure.
 - 1) Set (ON) Y□□□ (rotating direction signal).
 - 2) Execute zero return instruction.
 - 3) Reset (OFF) Y□□□ (rotating direction signal) by execution complete flag (M8012) of zero return instruction.
- 5) Some restrictions to applicable devices.
 - ▲1: The FX₃U and FX₃UC PLCs only are applicable, index (V, Z) decoration is disabled.
 - ▲2: The FX₃U and FX₃UC PLCs only are applicable.
 - ▲3: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 - ▲4: <FX3S, FX3G, FX3GC, FX3U, FX3UC PLCs>

Please specify Y000, Y001, Y002^{*1} of transistor output of basic unit, or Y000, Y001, Y002^{*3}, Y003^{*3} of high speed output special adapter^{*2}.

- *1 The pulse output destination Y002 is not available in FX3S, FX3G (14-point and 24-point type) and FX3GC PLCs.
- *2 High speed output special adapter can be connected only in FX3U PLC.
- *3 When using Y002, Y003 in high speed output special adapter, a second high speed output special adapter is needed.

Points

• When using FX_{3U} PLC of relay output type or triac output type, high speed output special adapter is needed.

• The output of high speed output special adapter is a differential line driver.

<FX1S, FX1N, FX1NC PLCs>

Specify Y000 or Y001.

As the output of the PLC, please use the transistor output.

11

Applied Instructions (Data Operation)

12

Applied (High S Proces

- Specify the speed of return zero point in <u>s1</u>. The setting range is as follows.
 - a) In the case of 16-bit operation
 - FX3S, FX3G, FX3GC, FX3U, FX3UC PLCs 10 to 32,767 (Hz)
 - FX1S, FX1N PLCs 10 to 32,767 (Hz)
 - FX1NC PLC 10 to 10,000 (Hz)
 - b) In the case of 32-bit operation
 - FX3S, FX3G, FX3GC, FX3U, FX3UC PLCs

Pulse output d	estination	Setting range			
FX3U PLC	High speed output special adapter	10 to 200,000 (HZ)			
FX3S, FX3G, FX3GC, FX3U, FX3UC PLCs	Basic unit (transistor output)	10 to 100,000 (HZ)			

• FX1S, FX1N PLCs 10 to 100,000 (Hz)

• FX1NC PLC 10 to 10,000 (Hz)

20.6 PLSV / Variable Speed Pulse Output

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	×	0	0	×	×	×

Outline

This instruction issues a variable speed pulse with the rotating direction.

 \rightarrow As for explanation of the instruction, see the positioning control manual. \rightarrow As for cautions of use of high speed output special adapter, see the positioning control manual.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	each language
name	operation	form	Structured ladder/FBD	ST
PLSV	16 bits	Continuous	PLSV — EN ENO — s d1 d2	PLSV(EN,s,d1,d2);
DPLSV	32 bits	Continuous	DPLSV — EN ENO — s d1 — d2	DPLSV(EN,s,d1,d2);

2. Set data

			Data	type		
Va	riable	Description	16-bit operation	32-bit operation		
Input	EN	Execution condition	Bit			
variable	S	Output pulse frequency	ANY16	ANY32		
	ENO	Execution state	Bit			
Output variable	<u>d1</u>	Device for issuing pulse (Y)	Bit			
	(d2)	Device of rotating direction signal	Bit			

3. Applicable devices

			Bit	D	evi	ice	S		Word Devices													Others					
Operand type			Sys	ste	m	us	er	Dig	Digit designation				System user		Special unit	Index		Index		ns nt	Real Number	Character String	Pointer				
	X	Y	Μ	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р			
S								•	•	•	•	•	•	•	▲4	▲5	•	•	•	●	•						
<u>d1</u>		▲1																	•								
<u>d2</u>)		▲2	•			•	▲3												•								

▲: Refer to "Cautions".

Function and operation explanation

Applied Instructions (Data Operation 2)

20

Istructions

Cautions about writing during RUN

Avoid writing during RUN after either of the following operations in a circuit block including the pulse output instruction or positioning instruction.

- Changing a program for a circuit block including a corresponding instruction.
- Changing a program for a circuit block just before or after a circuit block including a corresponding instruction.

• Deleting or adding a circuit block just before or after a circuit block including a corresponding instruction. This caution about the above operations is applicable to the following PLCs and instructions. FX1S, FX1N and FX1NC PLCs : PLSY, DPLSY, PWM, PLSR, DPLSR, ZRN, DZRN, PLSN

: PLSY, DPLSY, PWM, PLSR, DPLSR, ZRN, DZRN, PLSV, DPLSV, DRVI, DDRVI, DRVA and DDRVA

FX2N and FX2NC PLCs

: PLSY, DPLSY, PWM, PLSR and DPLSR

FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs: DSZR, DVIT^{*1}, DDVIT^{*1}, DTBL^{*2}, ZRN, DZRN, PLSV, DPLSV, DRVI, DDRVI, DDRVI, DRVA and DDRVA

Note that the pulse output will become as shown below when writing during RUN is executed in the FX3S, FX3G, FX3GC, FX3U or FX3UC PLC.

	Operation of FX3S, FX3G, FX3GC, FX3U or FX3UC PLC when writing during RUN is attempted while a corresponding instruction is executed
When operating with acceleration or deceleration *3	Pulse output slows down and stops.
When operating without acceleration or deceleration	Pulse output stops immediately.

*1. Not available for the FX3S, FX3G or FX3GC PLC.

- *2. Not available for the FX3S PLC.
- *3. Only available for FX3UC (Ver.2.20 or later), FX3S, FX3G, FX3GC and FX3U PLCs.

Function changes by version

This instruction includes the function changes as shown in the table below depending on the version.

 \rightarrow As for the explanation of the instruction and contents of function changes, refer to the positioning control manual.

Corresponding version					Added function	Outline of function
FX3S	FX3G	FX3GC	FX3U	FX3UC	Added function	Outline of function
Ver. 1.00 or later	Ver. 1.00 or later	Ver. 1.40 or later	Ver. 2.20 or later	Ver. 2.20 or later	Acceleration or deceleration operation function	When M8338 is turned ON, the operation accelerates or decelerates up to <u>s1</u> by setting of acceleration time or deceleration time corresponding to <u>d1</u> when <u>s1</u> is changed.

FX1S, FX1N, FX1NC are not applicable to this function.

Cautions

1) Instruction driving timing (FX1S, FX1N, FX1NC PLCs)

This is an instruction allowed to program as many times as desired, but you are advised to design the instruction driving timing according to the following cautions.

- a) Do not drive simultaneously the positioning instruction using the same output relay (Y000 or Y001). If driven simultaneously, it is handled as double coil, and normal function is disabled.
- b) After turning OFF the direction input of the instruction, drive again after the following condition is established.

Condition: Re-driving is allowed after one operation cycle or more from the OFF moment of "pulse output mode monitor (Y000: [M8147], Y001: [M8148]" of the positioning instruction driven previous time.

This is because one or more OFF operation is required for re-driving of the positioning instruction.

- c) We recommend the step-ladder instruction (STL) as a method of programming correctly the positioning instruction according to the cautions mentioned above.
- When output pulse frequency is changed to K0 during pulse output (FX1s, FX1N, FX1NC PLCs), the PLC stops the pulse output.
 When sending output again, once turn OFF the flag during pulse output (Y000: [M8147], Y001: [M8148]), and after lapse of one operation cycle, set again (change) the output pulse frequency to other value than

K0.

11

Applied Instructions (Data Operation)

12

Applied (High S Proces

edInstructions h Speed essing)

13

Applied Instru (Handy Instruction)

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

nstructions

- a) Within one operation cycle, if the value is changed to other value than K0, the output maintains the stop function. In this case, write K0 again for more than one operation cycle, or once turn OFF the command input.
- 3) Some restrictions to applicable devices.
 - ▲1: <FX3S, FX3G, FX3GC, FX3U, FX3UC PLCs> Please specify Y000, Y001, Y002^{*1} of transistor output of basic unit, or Y000, Y001, Y002^{*3}, Y003^{*3} of high speed output special adapter^{*2}.
 - *1. The pulse output destination Y002 is not available in FX3S, FX3G (14-point and 24-point type) and FX3GC PLCs.
 - *2. High speed output special adapter can be connected only in FX3U PLC.
 - *3. When using Y002, Y003 in high speed output special adapter, a second high speed output special adapter is needed.

Points

- When using FX_{3U} PLC of relay output type or triac output type, high speed output special adapter is needed.
- The output of high speed output special adapter is a differential line driver.
- <FX1S, FX1N, FX1NC PLCs>
- Specify Y000 or Y001.

As the output of the PLC, please use the transistor output.

- ▲2: <FX3S, FX3G, FX3GC, FX3U, FX3UC PLCs>
 - When high speed output special adapter is used at the pulse output destination in the FX_{3U} PLC, as the rotating direction signal, use the output shown in the table below.

Connection position of high speed output special adapter	Pulse output	Rotating direction signal
Firet unit	(d1)=Y000	<u>d2</u> =Y004
	(d1)=Y001	<u>d2</u> =Y005
Second unit	(d1)=Y002	<u>d2</u> =Y006
	(d1)=Y003	(d2)=Y007

When built-in transistor output is used at the pulse output destination in the FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs, as the rotating direction signal, use the transistor output.

▲3: The FX₃U and FX₃UC PLCs only are applicable, index (V, Z) decoration is disabled.

- ▲4: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲5: The FX₃U and FX₃UC PLCs only are applicable.
- 4) The output pulse frequency is specified by \underline{s} .

The setting range is as follows.

- a) In the case of 16-bit operation
 - FX3S, FX3G, FX3GC, FX3U, FX3UC PLCs
 - -32,768 to -1, +1 to 32,767 (Hz)^{*4}
 - FX1s, FX1N PLCs -32,768 to -1, +1 to 32,767 (Hz)
 - FX1NC PLC
 - -10,000 to -1, +1 to 10,000 (Hz)
- b) In the case of 32-bit operation
 - FX3S, FX3G, FX3GC, FX3U, FX3UC PLCs

Pulse output de	Setting range	
FX3U PLC	High speed output special adapter	-200,000 to -1, +1 to 200,000 (HZ)
FX3S, FX3G, FX3GC, FX3U, FX3UC PLCs	Basic unit (transistor output)	-100,000 to -1, +1 to 100,000 (HZ) ^{*5}

- FX1S, FX1N PLCs
 - -100,000 to -1, +1 to 100,000 (Hz)
- FX1NC PLC
 - -10,000 to -1, +1 to 10,000 (Hz)
 - *4. When operation without acceleration/deceleration (M8338 = OFF), setting range of FX3S/ FX3G/FX3GC PLC is -32,768 to -10 Hz, +10 to 32,767 Hz.
 - *5. When operation without acceleration/deceleration (M8338 = OFF), setting range of FX3S/ FX3G/FX3GC PLC is -100,000 to -10 Hz, +10 to 100,000 Hz.
- 5) Output number of rotating direction signal (d2)

Operation changes as follows depending on polarity of output pulse frequency.

- $[+ (Positive)] \rightarrow \boxed{d2}$: ON
- $[- (Negative)] \rightarrow \textcircled{d2}: OFF$

20.7 DRVI / Drive to Increment

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	×	0	0	×	×	×

Outline

This instruction performs one-speed positioning by relative drive. The moving distance from the present position is specified together with plus or minus sign, and this is also called increment (relative) driving method.

 \rightarrow As for explanation of the instruction, see the positioning control manual. \rightarrow As for cautions of use of high speed output special adapter, see the positioning control manual.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language					
name	Operation	form	Structured ladder/FBD	ST					
DRVI	16 bits	Continuous	DRVI — EN ENO — — s1 d1 — — s2 d2 —	DRVI(EN,s1,s2,d1,d2);					
DDRVI	32 bits	Continuous	DDRVI — EN ENO — — s1 d1 — — s2 d2 —	DDRVI(EN,s1,s2,d1,d2);					

2. Set data

			Data	type		
Va	riable	Description	16-bit operation	32-bit operation		
	EN	Execution condition	Bit			
Input variable	<u>(s1)</u>	Number of output pulses (relative address)	ANY16	ANY32		
	<u>s2</u>	Output pulse frequency	ANY16	ANY32		
	ENO	Execution state	Bit			
Output variable	<u>d1</u>	Device for issuing pulse (Y)	Bit			
	(d2)	Device of rotating direction signal	Bit			

3. Applicable devices

			Bit	De	evio	ces			Word Devices										Others						
Operand type		ŝ	Sys	ter	n u	se	r	Digit designation			System user			em r	Special unit	Index		ndex C		ns nt	Real Number	Character String	Pointer		
	Х	Y	м	т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	E	"0"	Р	
<u>(s1</u>)								•	•	•	•	•	•	•	▲ 4	▲5	•	•	•	•	•				
<u>(s2</u>)								•	•	•	•	•	•	•	▲ 4	▲5	•	•	•	•	•				
<u>d1</u>)		▲1																	•						
<u>d</u> 2		▲2	•			•	▲3												•						

▲: Refer to "Cautions".

11

Applied Instructions (Data Operation)

12

nstr

ructions

13

Applied In (Handy

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

nstruction)

Function and operation explanation

Cautions about writing during RUN

Avoid writing during RUN after either of the following operations in a circuit block including the pulse output instruction or positioning instruction.

- Changing a program for a circuit block including a corresponding instruction.
- Changing a program for a circuit block just before or after a circuit block including a corresponding instruction.

• Deleting or adding a circuit block just before or after a circuit block including a corresponding instruction. This caution about the above operations is applicable to the following PLCs and instructions.

FX1S, FX1N and FX1NC PLCs : PLSY, DPLSY, PWM, PLSR, DPLSR, ZRN, DZRN, PLSV, DPLSV, DRVI, DDRVI, DDRVA and DDRVA

FX2N and FX2NC PLCs

: PLSY, DPLSY, PWM, PLSR and DPLSR

FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs: DSZR, DVIT^{*1}, DDVIT^{*1}, DTBL^{*2}, ZRN, DZRN, PLSV, DRVI, DRVI, DDRVI, DRVA and DDRVA

Note that the pulse output will decelerate and stop when writing during RUN is executed in the FX3S, FX3G, FX3GC, FX3U or FX3UC PLC.

- *1. Not available for the FX3S, FX3G or FX3GC PLC.
- *2. Not available for the FX3S PLC.

Cautions

- Instruction driving timing (FX1s, FX1N, FX1NC PLCs) This is an instruction allowed to program as many times as desired, but you are advised to design the instruction driving timing according to the following cautions.
 - a) Do not drive simultaneously the positioning instruction using the same output relay (Y000 or Y001). If driven simultaneously, it is handled as double coil, and normal function is disabled.
 - b) After turning OFF the direction input of the instruction, drive again after the following condition is established.

Condition: Re-driving is allowed after one operation cycle or more from the OFF moment of "pulse output mode monitor (Y000: [M8147], Y001: [M8148]" of the positioning instruction driven previous time.

This is because one or more OFF operation is required for re-driving of the positioning instruction.

c) We recommend the step-ladder instruction (STL) as a method of programming correctly the positioning instruction according to the cautions mentioned above.

- 2) Some restrictions to applicable devices.
 - ▲1: <FX3S, FX3G, FX3GC, FX3U, FX3UC PLCs>

Please specify Y000, Y001, Y002^{*1} of transistor output of basic unit, or Y000, Y001, Y002^{*3}, Y003^{*3} of high speed output special adapter^{*2}.

- *1. The pulse output destination Y002 is not available in FX3S, FX3G (14-point and 24-point type) and FX3GC PLCs.
- *2. High speed output special adapter can be connected only in FX3U PLC.
- *3. When using Y002, Y003 in high speed output special adapter, a second high speed output special adapter is needed.

Points

- When using FX₃U PLC of relay output type or triac output type, high speed output special adapter is needed.
- The output of high speed output special adapter is a differential line driver.
- <FX1S, FX1N, FX1NC PLCs>

Specify Y000 or Y001.

As the output of the PLC, please use the transistor output.

▲2: <FX3S, FX3G, FX3GC, FX3U, FX3UC PLCs>

When high speed output special adapter is used at the pulse output destination in the FX_{3U} PLC, as the rotating direction signal, use the output shown in the table below.

Operation resident of high and de the output onown in the table bolov

Connection position of high speed output special adapter	Pulse output	Rotating direction signal
First unit	<u>d1</u> =Y000	<u>d2</u> =Y004
	<u>d1</u> =Y001	<u>d2</u> =Y005
Second unit	<u>d1</u> =Y002	<u>d2</u> =Y006
	<u>d1</u> =Y003	<u>d2</u> =Y007

When built-in transistor output is used at the pulse output destination in the FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs, as the rotating direction signal, use the transistor output.

- ▲3: The FX3U and FX3UC PLCs only are applicable, index (V, Z) decoration is disabled.
- ▲4: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲5: The FX₃U and FX₃UC PLCs only are applicable.
- 3) Number of output pulses is specified by s1.

The setting range is as follows.

- a) In the case of 16-bit operation -32,768 to +32,767 (excluding 0)
- b) In the case of 32-bit operation
 -999,999 to +999,999 (excluding 0)
- The output pulse frequency is specified by <u>S2</u>. The setting range is as follows.
 - a) In the case of 16-bit operation
 - In the case of FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs 10 to 32,767 (Hz)
 - In the case of FX1s and FX1N PLCs 10 to 32,767 (Hz)
 - In the case of FX1NC PLC 10 to 10,000 (Hz)
 - b) In the case of 32-bit operation
 - In the case of FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs

Pulse output	Setting range	
FX3U PLC	High speed output special adapter	10 to 200,000 (HZ)
FX3S, FX3G, FX3GC, FX3U, FX3UC PLCs	Basic unit (transistor output)	10 to 100,000 (HZ)

- In the case of FX1s and FX1N PLCs 10 to 100,000 (Hz)
- In the case of FX1NC PLC 10 to 10,000 (Hz)
- 5) Output number of rotating direction signal (d2)

Operation changes as follows depending on polarity of output pulse frequency.

- $[+ (Positive)] \rightarrow (d2): ON$
- [- (Negative)] \rightarrow (d2): OFF

11

Applied Instructions (Data Operation)

12

Applied Instructions (High Speed Processing)

13

Applied

nstructions

14

Applied Instructions (External FX I/O Device)

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Data

a Transfer 2)

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

nstructions

Bui

20.8 DRVA / Drive to Absolute

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	×	0	0	×	×	×

Outline

This instruction performs one-speed positioning by absolute drive. The moving distance from the origin (0 point) is specified, and this is also called absolute driving method.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language									
name	operation	form	Structured ladder/FBD	ST								
DRVA	16 bits	Continuous	DRVA — EN ENO — s1 d1 — s2 d2 —	DRVA(EN,s1,s2,d1,d2);								
DDRVA	32 bits	Continuous	DDRVA 	DDRVA(EN,s1,s2,d1,d2);								

2. Set data

			Data type				
Va	riable	Description	16-bit operation	32-bit operation			
	EN	Execution condition	Bit				
Input variable	<u>(s1</u>)	Number of output pulses (absolute address)	ANY16	ANY32			
	<u>(s2</u>)	Output pulse frequency	ANY16	ANY32			
Output variable	ENO	Execution state	Bit				
	<u>d1</u>	Device for issuing pulse (Y)	Bit				
	(d2)	Device of rotating direction signal	Bit				

3. Applicable devices

Operand type	Bit Devices System user						5		Word Devices												Others				
							er	Dig	Digit designation			System user			m r	Special unit Index		Cons Real tant Number		Real Number	Character String	Pointer			
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	E	"0"	Р	
<u>(s1</u>)								•	•	•	•	•	•	•	▲4	▲5	•	•	•	•	•				
<u>(s2</u>)								•	•	٠	٠	•	•	•	▲4	▲5	•	●	•	•	●				
<u>d1</u>		▲ 1																	•						
<u>d2</u>		▲2	•			•	▲3												•						

▲: Refer to "Cautions".

Function and operation explanation

Cautions about writing during RUN

Avoid writing during RUN after either of the following operations in a circuit block including the pulse output instruction or positioning instruction.

- Changing a program for a circuit block including a corresponding instruction.
- Changing a program for a circuit block just before or after a circuit block including a corresponding instruction.
- Deleting or adding a circuit block just before or after a circuit block including a corresponding instruction. This caution about the above operations is applicable to the following PLCs and instructions.

: PLSY, DPLSY, PWM, PLSR, DPLSR, ZRN, DZRN, PLSV, DPLSV, DRVI, DDRVI, DRVA and DDRVA

FX2N and FX2NC PLCs

FX1S, FX1N and FX1NC PLCs

: PLSY, DPLSY, PWM, PLSR and DPLSR

FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs: DSZR, DVIT^{*1}, DDVIT^{*1}, DTBL^{*2}, ZRN, DZRN, PLSV, DRVI, DRVI, DDRVI, DDRVI, DDRVA and DDRVA

Note that the pulse output will decelerate and stop when writing during RUN is executed in the FX3S, FX3G, FX3GC, FX3U or FX3UC PLC.

- *1. Not available for the FX3S, FX3G or FX3GC PLC.
- *2. Not available for the FX3S PLC.

Cautions

 Instruction driving timing (FX1s, FX1N, FX1NC PLCs) This is an instruction allowed to program as many times as desired, but you are advised to design the

instruction driving timing according to the following cautions.

- a) Do not drive simultaneously the positioning instruction using the same output relay (Y000 or Y001). If driven simultaneously, it is handled as double coil, and normal function is disabled.
- b) After turning OFF the direction input of the instruction, drive again after the following condition is established.
 - Condition: Re-driving is allowed after one operation cycle or more from the OFF moment of "pulse output mode monitor (Y000: [M8147], Y001: [M8148]" of the positioning instruction driven previous time.

This is because one or more OFF operation is required for re-driving of the positioning instruction.

c) We recommend the step-ladder instruction (STL) as a method of programming correctly the positioning instruction according to the cautions mentioned above. If during pulse output, writing during RLIN is attempted in circuit block including this instruction, it must

If, during pulse output, writing during RUN is attempted in circuit block including this instruction, it must be noted that the pulse output slows down and stops.

- 2) Some restrictions to applicable devices.
 - ▲1: <FX3S, FX3G, FX3GC, FX3U, FX3UC PLCs>

Please specify Y000, Y001, Y002^{*1} of transistor output of basic unit, or Y000, Y001, Y002^{*3}, Y003^{*3} of high speed output special adapter^{*2}.

- *1. The pulse output destination Y002 is not available in FX3S, FX3G (14-point and 24-point type) and FX3GC PLCs.
- *2. High speed output special adapter can be connected only in FX_{3U} PLC.
- *3. When using Y002, Y003 in high speed output special adapter, a second high speed output special adapter is needed.

Points

 When using FX_{3U} PLC of relay output type or triac output type, high speed output special adapter is needed.

• The output of high speed output special adapter is a differential line driver.

- <FX1S, FX1N, FX1NC PLCs>
- Specify Y000 or Y001.

As the output of the PLC, please use the transistor output.
11

Applied Instructions (Data Operation)

12

edInstructions n Speed essing)

13

Applied In (Handy

nstructions

14

₽₽₽

ternal FX

l/O

15

Applied Instructions (External Device (optional device))

16

Applied Instructions (External Device)

17

Applied Instructions (Data Transfer 2)

18

Applied Instructions (Floating Point)

19

Applied Instructions (Data Operation 2)

20

▲2: <FX3S, FX3G, FX3GC, FX3U, FX3UC PLCs>

When high speed output special adapter is used at the pulse output destination in the FX₃U PLC, as the rotating direction signal, use the output shown in the table below.

Connection position of high speed output special adapter	Pulse output	Rotating direction signal
First unit	<u>d1</u> =Y000	<u>d2</u> =Y004
i not unit	<u>d1</u> =Y001	<u>d2</u> =Y005
Second unit	(d1)=Y002	<u>d2</u> =Y006
	<u>d1</u> =Y003	<u>d2</u> =Y007

When built-in transistor output is used at the pulse output destination in the FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs, as the rotating direction signal, use the transistor output.

- ▲3: The FX3U and FX3UC PLCs only are applicable, index (V, Z) decoration is disabled.
- ▲4: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲5: The FX₃U and FX₃UC PLCs only are applicable.
- Number of output pulses is specified by <u>s1</u>. The setting range is as follows.
 - a) In the case of 16-bit operation
 - In the case of FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs -32,768 to +32,767
 - In the case of FX1S, FX1N and FX1NC PLCs -32,768 to +32,767
 - b) In the case of 32-bit operation
 - In the case of FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs -999,999 to +999,999
 - In the case of FX1s, FX1N and FX1NC PLCs -999,999 to +999,999
- The output pulse frequency is specified by <u>s2</u>. The setting range is as follows.
 - a) In the case of 16-bit operation
 - In the case of FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs 10 to 32,767 (Hz)
 - In the case of FX1s and FX1N PLCs 10 to 32,767 (Hz)
 - In the case of FX1NC PLC 10 to 10,000 (Hz)
 - b) In the case of 32-bit operation
 - In the case of FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs

Pulse output	Setting range	
FX3U PLC	High speed output special adapter	10 to 200,000 (HZ)
FX3S, FX3G, FX3GC, FX3U, FX3UC PLCs	Basic unit (transistor output)	10 to 100,000 (HZ)

- In the case of FX1s and FX1N PLCs 10 to 100,000 (Hz)
- In the case of FX1NC PLC 10 to 10,000 (Hz)
- Output number of rotating direction signal d2 Operation is as follows by judging the difference between the output pulse frequency (target position) and present position.
 - $[+ (Positive)] \rightarrow (d2): ON$
 - $[- (Negative)] \rightarrow \textcircled{d2}: OFF$

21. Applied Instructions (Real Time Clock Control)

This chapter introduces operation and comparison instructions for the time data.

Instruction name	Function	Reference	
TCMP	PTC Data Compare	Section 21.1	
TCMPP		360101121.1	
TZCP	PTC Data Zana Compara	Section 21.2	
TZCPP		360101121.2	
TADD	PTC Data Addition	Section 21.2	
TADDP		360101121.3	
TSUB	PTC Data Subtraction	Section 21.4	
TSUBP		360101121.4	
HTOS			
HTOSP	Hour to Second Conversion	Section 21.5	
DHTOS		360101121.5	
DHTOSP			
STOH			
STOHP	Second to Hour Conversion	Section 21.6	
DSTOH		360101121.0	
DSTOHP			
TRD	Pood PTC data	Section 21.7	
TRDP		360101121.7	
TWR	Set RTC data	Section 21.8	
TWRP		00000121.0	
HOUR	Hour Meter	Section 21.9	
DHOUR		00000121.9	

21.1 TCMP / RTC Data Compare

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)
0	0	0	0	0	0	×	×	×

Outline

The comparison time and the time data are compared, and the bit device is turned ON or OFF depending on the magnitude of difference.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	each language
name	Operation	form	Structured ladder/FBD	ST
ТСМР	16 bits	Continuous	TCMP 	TCMP(EN,s1,s2,s3,s,d);
TCMPP	16 bits	Pulse	TCMPP - EN ENO - s1 d - s2 - s3 - s	TCMPP(EN,s1,s2,s3,s,d);

2. Set data

,	/ariable	Description	Data type
	EN	Execution condition	Bit
	<u>(s1)</u>	Comparison time "hour" (Setting range: 0 to 23)	ANY16
Input	<u>(s2)</u>	Comparison time "minute" (Setting range: 0 to 59)	ANY16
variable	<u>(s3)</u>	Comparison time "second" (Setting range: 0 to 59)	ANY16
	S	Time data (hour, minute, second) "hour" (3 points occupied)	ARRAY [02] OF ANY16
Output	ENO	Execution state	Bit
variable	d	Device to be turned ON or OFF depending on the comparison result. (3 points occupied)	ARRAY [02] OF Bit

3. Applicable devices

			Bi	t D	evi	ice	s					W	/or	d D	evic	es				Others				
Operand type			Sy	ste	m	use	ər	Dig	git de	signat	tion		Sy: u	ste ser	m	Special unit		I	ndex	Co ta	ons Int	Real Number	Character String	Pointer
	х	Y	М	Т	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	E	"0"	Р
<u>(s1</u>)								•	•	•	•	•	•	•	▲2	▲3	•	•	•	•	•			
<u>(s2</u>)								•	•	•	•	•	•	•	▲2	▲3	•	•	•	•	•			
<u>(s3)</u>								•	•	•	•	•	•	•	▲2	▲3	•	•	•	•	•			
S												•	•	•	▲2	▲3			•					
d		•	•			•	▲1												•					

▲: Refer to "Cautions".

21

Applied (Real T Clock (

22

Applied Instructions (External Device)

23

Applied Instructions (Extension Function)

24

Applied Instructions (Others)

25

Applied Instructions (Block Data Operation)

26

dInstructions Time Control)

lied Instructions ternal Device mmunication)

1. 16-bit operation (TCMP)

The time of comparison time (hour, minute, second) (s1), (s2), (s3) is compared with the time data (hour, minute, second) of the device specified by (s), and the device specified by (d) is turned ON or OFF depending on the magnitude of difference.

Cautions

- Number of devices occupied Three devices are occupied each in s and .
 Be careful not to overlap with the devices used in machine control.
- 2) When using the time (hour, minute, second) of the clock data of the real time clock built in the PLC, first read out the value of the special data register by using TRD, TRDP, and specify the word device in each operand.
- 3) Some restrictions to applicable devices.
 - ▲1: The FX₃U and FX₃UC PLCs only are applicable, index (V, Z) decoration is disabled.
 - ▲2: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 - ▲3: The FX₃U and FX₃UC PLCs only are applicable.

Program example

21

21.2 TZCP / RTC Data Zone Compare

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	×	×	×

Outline

The comparison time of higher and lower points and the time data are compared, and the bit device is turned ON or OFF depending on the magnitude of difference.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	each language
name	operation	form	Structured ladder/FBD	ST
TZCP	16 bits	Continuous	TZCP 	TZCP(EN,s1,s2,s,d);
TZCPP	16 bits	Pulse	TZCPP - EN ENO - s1 d - s2 - s	TZCPP(EN,s1,s2,s,d);

2. Set data

,	Variable	Description	Data type
	EN	Execution condition	Bit
Input	(s1)	Comparison lower limit time (hour, minute, second) "hour" (3 points occupied)	ARRAY [02] OF ANY16
variable	(s2)	Comparison higher limit time (hour, minute, second) "hour" (3 points occupied)	ARRAY [02] OF ANY16
	S	Time data (hour, minute, second) "hour" (3 points occupied)	ARRAY [02] OF ANY16
Output	ENO	Execution state	Bit
variable	d	Device to be turned ON or OFF depending on the comparison result. (3 points occupied)	ARRAY [02] OF Bit

3. Applicable devices

			Bit	t D	evi	ce	s					W	/or	d C)evid	es					Others			
Operand type			Sys	system user Digit designation		ion		System user		Special unit		Index		ndex Co		Real Number	Character String	Pointer						
	Х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
<u>(s1</u>)												•	•	•	▲2	▲3			•					
<u>s2</u>												•	•	•	▲2	▲3			•					
S												•	•	•	▲2	▲3			•					
d		•	•			•	▲1												•					

▲: Refer to "Cautions".

1. 16-bit operation (TZCP, TZCPP)

The comparison time (hour, minute, second) of higher and lower points and the time data (hour, minute, second) of the device specified by \bigcirc are compared, and the device specified by \bigcirc is turned ON or OFF depending on the magnitude of difference.

If TZCP is not executed when command contact is changed from ON to OFF, d, d+1, d+2 are holding the state before the command contact is turned OFF.

Cautions

1) Number of devices occupied

Three devices are occupied each in (s1), (s2), (s3) and (d). Be careful not to overlap with the devices used in machine control.

- 2) When using the time (hour, minute, second) of the clock data of the real time clock built in the PLC, first read out the value of the special data register by using TRD, TRDP, and specify the word device in each operand.
- 3) Some restrictions to applicable devices.
 - ▲1: The FX₃U and FX₃UC PLCs only are applicable, index (V, Z) decoration is disabled.
 - ▲2: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 - ▲3: The FX₃U and FX₃UC PLCs only are applicable.

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

Applied Instructions

30

pplied Instruction: External Device

Program example

If TZCP instruction is not executed when X000 is changed from ON to OFF, M3 to M5 are holding the state before X000 is turned OFF.

- $(\underline{s1})$, $(\underline{s1})$ +1, $(\underline{s1})$ +2 :Comparison time lower limit is specified by "hour," "minute," "second."
- $(\underline{s2})$, $(\underline{s2})$ +1, $(\underline{s2})$ +2 :Comparison time upper limit is specified by "hour," "minute," "second."
- (\underline{s}) , (\underline{s}) +1, (\underline{s}) +2 :Time data is specified by "hour," "minute," "second."
- (d), (d) +1, (d) +2 :Three bit devices are turned ON or OFF depending on the comparison result.

The range of "hour" is 0 to 23.

The range of "minute" is 0 to 59.

The range of "second" is 0 to 59.

21.3 **TADD / RTC Data Addition**

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX 0N	FX0(S)
0	0	0	0	0	0	×	×	×

Outline

Two time data are added and stored in the word device.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language	e)
name	Operation	form	Structured ladder/FBD	ST	23
TADD	16 bits	Continuous	TADD EN ENO s1 d s2	TADD(EN,s1,s2,d);	Applied Instructions (Extension Function)
TADDP	16 bits	Pulse	TADDP — EN ENO — s1 d — s2	TADDP(EN,s1,s2,d);	24 (Others)

2. Set data

Var	riable	Description	Data type
	EN	Execution condition	Bit
Input variable	<u>(s1)</u>	Device for storing "hour" of addition time data (hour, minute, second) (3 points occupied)	ARRAY [02] OF ANY16
	<u>s2</u>	Device for storing "hour" of addition time data (hour, minute, second) (3 points occupied)	ARRAY [02] OF ANY16
Output	ENO	Execution state	Bit
variable	d	Device for storing the added result of two time data (hour, minute, second) (3 points occupied)	ARRAY [02] OF ANY16

3. Applicable devices

			Bi	t D	evi	ces	5					W	or	d D	evic	es						0	thers	
Operand type			Sy	ste	m	use	ər	Dig	git de	signat	tion		Sy: u	ste ser	m	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	Х	Y	Μ	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
<u>(s1</u>)												•	•	•	▲1	▲2			•					
<u>(s2</u>)												•	•	•	▲1	▲2			•					
d												•	•	•	▲1	▲2			•					

▲: Refer to "Cautions".

21

AppliedInstructions (Real Time Clock Control)

22

Applied Instructions (External Device)

1. 16-bit operation (TADD)

Time data (hour, minute, second) of the device specified by $\underline{s1}$, and time data (hour, minute, second) of the device specified by $\underline{s2}$ are added, and the result is stored in the device specified by \underline{d} .

*1. Device for storing "hour" of addition time data (hour, minute, second)

*2. Device for storing the added result of two time data (hour, minute, second)

 $(\underline{s1}, \underline{s1}+1, \underline{s1}+2)+(\underline{s2}, \underline{s2}+1, \underline{s2}+2)$

- 1) If the operation result exceeds 24 hours, the carry flag is turned ON, and the time by subtracting 24 hours from the simple sum is stored as the operation result.
- 2) If the operation result is 0 (0 hour, 0 minute, 0 second), the zero flag is turned ON.

Cautions

- Number of devices occupied Three devices are occupied each in <u>s1</u>, <u>s2</u> and <u>d</u>.
 Be careful not to overlap with the devices used in machine control.
- 2) When using the time (hour, minute, second) of the clock data of the real time clock built in the PLC, first read out the value of the special data register by using TRD, TRDP, and specify the word device in each operand.
- 3) Some restrictions to applicable devices.
 ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 ▲2: The FX3U and FX3UC PLCs only are applicable.

18 hours, 10 minutes, 30 seconds 10 hours, 20 minutes, 5 seconds 4 hours, 30 minutes, 35 seconds

Program example

21.4 **TSUB / RTC Data Subtraction**

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	×	×	×

Outline

Two time data are subtracted and stored in the word device.

1. Format and operation, execution form

Instruction	Onenting	Execution	Expression in	each language	e)
name	Operation	form	Structured ladder/FBD	ST	23
TSUB	16 bits	Continuous	TSUB — EN ENO — — s1 d — — s2	TSUB(EN,s1,s2,d);	Applied Instructions (Extension Function)
TSUBP	16 bits	Pulse	TSUBP —EN ENO —s1 d s2	TSUBP(EN,s1,s2,d);	24 Applied Inst (Others)

2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	<u>(s1)</u>	"Hour" of subtraction time data (hour, minute, second) (3 points occupied)	ARRAY [02] OF ANY16
	<u>(s2</u>)	"Hour" of subtraction time data (hour, minute, second) (3 points occupied)	ARRAY [02] OF ANY16
Output	ENO	Execution state	Bit
variable	d	The subtracting result of two time data (hour, minute, second) is stored (3 points occupied)	ARRAY [02] OF ANY16

3. Applicable devices

			Bi	t D	evi	ces	S					W	ord	d De	evice	es						0	thers	
Operand type			Sy	ste	m	use	ər	Dig	git de	signat	tion		Sy: u	stei ser	m	Special unit		I	ndex	Co ta	ons nt	Real Number	Character String	Pointer
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
<u>(s1</u>)												•	•	•	▲ 1	▲2			•					
<u>(s2</u>)												•	•	•	▲ 1	▲2			•					
d												•	•	•	▲1	▲2			•					

▲: Refer to "Cautions".

21

Applied (Real T Clock (l Time (Control) instructions

22

Applied Instructions (External Device)

Applied Instructions (Others)

25) BB

dInstructions k Data ation)

26

1. 16-bit operation (TSUB, TSUBP)

From the time data (hour, minute, second) of the device specified by s1, the time data (hour, minute, second) of the device specified by (s2) is subtracted, and the result is stored in the device specified by (d).

*1. Device for storing "hour" of subtraction time data (hour, minute, second) *2. Device for storing the subtracted result of two time

data (hour, minute, second)

 $(\underline{s1}, \underline{s1}+1, \underline{s1}+2) - (\underline{s2}, \underline{s2}+1, \underline{s2}+2)$

 \rightarrow (<u>d</u>, <u>d</u>+1, <u>d</u>+2)

The range of "hour" is 0 to 23. The range of "minute" is 0 to 59. The range of "second" is 0 to 59.

If the operation result is less than 0 hour, the borrow flag is turned ON, and the time by adding 24 hours to the simple difference is stored as the operation result. If the operation result is 0 (0 hour, 0 minute, 0 second), the zero flag is turned ON.

Cautions

1) Number of devices occupied

Three devices are occupied each in $\underline{s1}$, $\underline{s2}$ and \underline{d} . Be careful not to overlap with the devices used in machine control.

- 2) When using the time (hour, minute, second) of the clock data of the real time clock built in the PLC, first read out the value of the special data register by using TRD, TRDP, and specify the word device in each operand.
- 3) Some restrictions to applicable devices. ▲ 1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable. ▲2: The FX3U and FX3UC PLCs only are applicable.

Program example

[Structured ladder/FBD] TSUB X000 FN ENO (D10,D11,D12) - (D20,D21,D22) D10 s1 D30 d \rightarrow (D30,D31,D32) D20 s2 D 10 D 20 3 (hour) D 30 7 (hour) 10 (hour) D 11 30 (minute) D 21 10 (minute) D 31 20 (minute) D 12 10 (second) D 22 5 (second) D 32 5 (second) 10 hours, 30 minutes, 10 seconds 3 hours, 10 minutes, 5 seconds 7 hours, 20 minutes, 5 seconds If the operation result is less than 0 hour <u>(s1</u>) <u>(s2</u>) 5 (hour) 18 (hour) 11 (hour) 5-18=-13(<0) 20 (minute) 10 (minute) 10 (minute)

5 (second)

5 hours, 20 minutes, 40 seconds

40 (second)

18 hours, 10 minutes, 5 seconds 11 hours, 10 minutes, 35 seconds

35 (second)

[ST]

TSUB(X000,D10,D20,D30);

21.5 HTOS / Hour to Second Conversion

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
								(-)
0	×	×	×	×	×	×	×	×

Outline

This instruction converts the "hour, minute, second" unit (time) data into second unit data.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in a	each language	
name	operation	form	Structured ladder/FBD	ST	
HTOS	16 bits	Continuous	HTOS EN ENO s d	HTOS(EN,s,d);	
HTOSP	16 bits	Pulse	HTOSP EN ENO s d	HTOSP(EN,s,d);	
DHTOS	32 bits	Continuous	DHTOS — EN ENO — s d	DHTOS(EN,s,d);	
DHTOSP	32 bits	Pulse	DHTOSP — EN ENO — s d	DHTOSP(EN,s,d);	Operation

2. Set data

			Data	type
Va	riable	Description	16-bit operation	32-bit operation
Innut	EN	Execution condition	Bit	
variable	S	Head device for storing the time data (hour, minute, second) before conversion (3 points occupied)	ARRAY [02] OF	ANY16
Output	ENO	Execution state	Bit	
variable	d	Device for storing the time data (hour, minute, second) after conversion	ANY16	ANY32

3. Applicable devices

			Bi	t D	evi	ces	6					W	ord	l De	evic	es						0	thers	
Operand type			Sy	ste	m	use	er	Dig	jit des	signat	ion	9	Sys us	sten ser	n	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	X	Y	Μ	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	E	"0"	Р
S								•	•	٠	•	•	•	•	•	•			•					
d									•	•	•	•	•	•	•	•			•					

ied instructions iemal Device nmunication)

1. 16-bit operation (HTOS/HTOSP)

The time data (hour, minute, second) of the device specified by \bigcirc is converted into the second unit, and the result is stored in the device specified by \bigcirc .

For example, when 4 hours, 29 minutes, 31 seconds is specified, the operation is as follows.

2. 32-bit operation (DHTOS/DHTOSP)

The time data (hour, minute, second) of the device specified by s is converted into the second unit, and the result is stored in the device specified by d

For example, when 35 hours, 10 minutes, 58 seconds is specified, the operation is as follows.

Error

In the following case, it is an operation error, and the error flag (M8067) is turned ON, and the error code is stored in D8067.

1) When the data of the device specified by s is out of the range. (Error code: K6706)

Program example

This is a program for converting the time data being read out from the real-time clock built in the PLC, when the X020 is ON, into the second unit, and storing in D100, D101.

[Structured ladder/FBD]

[ST]

TRD(X020,D10); DHTOS(X020,D13,D100);

Operation

1) Reading operation of clock data by TRD

2) Conversion operation to seconds by DHTOS

21.6 STOH / Second to Hour Conversion

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction converts the time data in second unit into time data in "hour, minute, second" unit.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in o	each language
name	operation	form	Structured ladder/FBD	ST
STOH	16 bits	Continuous	STOH EN ENO s d	STOH(EN,s,d);
STOHP	16 bits	Pulse	STOHP — EN ENO — s d	STOHP(EN,s,d);
DSTOH	32 bits	Continuous	DSTOH — EN ENO — s d	DSTOH(EN,s,d);
DSTOHP	32 bits	Pulse	DSTOHP — EN ENO — s d	DSTOHP(EN,s,d);

2. Set data

			Data	type
Va	riable	Description	16-bit operation	32-bit operation
Input	EN	Execution condition	Bit	_
variable	S	Device for storing the time data in second unit before conversion	ANY16	ANY32
Output	ENO	Execution state	Bit	•
variable	d	Device for storing the time data in "hour, minute, second" unit after conversion (3 points occupied)	ARRAY [02] OF	ANY16

3. Applicable devices

			Bi	t D	evi	ces	;					W	ord	De	vic	es						0	thers	
Operand type			Sy	ste	mι	ıse	r	Dig	git de	signat	ion		Sys us	sten ser	n	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	х	Y	м	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	к	н	E	"0"	Р
S								•	•	•	•	•	•	•	•	•			•					
d									•	•	•	•	•	•	•	•			•					

1. 16-bit operation

The second unit data of the device specified by \underline{s} is converted into "hour, minute, second" unit, and the result is stored in the device specified by \underline{d} .

For example, when 29011 seconds is specified, the operation is as follows.

2. 32-bit operation

The second unit data of the device specified by \bigcirc is converted into "hour, minute, second" unit, and the result is stored in the device specified by \bigcirc .

For example, when 45325 seconds is specified, the operation is as follows.

Error

In the following case, it is an operation error, and the error flag (M8067) is turned ON, and the error code is stored in D8067.

1) When the data of the device specified by s is out of the range. (Error code: K6706)

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

ctions

30

Program example

This is a program for converting the second unit data stored in D0, D1 when the X020 is turned ON, into the "hour, minute, second" unit, and storing the result in D100, D101, D102.

[Structured ladder/FBD]

[ST]

DSTOH(X020,D0,D100);

Operation

1) Conversion into the "hour, minute, second" unit by STOHP instruction (when 40000 seconds is specified by D1, D0)

21.7 TRD / Read RTC data

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)
0	0	0	0	0	0	×	×	×

Outline

The clock data is read out in the real-time clock built in the PLC. When using FX2NC PLC, optional memory board for Real time clock is required.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	each language
name	Operation	form	Structured ladder/FBD	ST
TRD	16 bits	Continuous	EN ENO d	TRD(EN,d);
TRDP	16 bits	Pulse	EN ENO d	TRDP(EN,d);

2. Set data

١	/ariable	Description	Data type
Input variable	EN	Execution condition	Bit
Output	ENO	Execution state	Bit
variable	d	The reading destination of clock data and the head device are specified (7 points occupied).	ARRAY [06] OF ANY16

3. Applicable devices

			Bi	t D	evi	ce	S					W	orc	d b	evic	es				Others					
Operand type	d System user					er	Digit designation					System user			Special unit		h	ndex	Co ta	ns nt	Real Number	Character String	Pointer		
	X Y M T C S D				D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	V Z Modifier			Η	Е	"□"	Р			
d												●	●	•	▲1	▲2			•						

▲: Refer to "Cautions".

29

(Data Table ation) Instr uctions

30

(External Device Communication) led

ructions

1. 16-bit operation (TRD)

The clock data (D8013 to D8019) of the real-time clock built in the PLC is read out into the device specified by (d) in the following format.

[Structured ladder/FBD]

[ST]

D0

TRD(X000,D0);

This instruction reads out the real-time clock data of the PLC into seven data registers.

	Device	ltem	Clock data		Device	ltem
	D8018	Year (solar calendar)	0 to 99 (Lower 2 digits of year)	\rightarrow	D 0	Year (solar calendar)
	D8017	Month	1 to 12	\rightarrow	D 1	Month
gister	D8016	Day	1 to 31	\rightarrow	D 2	Day
al data re	D8015	hour	0 to 23	\rightarrow	D 3	hour
Specia	D8014	minute	0 to 59	\rightarrow	D 4	minute
	D8013	second	0 to 59	\rightarrow	D 5	second
	D8019	Day of week	0 (Sunday) to 6 (Saturday)	\rightarrow	D 6	Day of week

Cautions

1. Number of devices occupied

Seven devices specified by d are occupied. Be careful not to overlap with the devices used in machine control.

2. Some restrictions to applicable devices.

- ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲2: The FX3U and FX3UC PLCs only are applicable.

TWR / Set RTC data 21.8

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	×	×	×

Outline

The clock data is written into the real-time clock built in the PLC. When using FX2NC PLC, optional memory board for Real time clock is required.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	each language
name	operation	form	Structured ladder/FBD	ST
TWR	16 bits	Continuous	TWR —EN ENO— s	TWR(EN,s);
TWRP	16 bits	Pulse	TWRP —EN ENO— —s	TWRP(EN,s);

2. Set data

١	/ariable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	The writing source of clock data and the head device are specified (7 points occupied).	ARRAY [06] OF ANY16
Output variable	ENO	Execution state	Bit

3. Applicable devices

			Bit	t D	evi	ces	S					W	ord	De	vice	s				Others					
Operand type	d System user					ər	Dig	jit des	ion	System user			Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer				
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	Н	Е	"□"	Р	
s											•	•	•	▲1	▲2			•							

▲: Refer to "Cautions".

29

(Data Table ation) Instr uctions

30

(External Device Communication) led

ructions

The setting clock data stored in the device specified by s is written into the clock data (D8013 to D8019) of the real-time clock built in the PLC.

1) D8018 (year data) can be also changed over to four-digit mode. (See Program example.)

	Device	Item	Clock data		Device	ltem	
	D 10	Year (solar calendar)	0 to 99 (Lower 2 digits of year)	\rightarrow	D8018	Year (solar calendar)	
setting data	D 11	Month	1 to 12	\rightarrow	D8017	Month	
	D 12	Day	1 to 31	\rightarrow	D8016	Day	Speci
	D 13	hour	0 to 23	\rightarrow to 23		hour	al data re
Time	D 14	minute	0 to 59	\rightarrow	D8014	minute	egister
	D 15	second	0 to 59		D8013	second	
	D 16	Day of week	0 (Sunday) to 6 (Saturday)	\rightarrow	D8019	Day of week	

- 2) When TWR or TWRP is executed, the clock data of the real-time clock is changed immediately. Therefore, in the device to be specified by s, you are advised to transfer the clock data of several minutes ahead, and execute the instruction when reaching the exact time.
- 3) When setting the clock data (time setting) by this instruction, you are not required to control the special auxiliary relay M8015 (time stopping and time setting).
- 4) The day of week of FX1S, FX1N, FX1NC, FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs is set automatically depending on the content of the date regardless of the written numeric value.
- 5) If a numeric value of non-existing date is entered, the clock data is not changed. Enter correct clock data, and write again.

Cautions

1. Number of devices occupied

The device specified by <u>s</u> occupies the subsequent seven devices. Be careful not to overlap with the devices used in machine control.

2. Some restrictions to applicable devices.

- ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
- ▲2: The FX₃U and FX₃UC PLCs only are applicable.

21

Applied Instructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

(Block

(Data ation)

26

Applied Instruction (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

Applied Instruc (Data Table Operation)

uctions

30

Applied Instructions (External Device Communication)

uctions

tions

1. Setting example of clock data (time)

To set the real-time clock. In the case of 15 hours, 20 minutes, 30 seconds, Tuesday, April 25, 2001. [Structured ladder/FBD] [ST]

- When setting the time, first set the time of several minutes ahead, and turn ON the X000 when reaching 1) the exact time, then the set time is written into the real-time clock, and the clock data is updated.
- 2) Every time the X001 is turned ON, ±30 seconds can be corrected.
- 3) When handling the year in four digits, please add the following program. D8018 operates in four-digit year mode from the second scan after RUN of PLC.

M8002		M	IOV	
		EN	ENO	
Initial pulse	K2000 —	s	d	— D8018

- a) Usually, the PLC operates in two-digit year mode. After RUN of PLC, by executing the above instruction, and transferring K2000 (fixed value) to D8018 (year) for one operation cycle only, the operation is changed to four-digit mode.
- b) This program must be executed every time the PLC is set to RUN. By transferring K2000, only the year display is changed to four-digit mode, and the present time is not changed.
- c) In the case of four-digit mode of the year, 80 to 99 correspond to 1980 to 1999, and 00 to 79 correspond to 2000 to 2079.

Example: 80=1980, 99=1999, 00=2000, 79=2079

4) When connecting with the data access unit of FX-10DU, FX-20DU, FX-25DU types, please set the year in two-digit mode. If set in four-digit mode, the year is not displayed correctly in the present versions of these DU types.

When the PLC is in four-digit mode, if the clock is set from FX-10DU, 20DU, 25DU, it must be noted that the mode is changed to two-digit mode.

21.9 **HOUR / Hour Meter**

FX3U(C)	EX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	EXU/EX2C	FX0N	EX0(S)
1700(0)	1766(6)	17.00	17(2)	17(10)	IXIO	T XON XED	1 Xon	1 760(0)
0	0	0	Δ 0		0	×	×	×

Outline

This instruction adds and measures the ON time duration of input contact in one-hour unit.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language					
name	operation	form	Structured ladder/FBD	ST				
HOUR	16 bits	Continuous	HOUR — EN ENO — s d1 	HOUR(EN,s,d1,d2);				
DHOUR	32 bits	Continuous	DHOUR EN ENO s d1 d2	DHOUR(EN,s,d1,d2);				

2. Set data

			Data type			
Va	riable	Description	16-bit operation	32-bit operation		
Input	EN	Execution condition	Bit			
variable	S	ON time duration of d2 (set in one-hour unit)	ANY16	ANY32		
	ENO	Execution state	Bit			
Output variable	<u>d1</u>)	Present value of one-hour unit (data register for power failure hold is specified)	ARRAY [12] OF ANY16	ARRAY [13] OF ANY16		
	(d2)	Device of alarm output destination	Bit			

3. Applicable devices

	Bit Devices System user					Word Devices								Others										
Operand type					Dig	Digit designation			System user		Special unit	Index		Cons tant		Real Number	Character String	Pointer						
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	н	E	"0"	Р
S								•	•	•	•	•	•	•	▲2	▲3	•	•	•	•	•			
<u>(d1</u>)														•	▲2				•					
d2)		•	•			•	▲1												•					

▲: Refer to "Cautions".

21

Applied (Real T Clock

Time Control) instructions

22

Applied Instructions (External Device)

ij

1. 16-bit operation

When the cumulative total of ON time duration of command input exceeds the time of the device specified by (3), the device specified by (3) is turned ON. In (d1)+1, the present value of less than one hour is stored in one-second unit.

- The time until (d2) is turned ON is specified in one-hour unit. (s)
- Present value of one-hour unit (d1)
- (d1)+1 : Present value of less than one hour (one-second unit)
- Device of alarm output destination (d2)

It turns ON when the current value (d1) reaches or exceeds the time specified in (s).

- 1) To use the present value data continuously after the PLC power source is turned OFF, please specify the data register for power failure hold in the device specified by (d1). When the data register for general purpose is used, the present value data is cleared when the PLC power source is turned OFF, or when changed from STOP to RUN.
- 2) Measurement continues even after the alarm output (device specified by d2) is turned ON. When measures the ON time beginning again, clear the current value stored in d and d+1. When the current value is clear, alarm output is turned OFF.
- 3) Measurement stops when the present value of the device specified by (d1) reaches the maximum value of 16-bit figure. When desired to measure continuously, please clear the present values of (d1) to <u>d1</u>+1.

2. 32-bit operation

Command input II ON time duration of device - specified by (<u>d2</u>)	DHOUR EN ENO s d1 Present value of one-hour unit d2 Device of alarm output destination
[s +1, s]:	Time setting until d2 is turned ON
	Specify by s1+1 (upper digit), s1 (lower digit).
[d1)+1, d1)]:	Present value of one-hour unit
	Store in d1+1 (upper digit), d1 (lower digit).
(d1)+2 :	Present value of less than one hour (one-second unit)
(d2) :	Specification of alarm output
	It turns ON when the current value $\underline{\texttt{d1}}$, $\underline{\texttt{d2}}$ reaches or exceeds the time specified in $\underline{\texttt{s}}$.

- To use the present value data continuously after the PLC power source is turned OFF, please specify the data register for power failure hold in the device specified by d1. When the data register for general purpose is used, the present value data is cleared when the PLC power source is turned OFF, or when changed from STOP to RUN.
- 2) Measurement continues even after the alarm output (device specified by d2) is turned ON. When measures the ON time beginning again, clear the current value stored in \bigcirc to \bigcirc +2. When the current value is clear, alarm output is turned OFF.
- 3) Measurement stops when the present value of the device specified by (d1) reaches the maximum value of 32-bit figure. When desired to measure continuously, please clear the present values of d1 to (d1)+2.

Control) lime Instructions

22

Applied Instructions (External Device)

23

uctions

tions

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

ctions

30

temal ē

Device

Cautions

- 1) The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.
- Number of devices occupied 2) The device specified by (d1) occupies two devices (16-bit operation) or three devices (32-bit operation). Be careful not to overlap with the devices used in machine control.
- 3) Some restrictions to applicable devices. ▲1: The FX₃U and FX₃UC PLCs only are applicable, index (V, Z) decoration is disabled. ▲2: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable. ▲3: The FX₃U and FX₃UC PLCs only are applicable.
- 4) When the DHOUR instruction is used for 32-bit operation in the FX2N or FX2NC PLC. A device specified for alarm output may turn ON before the time specified by the DHOUR instruction is reached.

For avoiding such turning ON, add the circuit inside in the program example shown below to the program.

*1: Program the part [A] in the interrupt disabled range when a device specified for alarm output is used in the interrupt program. (Lay out the program part A between the DI instruction and the EI instruction.)

- *2: Set a value set in s of the DHOUR instruction.
- *3: Set a value set in (d1) of the DHOUR instruction.
- *4: Set a value set in (d2) of the DHOUR instruction.

Program example

When the cumulative total of ON time duration of X000 exceeds 300 hours, Y005 is turned ON. In D201, the present time of less than one hour is stored in one-second unit.

[Structured ladder/FBD]

[ST]

X000 HO	UR HOUR(X000,K300,D200,Y005); ENO
K300—s	d1 — D200 d2 — Y005
s :	Time setting for turning ON (d2) Specified in one-hour unit.
<u>d1</u> :	Present value of one-hour unit
<u>d1</u> +1 :	Present value of less than one hour (one-second unit)
<u>d2</u> :	Specification of alarm output
	It turns ON when the current value $\textcircled{d1}$ reaches or exceeds the time specified in \textcircled{s} . (In this example, to be turned ON when reaching 300 hours.)

22. Applied Instructions (External Device)

This chapter introduces conversion instructions for gray codes used in absolute type rotary encoders and instructions dedicated to analog blocks.

Instruction name	Function	Reference	
GRY			
GRYP	Desimal to Crow Code Conversion	Section 22.1	
DGRY		3601011 22.1	
DGRYP			
GBIN		Section 22.2	
GBINP	Cray Code to Desimal Conversion		
DGBIN		Section 22.2	
DGBINP			
RD3A	Poor form Dodicated Analog Plock	Section 22.2	
RD3AP	Read form Dedicated Analog Block	Section 22.3	
WR3A	Write to Dedicated Analog Block	Section 22.4	
WR3AP	While to Dedicated Analog Block		

22.1 GRY / Decimal to Gray Code Conversion

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	×	×	×	×	×

Outline

This instruction converts a binary value into a gray code, and transfers it.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language	
name	Operation	form	Structured ladder/FBD	ST	
GRY	16 bits	Continuous	GRY — EN ENO — s d	GRY(EN,s,d);	
GRYP	16 bits	Pulse	GRYP — EN ENO — — s d —	GRYP(EN,s,d);	
DGRY	32 bits	Continuous	DGRY — EN ENO — s d —	DGRY(EN,s,d);	
DGRYP	32 bits	Pulse	DGRYP —EN ENO— —s d—	DGRYP(EN,s,d);	operation

2. Set data

			Data type			
Va	riable	Description	16-bit operation	32-bit operation		
Innut	EN	Execution condition	Bit			
variable	S	Conversion source data or word device storing conversion source data	ANY16	ANY32		
Output	ENO Execution state		Bit			
variable	d	Word device storing data after conversion	ANY16	ANY32		

3. Applicable devices

			Bi	t D	evi	ice	s					٧	Vor	d D	evic	es						0	thers	
Operand type		;	Sys	ste	m	use	ər	Dig	it spe	cifica	tion		Sys u	ster ser	n	Special unit		h	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	X	Y	М	т	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
s								٠	•	•	•	•	•	•	▲1	▲2	•	•	•	•	•			
d									•	•	•	•	•	•	▲1	▲2	•	•	•					

▲: Refer to "Cautions"

29

(Data

uctions

30

nmunication)

1. 16-bit operation (GRY, GRYP)

2. 32-bit operation (DGRY, DGRYP)

- 1) A binary value can be converted into a gray code of up to 32 bits.
- 2) The device specified by s can store a value from 0 to 2,147,483,647.

Cautions

- 1) The data conversion speed depends on the scan time of the PLC.
- 2) Some restrictions to applicable devices
 ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 ▲2: The FX3U and FX3UC PLCs only are applicable.

22.2 GBIN / Gray Code to Decimal Conversion

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX 0N	FX0(S)
0	0	0	0	×	×	×	×	×

Outline

This instruction converts a gray code into a binary value, and transfers it.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language	
name	operation	form	Structured ladder/FBD	ST	
GBIN	16 bits	Continuous	GBIN — EN ENO — s d	GBIN(EN,s,d);	
GBINP	16 bits	Pulse	GBINP — EN ENO — s d	GBINP(EN,s,d);	
DGBIN	32 bits	Continuous	DGBIN — EN ENO — s d	DGBIN(EN,s,d);	
DGBINP	32 bits	Pulse	DGBINP — EN ENO — s d	DGBINP(EN,s,d);	Operation

2. Set data

			Data	type
Va	riable	Description	16-bit operation	32-bit operation
Input	EN	Execution condition	Bit	
variable	S	Conversion source data or word device storing conversion source data	ANY16	ANY32
Output	ENO	Execution state	Bit	
variable	d	Word device storing data after conversion	ANY16	ANY32

3. Applicable devices

			Bi	t D	evi	ice	s					٧	Vor	d D	evic	es						0	thers	
Operand type			Sy	ste	m	us	ər	Dig	it spe	cifica	tion		Sys u	ster ser	n	Special unit		l	ndex	Co ta	ons nt	Real Number	Character String	Pointer
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
s								٠	•	•	•	•	•	•	▲1	▲2	•	•	•	•	•			
d									•	•	•	•	•	•	▲1	▲2	•	•	•					

▲: Refer to "Cautions"

30

nmunication)

1. 16-bit operation (GBIN, GBINP)

- 1) This instruction can be used for detecting an absolute position by a gray code type encoder.
- 2) The device specified by s can store a value from 0 to 32,767.

2. 32-bit operation (DGBIN, DGBINP)

- 1) A gray code can be converted into a binary value of up to 32 bits.
- 2) The device specified by s can store a value from 0 to 2,147,483,647.

Cautions

1) When an input relay (X) is specified as s, the response delay will be "Scan time of PLC + Input filter constant."

The input filter value can be changed in X000 to X017 using REFF, REFFP or D8020 (filter adjustment) so that the filter constant delay is eliminated.

- *1. The FX2N-16M, FX2NC-16M, FX3G and FX3GC PLCs use X000 to X007.
- 2) Some restrictions to applicable devices
 ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 ▲2: The FX3U and FX3UC PLCs only are applicable.

21

AppliedInstructions (Real Time Clock Control)

22

Applied Instructions (External Device)

Applied Instructions (Others)

25) BB

dInstructions k Data ation)

26

Applied Instructions (Character String Control)

27

Applied Instructions (Data Operation 3)

28

RD3A / Read form Dedicated Analog Block 22.3

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	×	Δ	0	×	×	×	×

Outline

This instruction reads an analog input value from the analog block FX0N-3A or FX2N-2AD.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language) ns
name	Operation	form	Structured ladder/FBD	ST	23
RD3A	16 bits	Continuous	RD3A — EN ENO — m1 d — m2	RD3A(EN,m1,m2,d);	Applied Instructions (Extension Function)
RD3AP	16 bits	Pulse	RD3AP — EN ENO — m1 d — m2	RD3AP(EN,m1,m2,d);	24 Applied Inst (Others)

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
Input variable	(m1)	 Special block number FX1N, FX1NC, FX2N, FX2NC, FX3G, FX3GC, FX3U and FX3UC (D, DS, DSS) series PLCs: K0 to K7 FX3UC-32MT-LT (-2) series PLC: K1 to K7 	ANY16
	<u>(m2</u>)	Analog input channel	ANY16
Output	ENO	Execution state	Bit
variable	d	Word device storing the read data	ANY16

3. Applicable devices

			Bi	t D	ev	ice	s					۷	Vor	d D	evic	es						0	thers	
Operand type		;	Sy	ste	m	us	er	Dig	it spe	ecifica	tion		Sy: u	stei ser	n	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	v	z	Modifier	к	н	E	"0"	Р
(m1)								٠	•	٠	٠	•	•	•	▲1		•	•	•	•	•			
(m2)								•	•	•	•	•	•	•	▲1		•	•	•	•	•			
d									•	•	•	•	•	•	▲1		•	•	•					

▲: Refer to "Cautions"

▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

22.4 WR3A / Write to Dedicated Analog Block

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	×	\triangle	0	×	×	×	×

Outline

This instruction writes a digital value to the analog block FX0N-3A and FX2N-2DA.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST
WR3A	16 bits	Continuous	WR3A — EN ENO— — m1 — m2 — s	WR3A(EN,m1,m2,s);
WR3AP	16 bits	Pulse	WR3AP — EN ENO — m1 — m2 — s	WR3AP(EN,m1,m2,s);

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
Input variable	(m1)	 Special block number FX1N, FX1NC, FX2N, FX2NC, FX3G, FX3GC, FX3U and FX3UC (D, DS, DSS) series PLCs: K0 to K7 FX3UC-32MT-LT (-2) series PLC: K1 to K7 	ANY16
	(m2)	Analog output channel	ANY16
	S	Data to be written or word device storing data to be written.	ANY16
Output variable	ENO	Execution state	Bit

3. Applicable devices

	Bit Devices						s	Word Devices													Others				
Operand type	System user					er	Digit specification				System user			n	Special unit	Index		Cons F tant Nu		Real Number	Character String	Pointer			
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	н	E	"0"	Р	
(m1)								٠	•	•	٠	•	•	•	▲ 1		•	•	•	•	•				
(m2)								•	•	•	•	•	•	•	▲ 1		•	•	•	•	•				
S									•	•	٠	•	•	•	▲1		•	•	•						

▲: Refer to "Cautions"

21

Applied Instructions (Real Time Clock Control)

22

23. Applied Instructions (Extension Function)

This chapter introduces inverter instructions for the FX2N and FX2NC PLCs.

Instruction name	Function	Reference
EXTR_IN	External ROM function	Section 23.1
EXTRP_IN		000001120.1
EXTR_OUT	External POM function	Section 23.2
EXTRP_OUT		Section 25.2

uctions

30

Applied Instructions (External Device Communication)

23.1 EXTR_IN / External ROM function

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
×	×	×	Δ	×	×	×	×	×

Outline

This instruction writes the operation control instructions and parameters of the memory for extension function.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
EXTR_IN	16 bits	Continuous	EXTR_IN — EN ENO — s — sd1 — sd2 — sd3	EXTR_IN(EN,s,sd1,sd2,sd3);
EXTRP_IN	16 bits	Pulse	EXTRP_IN — EN ENO — s — sd1 — sd2 — sd3	EXTRP_IN(EN,s,sd1,sd2,sd3);

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
	S	 Function number K11: Inverter operation control instruction K13: Writing inverter parameter 	ANY16
Input	(sd1)	Inverter station number	ANY
variable	(sd2)	 When issuing inverter operation control instruction: inverter instruction code (hexadecimal) When writing inverter parameter: Inverter parameter number (decimal) 	ANY
	(sd3)	Value written in inverter	ANY
Output variable	ENO	Execution state	Bit

3. Applicable devices

			Bi	t D	ev	ice	S					۷	Vor	d D	evio	es						C	others	
Operand type			Sy	ste	m	us	er	Digi	it spe	cifica	tion		Sy: u	stei ser	n	Special unit		I	ndex	Co ta	ons Int	Real Number	Character String	Pointer
	X	Y	М	Т	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	v	Z	Modifier	κ	н	E	"0"	Р
S																				•	•			
(sd1)	•	•	•			•		•	٠	•	٠	•	•	٠			٠	•	•	•	•			
(sd2)	•	•	•			•		•	٠	•	٠	•	•	٠			٠	•	•	•	•			
(sd3)	•	•	•			•		•	•	•	•	•	•	•			•	•	•	•	•			

21

Applied Instructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

Applied (Block Operat

Instructions Data

26

າplied Instructions haracter vg Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

Function and operation explanation1 (Inverter operation control)

ightarrow For the details of the instruction, refer to Communication Control Manual.

This instruction is for using the optional memory for extension functions. When K11 is set to the device specified by \bigcirc , the control values necessary for inverter operation are written in the PLC.

1. 16-bit operation (EXTR_IN, EXTRP_IN)

As for the inverter^{*1} of the station number specified by (sd), the control values (contents of the device specified by (sd)) are written to the "instruction code" (contents of the device specified by (sd))^{*2}.

- *1. General purpose inverters FREQROL-A500/E500/S500 (with communications functions) series made by Mitsubishi Electric Corporation
- *2. Refer to the "Instruction code List" described later. Also refer to the pages describing in detail the computer links from the inverter manual.

2. Inverter instruction codes

The table below shows the inverter instruction codes and their functions of the device specified by $\underline{(sd2)}$. For the instruction codes, refer to the pages describing in detail the computer links from the inverter manual.

Instruction codes of		Appl	icable inve	erters
(hexadecimal)	Contents to be written	A500	E500	S500
HFB	Operation mode	~	\checkmark	\checkmark
HF3	Special monitor selection No.	\checkmark		
HFA	Operation command	\checkmark	\checkmark	\checkmark
HEE	Writing set frequency (EEPROM)	\checkmark	\checkmark	\checkmark
HED	Writing set frequency (RAM)	\checkmark	\checkmark	\checkmark
HFD	Inverter reset	\checkmark	\checkmark	\checkmark
HF4	Batch-clearing error contents	\checkmark	\checkmark	\checkmark
HFC	Clearing all parameters	\checkmark	\checkmark	\checkmark
HFC	User clear	\checkmark		

3. Related devices

Special auxiliary relays	Function	Special data register	Function
M8104	ON when installing extended ROM cassette	D8104	Extended ROM type code
		D8105	Extended ROM version
M8154	Function to be defined for each EXTR instruction	D8154	Time waiting for EXTR instruction response
M8155	Communications port being used by EXTR instruction	D8155	Step number of instruction occupying communications port
M8156	Communication error by EXTR instruction	D8156	Communication error by EXTR instruction
M8157	Communication error by EXTR instruction (Latch) ^{*1}	D8157	Communication error by EXTR instruction (Latch) ^{*1} K1 if no error

*1. Cleared when changing from STOP to RUN.

Function and operation explanation2 (Writing inverter parameters)

 \rightarrow For the details of the instruction, refer to Communication Control Manual.

This instruction is for using the optional memory for extension functions. When K13 is set to device specified by (s), the inverter parameter is written.

1. 16-bit operation (EXTR-IN, EXTRP-IN)

The value (contents of the device specified by (sd3)) is written to the parameter (contents of the device specified by (sd2)) of the inverter of the station number specified by (sd1).

*1. General purpose inverters FREQROL-A500/E500/S500 (with communications functions) series made by Mitsubishi Electric Corporation

2. Related devices

The same as the inverter operation control described above.

Caution

1) EXTR_IN instruction is provided in the FX2N and FX2NC PLCs V3.00 or later.

23.2 EXTR_OUT / External ROM function

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)	
×	×	×	Δ	×	×	×	×	×	

Outline

This instruction is for the short mail transmission of the memory for extension function, inverter operation monitoring instruction, and parameter readout.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	each language
name	operation	form	Structured ladder/FBD	ST
EXTR_OUT	16 bits	Continuous	EXTR_OUT — EN ENO — — s sd3 — — sd1 — sd2	EXTR_OUT(EN,s,sd1,sd2,sd3);
EXTRP_OUT	16 bits	Pulse	EXTRP_OUT — EN ENO — s sd3 — sd1 — sd2	EXTRP_OUT(EN,s,sd1,sd2,sd3);

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
	S	 Function number K0: Short mail transmission K10: Inverter operation monitoring instruction K12: Inverter parameter readout 	ANY16
Input variable	(<u>sd1</u>)	 When transmitting short mail: Mail center, phone number of transmission destination and waiting time When issuing inverter operation monitoring instruction and reading parameter: Inverter station number 	ANY
	(sd2)	 When transmitting short mail: Transmission message format and message text When issuing inverter operation monitoring instruction: inverter instruction code (hexadecimal) When reading inverter parameter: Inverter parameter number (decimal) 	ANY
	ENO	Execution state	Bit
Output variable	<u>(sd3)</u>	 When transmitting short mail: operation status When issuing inverter operation monitoring instruction and reading parameter: Destination device storing readout value 	ANY

3. Applicable devices

			Bi	t D	ev	ice	S					۷	Vor	d D	evic	es				Others						
Operand type			Sy	ste	m	us	er	Digi	it spe	ecifica	tion		Sys u	ster ser	n	Special unit		I	ndex	Co ta	ons Int	Real Number	Character String	Pointer		
	Х	Y	М	т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р		
S																				•	•					
(sd1)	•	•	•			•		•	•	•	•	•	•	•			•	•	•	•	•					
(sd2)	•	•	•			•		٠	٠	٠	•	•	•	٠			•	•	•	•	•					
(sd3)	•	•	•			•		•	•	٠	•	•	•	•			•	•	•	•	•					

ata Tabl

ictions

30

plied instructions xternal Device ommunication)

Function and operation explanation1 (Transmitting short mail)

\rightarrow For the details of the instruction, refer to Communication Control Manual.

This instruction is for using the optional memory for extension function.

When K0 is set to the device specified by (s), the PLC transmits the short mail.

The short mail is transmitted by the PLC. The NTT DoCoMo and other firms mobile phones capable of receiving the short mail are notified.

The PLC connects to the NTT DoCoMo short mail center through the modem.

1. 16-bit operation (EXTR_OUT, EXTRP_OUT)

Message (contents of the device specified by (sd2)) is transmitted to the mail center (mail center specified by (sd1)).

2. Contents of message

The message should be as follows.

- Number of characters : Up to 50 half width characters (25 full width characters)
- Type of characters : Numbers, Kanji, Katakana, Hiragana, symbols, etc.
- Available characters : Use the character codes specified by the short mail service
- Receiving message : Received automatically.

3. Related devices

Special auxiliary relays	Function	Special data register	Function
M8104	ON when installing extended ROM cassette	D8104	Extended ROM type code
		D8105	Extended ROM version
M8154	Function to be defined for each EXTR instruction	D8154	Time waiting for EXTR instruction response
M8155	Communications port being used by EXTR instruction	D8155	Step number of instruction occupying communications port
M8156	Communication error by EXTR instruction	D8156	Communication error by EXTR instruction
M8157	Communication error by EXTR instruction (Latch)*1	D8157	Communication error by EXTR instruction (Latch) ^{*1} K1 if no error

*1. Cleared when changing from STOP to RUN.

Function and operation explanation2 (Monitoring inverter operation)

ightarrow For the details of the instruction, refer to Communication Control Manual.

This instruction is for using the optional memory for extension functions. When K10 is set to the device specified by \bigcirc , the inverter operation is monitored.

1. 16-bit operation (EXTR_OUT, EXTRP_OUT)

As for the inverter^{*1} of the station number specified by (\underline{sd}) , the operation condition of the inverter corresponding to the "instruction code"^{*2} (contents of the device specified by (\underline{sd})) is read to the device specified by (\underline{sd}) .

- *1. General purpose inverters FREQROL-A500/E500/S500 (with communications functions) series made by Mitsubishi Electric Corporation
- *2. Refer to the instruction code list described later. Also refer to the pages describing in detail the computer links from the inverter manual.

2. Inverter instruction code

The table below shows the inverter instruction codes and their functions of the device specified by Gd2. For the instruction codes, refer to the pages describing in detail the computer links from the inverter manual.

(sd2)			Applicable inverters	3	
Inverter instruction code (hexadecimal)	Contents to be read out	A500	E500	S500	
H7B	Operation mode	\checkmark	\checkmark	\checkmark	
H6F	Output frequency [rotational speed]	\checkmark	\checkmark	\checkmark	
H70	Output current	\checkmark	\checkmark	\checkmark	
H71	Output voltage	\checkmark	\checkmark		
H72	Special monitor	\checkmark			
H73	Special monitor selection number	\checkmark			
H74	Error contents	\checkmark	\checkmark	\checkmark	
H75	Error contents	\checkmark	\checkmark	\checkmark	
H76	Error contents	\checkmark	\checkmark		
H77	Error contents	\checkmark	\checkmark		
H7A	Inverter status monitor	\checkmark	\checkmark	\checkmark	
H6E	Set frequency (E2PROM) readout	\checkmark	\checkmark	\checkmark	
H6D	Set frequency (RAM) readout	\checkmark	\checkmark	\checkmark	
H7F	Link parameter extension setting	Not commanded by	(s2) for this instruct	ion.	
H6C	Second parameter switchover	specification code" for automatic processing.			

3. Related devices

The same as the short mail transmission described above.

29

ctions

30

Function and operation explanation3 (Reading inverter parameters)

ightarrow For the details of the instruction, refer to Communication Control Manual.

This instruction is for using the optional memory for extension functions. When K12 is set to the device specified by (s), the inverter parameter is read out to the PLC.

1. 16-bit operation (EXTR_OUT, EXTRP_OUT)

The value of the parameter specified by $\underline{sd2}$ is read out from the inverter^{*1} of the station number specified by $\underline{sd3}$.

*1. General purpose inverters FREQROL-A500/E500/S500 (with communications functions) series made by Mitsubishi Electric Corporation

2. Related devices

The same as the short mail transmission described above.

Caution

EXTR_IN instruction is provided in the FX2N and FX2NC PLCs V3.00 or later.

24. Applied Instructions (Others)

This chapter introduces the instructions for generating random numbers, executing CRC data operations, and processing data in high-speed counter operations.

Instruction name	Function	Reference
COMRD	Read Device Comment Data	Section 24.1
COMRDP		3601011 24.1
RND	Pandom Number Generation	Section 24.2
RNDP		360101124.2
DUTY	Timing Pulse Generation	Section 24.3
CRC	Cyclic Redundancy Check	Section 24.4
CRCP		3601011 24.4
DHCMOV	High Speed Counter Move	Section 24.5

21

Applied Instructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instructions (Extension Function)

24

28

Applied Instructions (Data Comparison)

29

24.1 COMRD / Read Device Comment Data

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
Δ	×	×	×	×	×	×	×	×

Outline

This instruction reads the comment data for registered devices written to the PLC by programming software such as GX Works2.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language					
name		form	Structured ladder/FBD	ST				
COMRD	16 bits	Continuous	COMRD — EN ENO — s d	COMRD(EN,s,d);				
COMRDP	16 bits	Pulse	COMRDP — EN ENO — d —	COMRDP(EN,s,d);				

2. Set data

Va	riable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Device for which comment to be read is registered	ANY_SIMPLE
Output	ENO	Execution state	Bit
variable	d	Head device storing read comment	String

3. Applicable devices

	Bit Devices								۷	Vor	d D	evic	es						C	thers				
Operand type		;	Sy	ste	m	us	ər	Dig	it spe	cifica	tion		Sys u	ster ser	n	Special unit		h	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	н	Е	"0"	Р
S	•	•	•			•						•	•	•	٠				•					
d												•	•	•	٠				•					

21

Applied Instructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instructions (Extension Function)

24

Applied Instructions (Others)

25

응음

Data

26

Applied Instructions (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

tions

Function and operation explanation

1. 16-bit operation (COMRD/COMRDP)

1) The comment registered for the device specified by s is read, and stored in ASCII code in the device specified by d.

When the comment is made up of an even number of characters:

 $\cdot\,$ When M8091 is OFF, "0000H" is stored to the device following the last character.

• When M8091 is ON, the device following the last character does not change.

For example, when the comment of the device specified by s is "Line No.1 Start", it is stored in the device specified by d as shown below.

When the comment is made up of an odd number of characters:

• When M8091 is OFF, "00H" is written to the high order byte of the device that stores the last character.

• When M8091 is ON, the high order byte of the device that stores the last character does not change.

2) The last data of the device specified by d is as follows depending on the ON/OFF status of M8091.

ON/OFF status	Contents of processing
M8091=OFF	 When the comment is made up of an odd number of characters, "00H" is written to the high order one byte (8 bits) of the device storing the last character of the comment. When the comment is made up of an even number of characters, "00H" is written to the device that follows the device storing the last character of the comment.
M8091=ON	 When the comment is made up of an odd number of characters, the high order one byte (8 bits) of the device storing the last character of the comment does not change. When the comment is made up of an even number of characters, the device that follows the device storing the last character of the comment does not change.

Related devices

Device	Name	Description
M8091	Output character number selector signal	Refer to the above explanation.

) Ce

b0

Cautions

- Specify a device number in the device specified by s for which a comment is registered in the PLC. If a comment is not registered for the device specified by d, "20H" (space) is stored in the device specified by for the number of characters in the comment (16 half-width characters).
- 2) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- 1) When a comment is not registered for the device specified by (s) (error code: K6706)
- 2) When the range of points used from the device specified by d for the comment exceeds the corresponding device range (error code: K6706) The comment, however, is written up to that point.

Program examples

Com

In the program shown below, the comment "Target Line A" registered to D100 is stored in ASCII code in D0 and later when X010 is set to ON. (When M8091 is OFF)

[Structured ladder/FBD]

[ST]

RST(X010,M8091); COMRDP(X010,D100,D0);

		b15 — — — — — — — b8	b7—————
	D0	61H(a)	54H(T)
	D1	67H(g)	72H(r)
ment of D100	D2	74H(t)	65H(e)
Target Line A	D3	4CH(L)	20H(space)
	D4	6EH(n)	69H(i)
	D5	20H(space)	65H(e)
	D6	20H(space)	41H(A)
	D7	20H(space)	20H(space)
	D8	000)0H

21

Applied (Real T Clock (

edInstructions I Time < Control)

22

Applied Instructions (External Device)

23

Applied I

uctions

Instructions

25

Data

26

pplied Instructions Character Tring Control)

tions

24

24.2 RND / Random Number Generation

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX 0N	FX0(S)
0	×	х	Х	Х	×	×	х	Х

Outline

This instruction generates random numbers.

1. Format and operation, execution form

Instruction	nstruction Operation		Expression in each language					
name	Operation	form	Structured ladder/FBD	ST				
RND	16 bits	Continuous	EN ENO	RND(EN,d);				
RNDP	16 bits	Pulse	EN ENO d	RNDP(EN,d);				

2. Set data

Va	riable	Description	Data type
Input variable	EN	Execution condition	Bit
Output	ENO	Execution state	Bit
variable	d	Head device storing a random number	ANY16

3. Applicable devices

			Bi	t D	ev	ice	s					۷	Vor	d D	evic	es					Others					
Operand type	rand System user			er	Digit specification					System user			Special unit	Special unit Index		Cons tant		Real Number	Character String	Pointer						
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р		
d									•	•	•	•	•	•	•	•			•							

Function and operation explanation

1. 16-bit operation (RND/RNDP)

This instruction generates a pseudo-random number within the range from 0 to 32767, and stores it as a random number to the device specified by \bigcirc .

In the pseudo-random number sequence, the source value of a random number is calculated at every time, and this instruction calculates a pseudo-random number using the source value.

Pseudo-random number calculation equation:

 $(D8311, D8310) = (D8311, D8310)^{*1} \times 103515245+12345...1)$ d = "[D8311, D8310]>>16)& Logical product > 00007FFFh"

*1. To (D8311, D8310), write a non-negative value (0 to 2,147,483,647) only once when the PLC mode switches from STOP to RUN.

[K1 is written to (D8311, D8310) as the initial value when the power is restored.]

Program examples

In the program example shown below, a random number is stored to D100 every time X010 turns ON. When the PLC mode switches from STOP to RUN, the time data converted into seconds and added by the value "(Year + Month) \times Day" is written to (D8311 and D8310).

24.3 DUTY / Timing Pulse Generation

_

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)
Δ	×	×	×	×	×	×	×	×

Outline

This instruction generates the timing signal whose one cycle corresponds to the specified number of operation cycles.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language										
name	Operation	form	Structured ladder/FBD	ST									
DUTY	16 bits	Continuous	DUTY — EN ENO — n1 d — n2	DUTY(EN,n1,n2,d);									

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
Input variable	<u>(n1)</u>	Number of scans (operation cycles) to remain ON	ANY16
	<u>n2</u>	Number of scans (operation cycles) to remain OFF	ANY16
Output	ENO	Execution state	Bit
variable	d	Timing clock output destination	Bit

3. Applicable devices

			Bit	De	vio	ces	5					۷	Vor	d D	evic	es				Others						
Operand type	System user			r	Digit specification					System user			Special unit	Index		Cons tant		Real Number	Character String	Pointer						
	х	Y	Μ	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	н	E	"0"	Р		
<u>(n1)</u>												•	•	•	٠					•	•					
<u>(n2)</u>												•	•	•	•					•	•					
d			▲ 1																•							

▲: Refer to "Cautions"

21

Applied Instructions (Real Time Clock Control)

22

Function and operation explanation

1. 16-bit operation (DUTY)

1) The timing clock output of the device specified by d is set to ON and OFF with the ON duration for "n1" scans and OFF duration for "n2" scans.

- Specify either one among M8330 to M8334 as the timing clock output destination device specified by

 .
- 3) The counted number of scans is stored in either one among D8330 to D8334 in accordance with the timing clock output destination device specified by .

The counted number of scans stored in either one among D8330 to D8334 is reset when the counted value reaches "n1 + n2" or when the command input (instruction) is set to ON.

Timing clock output destination	Scan counting device
M8330	D8330
M8331	D8331
M8332	D8332
M8333	D8333
M8334	D8334

4) When the command input is set to ON, the operation is started. The timing clock output destination device specified by d is set to ON or OFF by END instruction.

Even if the command input is set to OFF, the operation is not stopped. In the STOP mode, the operation is suspended. When the power of the PLC is turned OFF, the operation is stopped.

5) When "n1" and "n2" are set to "0", the device specified by (d) is set to the following status:

n1, n2 status	ON/OFF status of (d)
$n1 = 0, n2 \ge 0$	d = fixed to OFF
n1 > 0,n2 = 0	d = fixed to ON

Related devices

Device	Name	Description
M8330	Timing clock output 1	
M8331	Timing clock output 2	
M8332	Timing clock output 3	Timing clock output in DUTY instruction
M8333	Timing clock output 4	
M8334	Timing clock output 5	
D8330	Counted number of scans for timing clock output 1	Counted number of scans for timing clock output 1 in DUTY instruction
D8331	Counted number of scans for timing clock output 2	Counted number of scans for timing clock output 2 in DUTY instruction
D8332	Counted number of scans for timing clock output 3	Counted number of scans for timing clock output 3 in DUTY instruction
D8333	Counted number of scans for timing clock output 4	Counted number of scans for timing clock output 4 in DUTY instruction
D8334	Counted number of scans for timing clock output 5	Counted number of scans for timing clock output 5 in DUTY instruction

Cautions

- 1) DUTY instruction can be used up to 5 times (points). It is not permitted, however, to use the same timing clock output destination device (device specified by (d) for two or more DUTY instructions.
- 2) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.
- 3) Some restrictions to applicable devices ▲1: Specify M8330 to M8334.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- 1) When "n1" and/or "n2" is less than "0" (error code: K6706)
- 2) When any device other than M8330 to M8334 is set to the device specified by (d). (error code: K6705)

Program examples

In the program shown below, when X000 is set to ON, M8330 is set to ON for 1 scan and OFF for 3 scans.

29

ata ition abl Instri ictions

30

,ommunication, ternal led

Device ructions

24.4 CRC / Cyclic Redundancy Check

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This CRC instruction calculates the CRC (cyclic redundancy check) value which is an error check method used in communication.

In addition to CRC value, there are other error check methods such as parity check and sum check. For obtaining the horizontal parity value and sum check value, CCD instruction is available. For the generation of CRC value (CRC-16), the CRC instruction uses " $X^{16} + X^{15} + X^2 + 1$ " as a polynomial and uses "FFFFH" as a default value.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
CRC	16 bits	Continuous	CRC — EN ENO — s d — n	CRC(EN,s,n,d);
CRCP	16 bits	Pulse	CRCP – EN ENO – s d – n	CRCP(EN,s,n,d);

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
Input	S	Head device storing data for which the CRC value is generated	ANY16
variable	n	Number of 8-bit (byte) data for which the CRC value is generated or the device storing the number of data	ANY16
Output	ENO	Execution state	Bit
variable	d	Device storing the generated CRC value	ANY16

3. Applicable devices

			Bi	t D	ev	ice	S		Word Devices													Others					
Operand type	System user D			Dig	Digit specification				System user			Special unit	Index		Cons tant		Real Number	Character String	Pointer								
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	н	E	"0"	Р			
S								▲1	▲1	▲1	▲1	•	•	•	•	•			•								
n														•	•					•	•						
d									▲ 1	▲1	▲1	•	•	•	•	•			•								

▲: Refer to "Cautions"

21

AppliedInstructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

Data tions

26

Applied Instructio (Character String Control)

27

Applied Instructions (Data Operation 3)

28

uctions

Function and operation explanation

1. 16-bit operation

CRC value is generated for "n" 8-bit data (unit: byte) starting from a device specified in s, and stored to the device specified by \bigcirc .

The 8-bit conversion mode and 16-bit conversion mode are available in this instruction, and the mode can be switched by turning ON or OFF M8161. For the operation in each mode, refer to the later descriptions.

- *1. Head device storing data for which the CRC value is generated
- *2. Number of 8-bit (byte) data for which the CRC value is generated or the device storing the number of data
- *3. Device storing the generated CRC value
- 1) 16-bit conversion mode [M8161 = OFF]

In this mode, the operation is executed for high-order 8 bits (byte) and low-order 8 bits (byte) of a device specified in S.

The operation result is stored to one 16-bit device specified in d.

M8000	M8161 16-bit conversion mode
Command input	EN ENO *1 - s d - *3 *2 - n

- *1. Head device storing data for which the CRC value is generated
- Number of 8-bit (byte) data for which the CRC value is *2. generated or the device storing the number of data
- *3. Device storing the generated CRC value

			Example: (s) = (d) = n =	D100 D0 6		
			Dovico	Contents of	f target data	
			Device	8 bits	16 bits	
		Low-order byte	Low-order bits of D100	01H	0301H	
	S	High-order byte	High-order bits of D100	03H	050111	
		Low-order byte	Low-order bits of D101	03H	0203H	
Device storing data for	(3)+1	High-order byte	High-order bits of D101	02H		
which the CRC value is		Low-order byte	Low-order bits of D102	00H	1400	
generated	<u>(s)</u> +2	High-order byte	High-order bits of D102	14H	14001	
	:	:		-		
		Low-order byte				
	<u>s</u> +n/2-1	High-order byte		-		
Device storing the		Low-order byte	Low-order bits of D0	E4H	41F4H	
generated CRC value		High-order byte	High-order bits of D0	41H	41041	

2) 8-bit conversion mode [M8161 = ON]

In this mode, the operation is executed only for low-order 8 bits (low-order byte) of device specified by s.

With regard to the operation result, low-order 8 bits (byte) are stored to a device specified by \bigcirc , and high-order 8 bits (byte) are stored to a device specified by \bigcirc +1.

- *1. Head device storing data for which the CRC value is generated
- *2. Number of 8-bit (byte) data for which the CRC value is generated or the device storing the number of data
- *3. Device storing the generated CRC value

			Example:	s) = D100
			C	d = D0
			Device	Contents of target data
	S	Low-order byte	Low-order bits of D100	01H
	s+1	Low-order byte	Low-order bits of D101	03H
	<u>s</u> +2	Low-order byte	Low-order bits of D102	03H
Device storing data	<u>s</u> +3	Low-order byte	Low-order bits of D103	02H
value is generated	<u>s</u> +4	Low-order byte	Low-order bits of D104	00H
	<u>s</u> +5	Low-order byte	Low-order bits of D105	14H
		:		-
	s+n-1	Low-order byte		-
Device storing the	d	Low-order byte	Low-order bits of D0	E4H
value	d+1	Low-order byte	Low-order bits of D1	41H

2. Related devices

Related devices	Description							
M8161*1	ON	CRC instruction operates in the 8-bit mode.						
	OFF	CRC instruction operates in the 16-bit mode.						

*1. Cleared when the PLC mode is changed from RUN to STOP.

Cautions

 In this instruction, "X¹⁶ + X¹⁵ + X² + 1" is used as a polynomial for generating the CRC value (CRC-16). There are many other standard polynomials for generating the CRC value. Note that the CRC value completely differs if an adopted polynomial is different.

Reference: Major polynomials for generating the CRC value

Name	Generating polynomial
CRC-12	$X^{12} + X^{11} + X^3 + X^2 + X + 1$
CRC-16	$X^{16} + X^{15} + X^2 + 1$
CRC-32	$X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$
CRC-CCITT	$X^{16} + X^{12} + X^5 + 1$

2) Some restrictions to applicable devices

▲1: Be sure to specify four digits for the bit devices (K4 \square 000).

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- 1) When any digits other than 4 digits are specified as the devices specified as s or d in digit specification of bit device (error code: K6706)
- 2) When n is outside the allowable range (1 to 256) (error code: K6706)
- 3) When a device specified by (s) + n-1 or (d) + 1 is outside the allowable range (error code: K6706)

Program examples

In the program example shown below, the CRC value of the ASCII code "0123456" stored in D100 to D106 is generated and stored to D0 when M0 turns ON.

1. In the case of 16-bit mode

[Structured ladder/FBD] [ST] M8161:=NOT M8000; M8000 16-bit M8161 _Vř CRC(LDP(TRUE,M0),D100,K7,D0); conversion mode I DP CRC FN ENO EN ENO D100 -– D0 M0 s d s d K7 n

		Content	ts of data	
			Target	data
	D100	2120	Low-order byte	30H
	DTOO	31301	High-order byte	31H
	D101	22221	Low-order byte	32H
Device storing data for which the	DIUI	3332H	High-order byte	33H
CRC value is generated	D102	2524	Low-order byte	34H
	D102	3334H	High-order byte	35H
	D102	2726	Low-order byte	36H
	D103	37300	-	-
Device storing the generated	DO	24054	Low-order byte	CFH
CRC value	DU	ZAGEH	High-order byte	2AH

2. In the case of 8-bit mode

Structured ladder/FBD]		[ST]			
M8000 	M8161 — CRC — EN ENO — s d D0 — n	8-bit M8161:= conversion mode LDP(TRU CRC(TR	M8000; JE,M0); UE,D100,K7,D0);		
		Contents of target data	rget data		
	D100	Low-order byte	30H		
	D101	Low-order byte	31H		
	D102	Low-order byte	32H		
CRC value is generated	D103	Low-order byte	33H		
	D104	Low-order byte	34H		
	D105	Low-order byte	35H		
	D106	Low-order byte	36H		
Device storing the generated CRC	D0	Low-order byte	CFH		
value	D1	Low-order byte	2AH		

28

Applie (Data

lied Instructions ta Comparison)

29

Data ation apl nstr tions

30

(External Device Communication) plied Ins

ructions

21

AppliedInstructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

24.5 DHCMOV / High Speed Counter Move

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction transfers the current value of a specified high speed counter or ring counter. The function of this instruction varies depending on the PLC version.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	Expression in each language						
name	operation	form	Structured ladder/FBD	ST						
DHCMOV	32 bits	Continuous	DHCMOV EN ENO s d n	DHCMOV(EN,s,n,d);						

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
Input	S	Device of high speed counter or ring counter handled as transfer source	ANY32
variable	n	Specification to clear the current value of high speed counter or ring counter (transfer source) after transfer [clear (k1), no processing (K0)]	ANY32
Output	ENO	Execution state	Bit
variable	d	Device handled as transfer destination	ANY32

3. Applicable devices

			Bit	D	evi	ce	S		Word					Vord Devices					Others					
Operand type		ę	Sys	te	m	us	er	Digit specification		System user			Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer			
	х	Y	Μ	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	н	E	"0"	Р
S													▲1	▲1										
n																				•	•			
d														•	•									

▲: Refer to "Cautions"

Function and operation explanation

1. 32-bit operation (DHCMOV)

1) The current value of a high speed counter or ring counter specified by (s) is transferred to the device specified by (d).

Device S	I	[d+1, d] after instruction is executed
High speed counter	C235 to C255	Current value of high speed counter $(s) \rightarrow [d) + 1, d$
Ring counter ^{*1}	D8099	$D8099 \rightarrow \textcircled{d}$ "0" is stored in \textcircled{d} +1.
	D8398	Current value of [D8399, D8398] \rightarrow [d+1, d]

21

Applied Instructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

AppliedInstruc (Block Data Operation)

tions

26

Applied Instructions (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

(Data

able ictions

30

2) After transfer, the current value of the high speed counter or ring counter is processed as shown in the table below depending on the set value of "n".

"n" set value	Operation
K0(H0)	Does not clear the current value (no processing).
K1(H1)	Clears the current value to "0".

*1 Ring counters (D8099 and D8398) cannot be specified in FX3UC PLCs earlier than Ver. 2.20 (not inclusive).

2. High speed counter current value update timing and the effect of DHCMOV instruction

1) High speed counter current value update timing

When a pulse is input to an input terminal for a high speed counter (C235 to C255), the high speed counter executes up-counting or down-counting.

If the current value of a high speed counter is handled in an instruction such as the normal MOV instruction, the current value is updated at the timing shown in the table below. As a result, it is affected by the program scan time.

	Current value update timing
Hardware counter	When OUT instruction for the counter is executed
Software counter	Every time a pulse is input

By using DHCMOV instruction, the current value can be updated and transferred when it is executed.

- 2) Effect of DHCMOV instruction
 - a) By using both input interrupt and DHCMOV instruction, the current value of a high speed counter can be received at the rising edge or falling edge of an external input (at reception of input interrupt).

\rightarrow Refer to the Program example 2.

- b) When DHCMOV instruction is used just before a comparison instruction (CMP, ZCP or comparison contact instruction), the latest value of a high speed counter is used in comparison. Unlike the comparison instruction for high speed counters (DHSCS, DHSCR or DHSZ), the following points must be kept in mind when using the DHCMOV instruction.
 - When the current value of a hardware counter is compared using CMP, ZCP or comparison contact instruction (not using a designated high speed counter comparison instruction), a hardware counter does not change into a software counter.

→ FX Structured Programming Manual [Device & Common]

When the number of high speed software counter comparison instructions is reduced, the total frequency limitation is decreased.

→ FX Structured Programming Manual [Device & Common]

- When it is necessary to execute comparison and change an output contact (Y) as soon as the current value of a high speed counter changes, use a designated high seed counter comparison instruction (DHSCS, DHSCR or DHSZ)
- DHCMOV instruction can be used as many times as necessary.

Cautions

When programming DHCMOV instruction in an input interrupt program, the following points should be observed.

For assignment of pointers for input interrupt and inputs, refer to the table shown in 5) below.

1) Program EI and FEND instructions in the main program. They are necessary to execute an input interrupt program.

\rightarrow For El and FEND, refer to Sections 7.6 and 7.7.

2) When programming DHCMOV instruction in the first line in an input interrupt program, be sure to use the pattern program shown below. Be sure to use the command contact M8394.

> Device handled as transfer

destination

	[Interrupt program] (Event :I IIII)		
	M8394	D	HCMOV
	Device of high speed counter or ring	EN	ENC
	counter handled as transfer source	s	C
	Specification to clear the current —	n	
	counter (transfer source) after trans	fer	
_			

Pattern program for using the DHCMOV instruction in an interrupt program.

Program to be processed as input interrupt

3) If two or more DHCMOV instructions are used in one input interrupt program, only the first instruction (just after the interrupt pointer) is executed when the interrupt is generated.

The rest of the interrupt, including additional instructions, is executed according to normal interrupt processing.

Do not use M8394 as the command contact for the DHCMOV instructions following the first.

(Event: I301)			
M8394 — I Device of high speed counter or ring counter handled as transfer source Specification to clear the current value of high speed counter or ring counter (transfer source) after transfer	DHCMOV EN ENO- s d- n	– Device handled as transfer destination	When the input X003 turns from OFF to ON (that is, when input interrupt is accepted) $(s) \rightarrow [(d)+1, (d)]$
M8000 — I — Device of high speed counter or ring counter handled as transfer source — Specification to clear the current value of high speed counter or ring counter (transfer source) after transfe	DHCMOV EN ENO- s d- n	Device handled as transfer destination	When this instruction is executed in interrupt program $(\underline{s})' \rightarrow [(\underline{d})'+1, (\underline{d})']$

4) It is not permitted to use DHCMOV instruction for the same counter in two or more input interrupt programs.

5) While input interrupts are disabled by the interrupt disable flags (shown in the table below), DHCMOV instructions are not executed when they are placed inside a corresponding interrupt.

Interrupt disable flag	Corresponding interrupt pointer	Input number corresponding to interrupt pointer
M8050 ^{*1}	1000,1001	X000
M8051 ^{*1}	I100,I101	X001
M8052*1	1200,1201	X002
M8053*1	1300,1301	X003
M8054 ^{*1}	1400,1401	X004
M8055 ^{*1}	1500,1501	X005

*1. When the PLC mode is changed from RUN to STOP, if an input interrupt is generated while input interrupts are disabled by something other than the interrupt disable flags M8050 to M8055 (after execution of DI instruction and before execution of EI instruction), DHCMOV instruction is immediately executed, but execution of the interrupt program is held. The interrupt program will be executed after EI instruction is executed and interrupt are enabled.

- 6) Some restrictions to the applicable devices
 - ▲1: Only the high speed counters (C235 to C255) and ring counters (D8099, D8398)^{*1} can be specified.
 - *1. The FX3UC PLCs of before Ver. 2.20 (not inclusive) cannot specify the ring counter (D8099, D8398).

Function change depending on the version

The function of this instruction changes depending on the version as shown in the table below.

Applicab	le version	Itom	Outline of function						
FX3U	FX3UC	nem							
Ver. 2.20 or later	Ver. 2.20 or later	Target device	Ring counter (D8099 and D8398) can be specified in the device specified by s.						

Error

An operation error occurs in the following case. The error flag M8067 turns ON, and the error code is stored in D8067.

1) When a device specified in s or d is outside the allowable range (error code: K6705)

Program examples

1. Program examples 1

In the program example below, the current value of the high speed counter C235 is compared in each operation cycle, and then the output Y000 is set to ON if the current value is "K500" or more (when the current value of C235 is not cleared.)

[Structured ladder/FBD]

[ST]

The AND compare instruction (ANDD>=) is not available in S

*1. K0: The current value of the high speed counter is not cleared when DHCMOV instruction is executed.

K1: The current value of the high speed counter is cleared when DHCMOV instruction is executed.

2. Program examples 2

In the program example below, the current value of C235 is transferred to D201 and D200, and the current value of C235 is cleared when X001 turns from OFF to ON.

*1. K0: The current value of the high speed counter is not cleared when DHCMOV instruction is executed. K1: The current value of the high speed counter is cleared when DHCMOV instruction is executed. 21

ctions

30

temal

25. Applied Instructions (Block Data Operation)

This chapter introduces the instructions for adding, subtracting and comparing block data.

Instruction name	Function	Reference	
BK+			
BK+P	Block Data Addition	Section 25.1	
DBK+			
DBK+P			
BK-			
BK-P	Block Data Subtraction	Section 25.2	
DBK-		0001011 20.2	
DBK-P			
BKCMP=			
BKCMP>			
BKCMP<			
BKCMP<>			
BKCMP<=			
BKCMP>=			
BKCMP=P			
BKCMP>P			
BKCMP <p< td=""><td></td></p<>			
BKCMP<>P			
BKCMP<=P			
BKCMP>=P	Plack Data Compare	Section 25.2	
DBKCMP=	BIOCK Data Compare	3601011 23.3	
DBKCMP>			
DBKCMP<			
DBKCMP<>			
DBKCMP<=			
DBKCMP>=			
DBKCMP=P			
DBKCMP>P			
DBKCMP <p< td=""><td></td><td></td></p<>			
DBKCMP<>P			
DBKCMP<=P			
DBKCMP>=P			

25.1 BK+ / Block Data Addition

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
\bigtriangleup	×	×	×	×	×	×	×	×

Outline

This instruction adds binary block data.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST ^{*1}
BK+	16 bits	Continuous	BK+ EN ENO s1 d s2 n	-
BK+P	16 bits	Pulse	BK+P EN ENO s1 d s2 n	-
DBK+	32 bits	Continuous	DBK+ EN ENO s1 d s2 n	-
DBKP+P	32 bits	Pulse	DBK+P — EN ENO — — s1 d — — s2 — n	-

*1. Refer to "Cautions".

2. Set data

			Data type			
Va	riable	Description	16-bit operation	32-bit operation		
	EN	Execution condition	Bit			
Input	<u>(s1)</u>	Head device storing addition data	ANY16	ANY32		
variable	<u>(s2</u>)	Added constant or head device storing addition data	ANY16	ANY32		
	n	Number of pieces of data	Bit			
Output	ENO	Execution state	ANY16	ANY32		
variable	d	Head device storing operation result	ANY16	ANY32		

29

Applied Instructions (Data Table Operation)

30

3. Applicable devices

	Bit Devices								Word Devices											Others																																	
Operand type	System user							System user			er	Digit specification			Digit specification System Special Ind		System user			Index		Index		Index		Index		Index		Index		Index		Index		Index		special Index unit		Index		Index		Index		Index		Index		ons Int	Real Number	Character String	Pointer
	х	Y	М	Т	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U⊡\G⊡	۷	z	Modifier	κ	н	E	"0"	Р																													
<u>(s1</u>)												•	•	•	•				•																																		
<u>s2</u>												•	•	•	•				•	•	•																																
n														•	•					•	•																																
d												•	•	•	•				•																																		

Function and operation explanation

1. 16-bit operation (BK+/BK+P)

1) "n" 16-bit binary data starting from the device specified by <u>s</u> are added to "n" 16-bit binary data starting from the device specified by <u>s</u>, and the operation result is stored in "n" points starting from the device specified by <u>d</u>.

2) A (16-bit) constant from -32768 to 32767 can be directly specified in the device specified by (s2).

2. 32-bit operation (DBK+/DBK+P)

21

AppliedInstructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

Data

26

Applied Instructions (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

ictions

30

leo

Device

tions

1) "2n" 32-bit binary data starting from the device specified by (s2) are added to "2n" 32-bit binary data starting from the device specified by (s1), and the operation result is stored in "2n" points starting from the device specified by (d).

2) A (32-bit) constant from -2,147,483,648 to 2,147,483,647 can be directly specified in the device specified by (s2).

Related instruction

Instruction	Description
BK-	Subtracts binary block data.

Cautions

- When underflow or overflow occurs in the operation result, the following processing is executed. At this time, the carry flag does not turn ON.
 - a) In the case of 16-bit operation

K-32768(H8000)	+	K-2(HFFFE)	\rightarrow	K32766(H7FFE)					
K32767(H7FFF)	+	K2(H0002)	\rightarrow	K-32767(H8001)					

- b) In the case of 32-bit operation
 - $\begin{array}{rll} {\sf K2,147,483,647}({\sf H7FFFFFF}) & + & {\sf K2}({\sf H00000002}) & \rightarrow & {\sf K-2,147,483,647}({\sf H80000001}) \\ {\sf K-2,147,483,648}({\sf H80000000}) & + & {\sf K-2}({\sf HFFFFFFE}) & \rightarrow & {\sf K2,147,483,646}({\sf H7FFFFFE}) \end{array}$
- 2) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.
- 3) The Block data addition instruction is not available in ST.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- 1) When "n" ("2n" in 32-bit operation) devices starting from the devices specified by <u>s1</u>, <u>s2</u> and/or <u>d</u> exceed the corresponding device range (error code: K6706).
- 2) When "n" ("2n" in 32-bit operation) devices starting from the device specified by <u>s1</u> overlap "n" ("2n" in 32-bit operation) devices starting from the device specified by <u>d</u> (error code: K6706.)
- 3) When "n" ("2n" in 32-bit operation) devices starting from the device specified by <u>s</u> overlap "n" ("2n" in 32-bit operation) devices starting from the device specified by <u>d</u> (error code: K6706.)

Program examples

In the program shown below, the specified number of pieces of data stored in D150 to D0 are added to the specified number of pieces of data stored in D100 to D0 when X020 is set to ON, and the operation result is stored in D200 and later

[Structured ladder/FBD]

BK-/Block Data Subtraction 25.2

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)
Δ	×	х	×	×	×	×	×	×

Outline

This instruction subtracts binary block data.

1. Format and operation, execution form

Instruction	Onenting	Execution	Expression in	each language	ce)	
name	Operation	form	Structured ladder/FBD	ST ^{*1}	23	
BK-	16 bits	Continuous	BK- EN ENO s1 d s2 n	-	Applied Instructions (Extension Function)	
					24	
BK-P	16 bits	Pulse	BK-P 	-	Applied Instructions (Others)	
			DBK-		25	
DBK-	32 bits	Continuous		-	Applied Instructions (Block Data Operation)	
			DBK-P		26	
DBK-P	32 bits	Pulse	-s1 $d--s2$ $ n$	-	AppliedInstructio (Character String Control)	

*1. Refer to "Cautions".

2. Set data

			Data type			
Va	riable	Description	16-bit operation	32-bit operation		
	EN	Execution condition	Bit			
Input	<u>(s1)</u>	Head device storing subtraction data	ANY16	ANY32		
variable	<u>(s2)</u>	Subtracted constant or head device storing subtraction data	ANY16	ANY32		
	n	Number of pieces of data	ANY16	ANY32		
Output variable	ENO	Execution state	Bit			
	d	Head device storing operation result	ANY16	ANY32		

3. Applicable devices

ſ			Bit Devices					s					V	Vor	d D	evi	ces				Others				
	Operand type	System user Digit specification User		Special unit	al Index		Cons tant		Real Number	Character String	Pointer														
		х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	х	Y	Modifier	κ	н	E	"0"	Р
	<u>(s1</u>)												•	•	•	•				•					
-	<u>(s2</u>)												•	•	•	•				•	•	•			
-	n														•	•					•	•			
	d												•	•	•	•				•					

Applied Instructions (Real Time Clock Control) 22 Applied Instructions (External Device) 23 Applied Instructions (Extension

21

28

Applied Instructions (Data Comparison)

29

) Ce

Function and operation explanation

1. 16-bit operation (BK-/BK-P)

1) "n" 16-bit binary data starting from the device specified by (s2) are subtracted from "n" 16-bit binary data starting from the device specified by (s1), and the operation result is stored in "n" points starting from the device specified by (d).

2) A (16-bit) constant from -32768 to 32767 can be directly specified in S2.

2. 32-bit operation (DBK-/DBK-P)

1) "2n" 32-bit binary data starting from the device specified by (s2) are subtracted from "2n" 32-bit binary data starting from the device specified by (s1), and the operation result is stored in "2n" points starting from the device specified by (d).

2) A (32-bit) constant from -2,147,483,648 to 2,147,483,647 can be directly specified in the device specified by <u>s2</u>.

Related instruction

b)

Instruction	Description
BK+	Adds binary block data.

Cautions

- When underflow or overflow occurs in the operation result, the following processing is executed. At this time, the carry flag does not turn ON.
 - a) In the case of 16-bit operation

K-32768(H8000)	-	K2(H0002)	\rightarrow	K32766(H7FFE)
K32767(H7FFF)	-	K-2(HFFFE)	\rightarrow	K-32767(H8001)
In the case of 32	2-bi	t operation		

K-2,147,483,648(H8000000)	-	K2(H0000002)	\rightarrow	K2,147,483,646(H7FFFFFE)
K2,147,483,647(H7FFFFFF)	-	K-2(HFFFFFFE)	\rightarrow	K-2,147,483,647(H80000001)

- 2) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.
- 3) The Block data subtraction instruction is not available in ST.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- 1) When "n" ("2n" in 32-bit operation) devices starting from the devices specified by <u>s1</u>, <u>s2</u> and/or <u>d</u> exceed the corresponding device range (error code: K6706).
- 2) When "n" ("2n" in 32-bit operation) devices starting from the device specified by <u>s1</u> overlap "n" ("2n" in 32-bit operation) devices starting from the device specified by <u>d</u> (error code: K6706.)
- 3) When "n" ("2n" in 32-bit operation) devices starting from the device specified by <u>\$2\$</u> overlap "n" ("2n" in 32-bit operation) devices starting from the device specified by <u>d</u> (error code: K6706.)

ctions

30

Program examples

In the program shown below, the constant "8765" is subtracted from the data stored in D100 to D102 when X010 is set to ON, and the operation result is stored in D200 and later.

[Structured ladder/FBD]

21

Applied Instructions (Real Time Clock Control)

22

25.3 BKCMP=, >, <, < >, <=, >= / Block Data Compare

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
\triangle	×	×	×	×	×	×	×	×

Outline

1. Format and operation, execution form

These instructions compare block data in the comparison condition set in each instruction. Format and operation, execution form								
Instruction		Execution	Expression in e	ach language	vice)			
name	Operation	form	Structured ladder/FBD	ST*1	23			
BKCMP=	16 bits	Continuous	BKCMP= 	-	Applied Instructions (Extension Function)			
			BKCMP>		24			
BKCMP>	16 bits	Continuous		-	Applied Instructions Others)			
			BKCMP<		25			
BKCMP<	16 bits	Continuous		-	Applied Instruct (Block Data Operation)			
			BKCMP<>		tions			
BKCMP<>	16 bits	Continuous		-	Applied Ins (Characted String Co			
			BKCMP<=		tructions er introl)			
BKCMP<=	16 bits	Continuous	s1d	-	27			
					Applied (Data O			
BKCMP>=	16 bits	Continuous	BKCMP>= — EN ENO — s1 d	-	Instructions peration 3)			
			—s2 —n		28			
			BKCMP=P		pplied Ins Data Corr			
BKCMP=P	16 bits	Pulse		-	tructions parison)			
			n		29			
BKCMP>P	16 bits	Pulse	BKCMP>P EN ENO	-	AppliedInstructions (Data Table Operation)			
			<u> n</u>		30			

*1. Refer to "Cautions".

lied

Device

Instruction	.	Execution	Expression in each language							
name	Operation	form	Structured ladder/FBD	ST ^{*1}						
BKCMP <p< td=""><td>16 bits</td><td>Pulse</td><td>BKCMP<p — EN ENO — s1 d — s2 — n</p </td><td>-</td></p<>	16 bits	Pulse	BKCMP <p — EN ENO — s1 d — s2 — n</p 	-						
BKCMP<>P	16 bits	Pulse	BKCMP<>P 	-						
BKCMP<=P	16 bits	Pulse	BKCMP<=P EN ENO s1 d 	-						
BKCMP>=P	16 bits	Pulse	BKCMP>=P EN ENO s1 d 	-						
DBKCMP=	32 bits	Continuous	DBKCMP= — EN ENO — s1 d — s2 — n	-						
DBKCMP>	32 bits	Continuous	DBKCMP> EN ENO s1 d s2 n	-						
DBKCMP<	32 bits	Continuous	DBKCMP< EN ENO s1 d s2 n	-						
DBKCMP<>	32 bits	Continuous	DBKCMP<> — EN ENO — s1 d — s2 — n	-						
DBKCMP<=	32 bits	Continuous	DBKCMP<= — EN ENO — s1 d — s2 — n	-						
DBKCMP>=	32 bits	Continuous	DBKCMP>= EN ENO- s1 d s2 n	-						

*1. Refer to "Cautions".
					21
Instruction name	Operation	Execution form	Expression in e Structured ladder/FBD	ach language ST ^{*1}	Real T
DBKCMP=P	32 bits	Pulse	DBKCMP=P EN ENO s1 d s2 n	-	ime inne innrol) 22 Appliec (Exter
DBKCMP>P	32 bits	Pulse	DBKCMP>P EN ENO s1 d s2 n	-	nal Device) 23
DBKCMP <p< td=""><td>32 bits</td><td>Pulse</td><td>DBKCMP<p EN ENO s1 d </p </td><td>-</td><td>nction)</td></p<>	32 bits	Pulse	DBKCMP <p EN ENO s1 d </p 	-	nction)
DBKCMP<>P	32 bits	Pulse	DBKCMP<>P 	-	Applied Instructions (Others)
DBKCMP<=P	32 bits	Pulse	DBKCMP<=P EN ENO s1 d s2 n	-	Applied Instructions (Block Data Operation)
DBKCMP>=P	32 bits	Pulse	DBKCMP>=P 	-	26 Applied Instructic (Character String Control)

*1. Refer to "Cautions".

2. Set data

			Data	type
Va	riable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input	<u>(s1)</u>	Comparison value or device storing comparison value	ANY16	ANY32
variable	<u>s2</u>	Head device storing comparison source data	ANY16	ANY32
	n	Number of pieces of comparison data	ANY16	ANY32
Output	ENO	Execution state	Bit	
variable	d	Head device storing comparison result	Bit	

3. Applicable devices

			Bit	t D	evi	ice	s					۷	Vor	d D)evi	ces						0	thers	
Operand type		;	Sys	ste	m	us	er	Dig	Digit specification			System user			Special unit	Index		x Cons tant		Real Number	Character String	Pointer		
	Х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U⊡\G⊡	х	Y	Modifier	Κ	Н	E	"0"	Р
<u>(s1</u>)												•	٠	•	•				•	•	•			
<u>(s2</u>)												•	•	•	•				•					
n														•	•					•	•			
d		•	●			•	▲1												•					
▲: Refer	to	"C	Cai	utio	on	s"																		

Applied Instructions (Data Table Operation)

30

Applied Instructions (External Device Communication)

1. 16-bit operation

(BKCMP=, BKCMP>, BKCMP<, BKCMP<>, BKCMP>=, BKCMP>=, BKCMP>P, BKCMP>P, BKCMP<P, BKCMP<P, BKCMP<=P, BKCMP>=P)

1) "n" 16-bit binary data starting from the device specified by <u>s</u> are compared with "n" 16-bit binary data starting from the device specified by <u>s</u>, and the comparison result is stored in "n" points starting from the device specified by <u>d</u>.

*1. BKCMP=, BKCMP>, BKCMP<, BKCMP<>, BKCMP>=, BKCMP>=, BKCMP=P, BKCMP>P, BKCMP<P, BKCMP<>P, BKCMP<=P, and BKCMP>=P are put in.

2) A constant can be directly specified in the device specified by s1.

3) The table below shows the comparison result in each instruction.

Instruction	Comparison result ON (1) condition	Comparison result OFF (0) condition
BKCMP=	$(\underline{s1}) = (\underline{s2})$	$(s1) \neq (s2)$
BKCMP>	<u>(s1) > (s2</u>)	$(s1) \leq (s2)$
BKCMP<	<u>(s1)</u> < <u>(s2</u>)	$(s1) \ge (s2)$
BKCMP<>	$(s1) \neq (s2)$	(s1) = (s2)
BKCMP<=	$(s1) \leq (s2)$	(s1) > (s2)
BKCMP>=	$(s1) \ge (s2)$	<u>(s1)</u> < <u>(s2</u>)

4) When the comparison result is ON (1) in all of "n" points starting from the device specified by (d), M8090 (block comparison signal) turns ON.

2. 32-bit operation

(DBKCMP=, DBKCMP>, DBKCMP<, DBKCMP<>, DBKCMP<=, DBKCMP>=, DBKCMP=P, DBKCMP>P, DBKCMP<P, DBKCMP<P, DBKCMP<=P, DBKCMP>=P)

1) "2n" 32-bit binary data starting from the device specified by <u>s</u> are compared with "2n" 32-bit binary data starting from the device specified by <u>s</u>, and the comparison result is stored in "2n" points starting from the device specified by <u>d</u>.

Instruction	Comparison result ON (1) condition	Comparison result OFF (0) condition
DBKCMP=	$\left[\underbrace{(s1)}_{+1}, \underbrace{(s1)}_{-1}\right] = \left[\underbrace{(s2)}_{+1}, \underbrace{(s2)}_{-1}\right]$	[(s1)+1, (s1)] ≠ [(s2)+1, (s2)]
DBKCMP>	$[\underline{(s1)}+1, \underline{(s1)}] > [\underline{(s2)}+1, \underline{(s2)}]$	$[\underline{s1}+1, \underline{s1}] \leq [\underline{s2}+1, \underline{s2}]$
DBKCMP<	$[\underline{s1}+1, \underline{s1}] < [\underline{s2}+1, \underline{s2}]$	$[\underbrace{\mathtt{s1}}_{+1}, \underbrace{\mathtt{s1}}_{]} \ge [\underbrace{\mathtt{s2}}_{+1}, \underbrace{\mathtt{s2}}_{]}$
DBKCMP<>	<u>(s1)</u> +1, (<u>s1)</u>] ≠ [(<u>s2</u>)+1, (<u>s2</u>)]	$[\underline{s1}+1, \underline{s1}] = [\underline{s2}+1, \underline{s2}]$
DBKCMP<=	$\left[\underbrace{(\underline{s1})}_{+1}, \underbrace{(\underline{s1})}_{]} \le \left[\underbrace{(\underline{s2})}_{+1}, \underbrace{(\underline{s2})}_{]}\right]$	$[\underline{s1}+1, \underline{s1}] > [\underline{s2}+1, \underline{s2}]$
DBKCMP>=	$[\underbrace{\mathtt{s1}}_{+1}, \underbrace{\mathtt{s1}}_{]} \ge [\underbrace{\mathtt{s2}}_{+1}, \underbrace{\mathtt{s2}}_{]}$	$[\underline{s1}+1, \underline{s1}] < [\underline{s2}+1, \underline{s2}]$

4) When the comparison result is ON (1) in all of "n" points starting from the device specified by d, the M8090 (block comparison signal) turns ON.

21

AppliedInstructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

Applied (Block

d Instructions k Data ation)

26

Related device

Device	Name	Description
M8090	Block comparison signal	Turns ON when all comparison results are "ON (1)" in a block data instruction. DBKCMP=, DBKCMP>, DBKCMP<, DBKCMP<=, DBKCMP>=

Cautions

- 1) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.
- When using 32-bit counters (high speed counters) For comparing 32-bit counters (C200 to C255), be sure to use an instruction for 32-bit operation (such as DBKCMP= and DBKCMP>). If an instruction for 16-bit operation (such as BKCMP= and BKCMP>) is used, an operation error is caused (error code: K6705)
- 3) Some restrictions to applicable devices
 ▲1: D□.b cannot be indexed (v, z).
- 4) The Block data compare instruction is not available in ST.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- 1) When "n" ("2n" in 32-bit operation) devices starting from the devices specified by <u>s1</u>, <u>s2</u> and/or <u>d</u>) exceed the corresponding device range (error code: K6706).
- 2) When data registers starting from the device specified by d specified as "DD.b" overlap "n" ("2n" in 32-bit operation) points starting from the device specified by s (error code: K6706).
- 3) When data registers starting from the device specified by d specified as "D□.b" overlap "n" ("2n" in 32-bit operation) points starting from the device specified by s2 (error code: K6706).
- 4) When a 32-bit counter (C200 to C255) is specified in the devices specified by (s1) and/or (s2) in 16-bit operation (error code: K6705).

For comparing 32-bit counters, be sure to use an instruction for 32-bit operation (such as DBKCMP=, DBKCMP> and DBKCMP<).

Program examples

1) In the program shown below, four 16-bit binary data starting from D100 are compared with four 16-bit binary data starting from D200 by BKCMP= instruction when X020 is set to ON, and the comparison result is stored in four points starting from M10.

When the comparison result is "ON (1)" in all of the four points starting from M10, Y000 is set to ON.

[Structured ladder/FBD]

(When all of M10 to M13 are ON, Y000 is set to ON.)

2) In the program shown below, the constant K1000 is compared with four data starting from D10 when X010 is set to ON, and the comparison result is stored in b4 to b7 of D0.

[Structured ladder/FBD]

21

AppliedInstructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

(External Device Communication) plied Ins

ructions

26. Applied Instructions (Character String Control)

This chapter introduces the instructions for controlling character strings such as linking character string data, replacing some characters and extracting character string data.

Instruction name	Function	Reference	
STR			
STRP	PIN to Character String Conversion	Section 26.1	
DSTR		Section 20.1	
DSTRP			
VAL			
VALP	Character String to PIN Conversion	Section 26.2	
DVAL		3601011 20.2	
DVALP			
\$+	Link Character Strings	Section 26.2	
\$+P		3601011 20.3	
LEN	Character String Length Detection	Section 26.4	
LENP		Section 20.4	
RIGHT	Extracting Character String Data from the Pight	Section 26.5	
RIGHTP		0001011 20:0	
LEFT	Extracting Character String Data from the Left	Section 26.6	
LEFTP		00000120.0	
MIDR	Random Selection of Character Strings	Section 26.7	
MIDRP		00000120.7	
MIDW	Random Replacement of Character Strings	Section 26.8	
MIDWP		3601011 20.0	
INSTR	Character string search	Section 26.9	
INSTRP		3601011 20.9	
\$MOV	Character String Transfer	Section 26 10	
\$MOVP		00000120.10	

26.1 STR / BIN to Character String Conversion

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
\triangle	×	×	×	×	×	×	×	×

Outline

This instruction converts binary data into character strings (ASCII codes). On the other hand, the ESTR instruction converts floating point data into character strings.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
STR	16 bits	Continuous	STR — EN ENO — s1 d — s2	STR(EN,s1,s2,d);
STRP	16 bits	Pulse	STRP — EN ENO — — s1 d — — s2	STRP(EN,s1,s2,d);
DSTR	32 bits	Continuous	DSTR — EN ENO — — s1 d — — s2	DSTR(EN,s1,s2,d);
DSTRP	32 bits	Pulse	DSTRP EN ENO s1 d s2	DSTRP(EN,s1,s2,d);

2. Set data

			Data	type	
Va	riable	Description	16-bit operation	32-bit operation	
	EN	Execution condition	Bit		
Input variable	<u>(s1)</u>	Head device storing the number of digits of a numeric value to be converted (2 points occupied)	ARRAY [01] OF ANY16		
	<u>s2</u>	Device storing binary data to be converted	ANY16	ANY32	
Output	ENO	Execution state	Bit	•	
variable	d	Head device storing converted character string	String		

3. Applicable devices

			Bi	t D	ev	ice	s					۷	Vor	d D	evio	es						0	thers	
Operand type	System user Digit specification		System user			n	Special unit	Index		Cons tant		Real Number	Character String	Pointer										
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	х	Y	Modifier	κ	н	E	"0"	Р
<u>(s1</u>)												•	•	•	٠				•					
<u>(s2</u>)								•	•	•	•	•	•	•	•		•	•	•	•	•			
d												•	٠	•	•				•					

1. 16-bit operation (STR/STRP)

All digits (specified by (s1)) of 16-bit binary data of the device specified by (s2) are converted into character string while the decimal point is added to the position specified by the device storing the number of digits of the decimal part (s1) + 1), and stored in the device specified by (d) and later.

- 2) Set the number of all digits (s1) in the range from 2 to 8.
- Set the number of digits of the decimal part s1 + 1 in the range from 0 to 5. Be sure to satisfy "(number of digits of decimal part) ≤ (number of all digits - 3)".
- 4) 16-bit binary data to be converted stored in <u>S</u> should be within the range from -32768 to 32767.
- 5) Converted character string data is stored in d and later as shown below.
 - a) As the sign, "space" (20H) is stored when the 16-bit binary data stored in <u>S</u> is positive, and "-" (2DH) is stored when the 16-bit binary data stored in <u>S</u> is negative.

21

Applied (Real T Clock (

edInstructions I Time < Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

26

Applied Instruction (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

ata

nstri

ictions

30

(External Device Communication) Applied Ins

ructions

ation able uctions

d) When the number of all digits stored in s1 excluding the sign and decimal point is larger than the number of digits of 16-bit binary data stored in <a>(20H)) is stored in each digit between the sign and the numeric value. When the number of all digits stored

in s1 excluding the sign and decimal point is smaller than the number of digits of 16-bit binary data stored in (s2), an error is caused.

e) "00H" indicating the end of a character string is automatically stored at the end of a converted character string.

When the number of all digits is even, "0000H" is stored in the device after the last character. When the number of all digits is odd, "00H" is stored in the high-order byte (8 bits) of the device storing the last character.

2. 32-bit operation (DSTR/DSTRP)

1) All digits (specified by (s1)) of 32-bit binary data stored in the device specified by (s2) are converted into ASCII codes while the decimal point is added to the position specified by the device storing the number of digits of the decimal part ((s1) + 1), and stored in the device specified by (d) and later.

- 2) Set the number of all digits s1 in the range from 2 to 13.
- 3) Set the number of digits of the decimal part (1) + 1 in the range from 0 to 10. Be sure to satisfy "(Number of digits of decimal part) \leq (Number of all digits - 3)".
- 4) 32-bit binary data to be converted stored in s2 should be within the range from -2,147,483,648 to +2,147,483,647.

- 5) Converted character string data is stored in *d* and later as shown below.
 - a) For the sign, "space" (20H) is stored when the 32-bit binary data stored in (s2) is positive, and "-" (2DH) is stored when the 32-bit binary data stored in (s2) is negative.
 - b) When the number of digits of the Number of 10 decimal part (s1) + 1 is set to any all digits value other than "0", the decimal point Number of digits 3 "." (2EH) is automatically added in ^{of decimal part} 12345 678 "number of digits of decimal part + 1"th 32-bit 12345678 Number of binary data diait. diaits of decimal part When the number of digits of the It is automatically added. decimal part s1 + 1 is set to "0", the decimal point is not added. c) When the number of digits of the Number of decimal part s1 + 1 is larger than all digits 13 the number of digits of 32-bit binary Number of digits of decimal part 10 ப0. 0000054321 data stored in <a>[s2], "0" (30H) is 32-bit automatically added, and the data is 54321 binary data. shifted to the right end during It is automatically added. conversion. d) When the number of all digits stored in (s1) excluding the sign and decimal Number of 13 point is larger than the number of all digits Number of digits 2 digits of 32-bit binary data stored in of decimal part (s2), "space" (20H) is stored in each 32-bit "20H" (space) is stored -543210 binary data digit between the sign and the numeric in each digit value. When the number of all digits stored in s1 excluding the sign and decimal point is smaller than the number of digits of binary data stored in <u>s</u>, an error is caused.
 - e) "00H" indicating the end of a character string is automatically stored at the end of a converted character string.

When the number of all digits is even, "0000H" is stored in the device after the last character. When the number of all digits is odd, "00H" is stored in the high-order byte (8 bits) of the device storing the last character.

Cautions

1) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.

Related instruction

Instruction	Description
DESTR	Converts binary floating point data into a character string (ASCII codes) with a specified number of digits.
DEVAL	Converts a character string (ASCII codes) into binary floating point data.
VAL	Converts a character string (ASCII codes) into binary data.

21

Applied Instructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instruc (Extension Function)

uctions

24

Applied Instructions (Others)

25

Applied Instructions (Block Data Operation)

26

Applied Instructions (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

Applied (Data

[able

30

Applied Instructions (External Device Communication)

ictions

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

1) When the number of all digits stored in s1 is outside the following range (error code: K6706).

	Setting range
16-bit operation	2 to 8
32-bit operation	2 to 13

When the number of digits of the decimal part stored in s1 + 1 is outside the following range (error code: K6706).

	Setting range
16-bit operation	0 to 5
32-bit operation	0 to 10

- When the relationship between the number of all digits stored in <u>s</u>¹ and the number of digits of the decimal part stored in <u>s</u>¹ + 1 does not satisfy the following (error code: K6706). (Number of all digits 3) ≥ number of digits of decimal part
- 4) When the number of all digits stored in <a>(s1) including the digit for sign and the digit for decimal point is smaller than the number of digits of the binary data stored in <a>(s2) (error code: K6706).
- 5) When the devices d and later storing a character string exceed the corresponding device range (error code: K6707).

Program examples

In the program below, the 16-bit binary data stored in D10 is converted into a character string in accordance with the digit specification by D0 and D1 when X000 is set to ON, and then stored in D20 to D23.

26.2 VAL / Character String to BIN Conversion

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
Δ	×	×	×	×	×	×	×	×

Outline

This instruction converts a character string (ASCII codes) into binary data. On the other hand, EVAL instruction converts a character string (ASCII codes) into floating point data.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
VAL	16 bits	Continuous	VAL EN ENO s d1 d2	VAL(EN,s,d1,d2);
VALP	16 bits	Pulse	VALP — EN ENO — s d1 — d2	VALP(EN,s,d1,d2);
DVAL	32 bits	Continuous	DVAL — EN ENO — s d1 — d2 —	DVAL(EN,s,d1,d2);
DVALP	32 bits	Pulse	DVALP EN ENO s d1 d2	DVALP(EN,s,d1,d2);

2. Set data

			Data type				
Va	riable	Description	16-bit operation	32-bit operation			
Input	EN	Execution condition	Bit				
variable	S	Head device storing a character string to be converted into binary data.	String				
	ENO	Execution state	Bit				
Output variable	(d1)	Head device storing the number of digits of the binary data acquired by conversion. (2 points occupied)	ARRAY [01] OF	ANY16			
	<u>d2</u>	Head device storing the binary data acquired by conversion.	ANY16	ANY32			

3. Applicable devices

		Bit Devices Word Devices							Others															
Operand type		;	Sys	ste	m	us	er	Dig	it spe	ecifica	tion		Sy: u	ster ser	n	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	х	Y	Modifier	κ	н	E	"0"	Р
S												•	•	•	•				•					
<u>d1</u>)												•	•	•	•				•					
(d2)								•	•	•	٠	•	•	•	٠	•			•					

1. 16-bit operation (VAL/VALP)

 A character string stored in the device specified by s and later is converted into 16-bit binary data. The number of all digits of the binary data acquired by conversion is stored in the device specified by d1, the number of digits of the decimal part is stored in the device specified by d1 + 1, and the converted binary data is stored in the device specified by d2.

In conversion from a character string into binary data, the data from the device specified by s to a device number storing "00H" is handled as a character string in byte units.

For example, when a character string "-123.45" is specified in the device specified by \bigcirc and later, the conversion result is stored in the devices specified by \bigcirc and \bigcirc as shown below.

L It indicates the end of character string.

2) Character string to be converted

a) Number of characters of character string and the numeric range when the decimal point is ignored.

	Description
Number of all characters (digits)	2 to 8
Number of characters (digits) of decimal part	0 to 5 and smaller than "number of all digits - 3"
Numeric range when decimal point is ignored	-32768 to 32767 Example) "123.45" → "12345"

b) Character types used in characters to be converted

		Character type		
Sign	Positive numeric value	"Space (20H)"		
Oigh	Negative numeric value	"-(2DH)"		
Decima	al point	".(2EH)"		
Numbe	er	"0(30H)" to 9(39H)"		

21

- 3) The device specified by (d1) stores the number of all digits. The number of all digits indicates the number of all characters (including the number, sign and decimal point).
- 4) The device specified by <u>d1</u> + 1 stores the number of digits of the decimal part. The number of digits of the decimal part indicates the number of all characters after the decimal point "." (2EH).
- 5) The device specified by (d2) stores 16-bit binary data converted from a character string with the decimal point ignored.

In the character string located in the device specified by \bigcirc and later, "space" (20H) and "0" (30H) characters between the sign and the first number other than "0" are ignored in the conversion to 16-bit binary data.

2. 32-bit operation (DVAL/DVALP)

 A character string stored in the device specified by s and later is converted into 32-bit binary data. The number of all digits of the binary data acquired by conversion is stored in the device specified by d1, the number of digits of the decimal part is stored in the device specified by d1 + 1, and the binary data is stored in the device specified by d2.

In conversion from a character string into binary data, the data from the device specified by \bigcirc to a device number storing "00H" is handled as a character string in byte units.

It indicates the end of character string.

For example, when a character string "-12345.678" is specified in the device specified by \underline{s} and later, the conversion result is stored in the devices specified by $\underline{d1}$ and $\underline{d2}$ as shown below.

I	b15b8	b7 b0	
<u>s</u> +0	31H(1)	2DH(-)	
+1	33H(3)	32H(2)	
+2	35H(5)	34H(4)	
+3	36H(6)	2EH(.)	(-12345078)
+4	38H(8)	37H(7)	
+5		00H	

2) Character string to be converted

a) Number of characters of character string and the numeric range when the decimal point is ignored.

	Description
Number of all characters (digits)	2 to 13
Number of characters (digits) of decimal part	0 to 10 and smaller than "number of all digits - 3"
Numeric range when decimal point is ignored	-2,147,483,648 to 2,147,483,647 Example) "12345.678" to "12345678"

b) Character types used in characters to be converted

		Character type		
Sign	Positive numeric value	"Space (20H)"		
Olgh	Negative numeric value	"-(2DH)"		
Decim	al point	".(2EH)"		
Numbe	er	"0(30H)" to "9(39H)"		

- 3) The device specified by <u>d</u> stores the number of all digits. The number of all digits indicates the number of all characters (including the number, sign and decimal point).
- 4) The device specified by (d1) + 1 stores the number of digits of the decimal part. The number of digits of the decimal part indicates the number of all characters after the decimal point "." (2EH).
- 5) The device specified by (d2) stores 32-bit binary data converted from a character string with the decimal point ignored.

For the character string located in the device specified by \bigcirc and later, the "space" (20H) and "0" (30H) characters between the sign and the first number other than "0" are ignored in the conversion to 32-bit binary data.

Related instruction

Instruction	Description
DESTR	Converts binary floating point data into a character string (ASCII codes) with a specified number of digits.
DEVAL	Converts a character string (ASCII codes) into binary floating point data.
STR	Converts binary data into a character string (ASCII codes).

Cautions

- 1) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.
- 2) Sign data "space (20H)" or "- (2DH)" must be stored in the first byte (lower order 8 bits of the head device set in the device specified by (s)).

Only the ASCII code data "0 (30H)" to "9 (39H)", "space (20H)" and "decimal point (2EH)" can be stored from the second byte to the "00H" at the end of the character string of the device specified by \bigcirc . If "- (2DH)" is stored in the second byte or later, an operation error occurs (error code: K6706).

21

Applied Instructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

 When the number of characters of the character string to be converted (device specified by s and later) is outside the following ranges. (Error code: K6706)

(/
	Setting range
16-bit operation	2 to 8
32-bit operation	2 to 13

 When the number of characters after the decimal point of the character string to be converted (device specified by s and later) is outside the following ranges. (Error code: K6706)

	,
	Setting range
16-bit operation	0 to 5
32-bit operation	0 to 10

3) When the relationship between the number of all characters in the character string to be converted (device specified by <u>s</u> and later) and the number of characters after the decimal point does not satisfy the following (error code: K6706).

(Number of all characters - 3) \geq Number of characters after the decimal point

- When the sign is set to any ASCII code other than "space" (20H) and "-" (2DH). (Error code: K6706)
- 5) When a digit of a number is set to any ASCII code other than "0" (30H) to "9" (39H) or a decimal point "."
 (2EH).

(Error code: K6706)

- 6) When the decimal point "." (2EH) is set two or more times in the character string to be converted (device specified by s) and later).
 (Error code: K6706)
- 7) When the binary data acquired by conversion is outside the following ranges. (Error code: K6706)

	Setting range
16-bit operation	-32768 to 32767
32-bit operation	-2,147,483,648 to 2,147,483,647

8) When "00H" is not present in the location from the device specified by (s) to the final device number. (Error code: K6706)

21

AppliedInstructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instructions (Extension Function)

24

Applied Instructions (Others)

25

Applied Instructions (Block Data Operation)

26

Applied Instructions (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

Applied Instructions (Data Table Operation)

30

Applied Instructions (External Device Communication)

Program examples

D24

D25

31H(1)

1) In the program below, the character string data stored in D20 to D22 is regarded as an integer value, converted into a binary value, and stored in D0 when X000 is set to ON.

31H(1)

00H

26.3 \$+ / Link Character Strings

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction links a character string to another character string.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST ^{*1}
\$+	16 bits	Continuous	\$+ EN ENO s1 d1 s2	-
\$+P	16 bits	Pulse	\$+P - EN ENO - s1 d1 - s2	-

*1. Refer to "Cautions".

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
Input variable	<u>(s1)</u>	Head device storing the link source data (character string) or directly specified character string	String
	<u>(s2)</u>	Head device storing the link data (character string) or directly specified character string	String
Output	ENO	Execution state	Bit
variable	(d1)	Head device storing the linked data (character string)	String

3. Applicable devices

	Bit Devices											۷	Vor	d D	evic	es				Others				
Operand type	System user							Digit specification					System user			Special unit	Index		ndex Co ta		ns nt	Real Number	Character String	Pointer
	Х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	х	Y	Modifier	κ	н	E	"0"	Р
<u>(s1</u>)								•	•	•	•	•	•	•	٠	•			•				•	
<u>(s2</u>)								•	•	•	•	•	•	•	٠	•			•				•	
(d1)									•	•	٠	•	•	•	٠	•			•					

21

Applied Instructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

Applied Instructions (Block Data Operation)

26

Applied Instructions (Character String Control)

27

Applied Instructions (Data Operation 3)

Function and operation explanation

1. 16-bit operation (\$+/\$+P)

The character string data stored in the device specified by (s_2) and later is linked to the end of the character string data stored in the device specified by (s_1) and later, and the linked data is stored to devices starting from the device specified by (d).

A character string specified by $\underline{s1}$ and $\underline{s2}$ indicates the data from the specified device to the first "00H" in units of byte.

1) In linking, "00H" indicating the end of a character string specified in <a>() is ignored, and a character string specified in <a>() is linked to the last character specified in <a>().

When a character string is linked, "00H" is automatically added at the end.

- a) When the number of characters after linking is odd, "00H" is stored in the high-order byte of the device storing the last character.
- b) When the number of characters after linking is even, "0000H" is stored in the device after the last character.

Cautions

- When directly specifying a character string, up to 32 characters can be specified (input). However, this limitation in the number of characters is not applied when a word device is specified in s1 or s2.
- 2) When the number of characters in both devices specified by <u>s</u> and <u>s</u> start from "00H" (that is, when the number of characters is "0"), "0000H" is stored in the device specified by <u>d</u>.
- 3) The Link character strings instruction is not available in ST.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- When the number of devices after a device number specified by d is smaller than the number of devices required to store all linked character strings (that is, when "00H" cannot be stored after all character strings and the last character).
 (Error code: K6706)
- 2) When the same device is specified in <a>(s), <a>(s2) and <a>(d) as a device for storing a character string. (Error code: K6706)
- 3) When "00H" is not set within the corresponding device range after the device specified by <u>s1</u> or <u>s2</u>. (Error code: K6706)

Program examples

In the program example shown below, a character string stored in D10 to D12 (abcde) is linked to the character string "ABCD", and the result is stored to D100 and later when X000 turns ON.

[Structured ladder/FBD]

26.4 LEN / Character String Length Detection

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction detects the number of characters (bytes) of a specified character string.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
LEN	16 bits	Continuous	LEN EN ENO s d	LEN(EN,s,d);
LENP	16 bits	Pulse	LENP — EN ENO — s d	LENP(EN,s,d);

2. Set data

Va	riable	Description	Data type
Input	EN	Execution condition	Bit
variable	S	Head device storing a character string whose number of characters is to be detected	String
Output	ENO	Execution state	Bit
variable	D	Device storing the detected character string length (number of bytes)	ANY16

3. Applicable devices

			Bi	t D	evi	ice	s					۷	Vor	d D	evic	es					Others			
Operand type		;	Sy	ste	m	us	er	Dig	it spe	ecifica	tion		Sy: u	stei ser	n	Special unit		h	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
s								•	•	•	•	•	•	•	٠	•			•					
d									•	•	•	•	•	•	٠	•			•					

1. 16-bit operation (LEN/LENP)

The length of a character string stored in the device specified by \bigcirc and later is detected, and stored to the device specified by \bigcirc . Data starting from the device specified by \bigcirc until the first device storing "00H" is handled as a character string in units of byte.

It indicates the end of character string.

For example, when "ABCDEFGHI" is stored in the device specified by \bigcirc and later as shown below, K9 is stored in the device specified by \bigcirc .

Caution

1) This instruction can handle character codes other than ASCII codes, but the character string length is handled in byte units (8 bits). Accordingly, in the case of character codes in which two bytes express one character such as shift JIS codes, the length of one character is detected as "2".

Errors

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- When "00H" is not set within the corresponding device range after a device specified by s. (Error code: K6706)
- 2) When the detected number of characters is "32768" or more. (Error code: K6706)

Program examples

In the program example shown below, the length of a character string stored in D0 and later is output in 4-digit BCD to Y040 to Y057 when X000 turns ON.

28

Applied Instructions (Data Comparison)

29

Applied Instruc (Data Table Operation)

uctions

30

Applied Instructions (External Device Communication)

26.5 **RIGHT / Extracting Character String Data from the Right**

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction extracts a specified number of characters from the right end of a specified character string. \rightarrow For handling of character strings, refer to "FX Structured Programming Manual [Device & Common]."

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
RIGHT	16 bits	Continuous	RIGHT — EN ENO — s d — n	RIGHT(EN,s,n,d);
RIGHTP	16 bits	Pulse	RIGHTP — EN ENO — s d — n	RIGHTP(EN,s,n,d);

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
Input variable	S	Head device storing a character string	String
	n	Number of characters to be extracted	ANY16
Output	ENO	Execution state	Bit
variable	d	Head device storing extracted character string	String

3. Applicable devices

			Bi	t D	ev	ice	S					۷	Vor	d D	evio	es					Others					
Operand type	rand System user		Digit specification					System user			Special unit	Index		Co ta	ons Int	Real Number	Character String	Pointer								
	Х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р		
S								•	•	•	•	•	•	•	٠	•			•							
n														•	٠					•	•					
d									•	٠	٠	•	•	•	•	•			•							

1. 16-bit operation (RIGHT/RIGHTP)

ASCII code for "(last character ASCII code for "(last character

2)"th character

ASCII code for

last character

1)"th characte

00H

"n" characters are extracted from the right end (that is, from the end) of the character string data stored in the device specified by s and later, and stored to the device specified by d and later.

If the number of characters specified by "n" is "0", the NULL code (0000H) is stored to the device specified by d.

When characters are extracted from a character string, "00H" is automatically added at the end of the extracted characters.

- When the number of extracted characters is odd, "00H" is stored in the high-order byte of a device storing 1) the last character.
- 2) When the number of extracted characters is even, "0000H" is stored in the device after the last character.

In the ca	ase of "n = 5"				
	b15b8	b7b	<u>)</u>	b15b8	b7b0
<u>s</u> +0	42H(B)	41H(A)	+0	32H(2)	31H(1)
+1	44H(D)	43H(C)	+1	34H(4)	33H(3)
+2	46H(F)	45H(E)	+2	00H	35H(5)
+3	32H(2)	31H(1)	<u></u>	"123	345"
+4	34H(4)	33H(3)	ASCII code for 5	th character	
+5	00H	35H(5)			
	"ABCDE	F12345"	- ASCII code for	r 1st character	

a) A character string stored in the device specified by s and later indicates data stored in devices from the specified device until "00H" is first detected in byte units.

21

Applied Instructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

Applied Instructions (Block Data Operation)

26

Applied Instruction (Character String Control)

27

uctions

Cautions

- 1) When handling character codes other than ASCII codes, note the following contents:
 - a) The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which two bytes express one character such as shift JIS codes, the length of one character is detected as "2".
 - b) When extracting characters from a character string including character codes in which two bytes express one character such as shift JIS codes, consider the number of characters to be extracted in units of character codes for one character.
 Note that the expected character code is not given if only one byte is extracted out of a 2-byte character code.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- 1) When "00H" is not set within the corresponding device range after a device specified by <u>s</u>. (Error code: K6706)
- 2) When "n" exceeds the number of characters specified by (s). (Error code: K6706)
- When the number of devices after a device number specified by d is smaller than the number of devices required to store extracted "n" characters (that is, when "00H" cannot be stored after all character strings and the last character).
 (Error code: K6706)
- 4) When "n" is a negative value. (Error code: K6706)

Program examples

In the program example shown below, 4 characters are extracted from the right end of the character string data stored in R0 and later, and stored to D0 and later when X000 turns ON.

[Structured ladder/FBD]

[ST]

RIGHTP(X000,R0,K4,D0);

ASCII code for 1st character

26.6 LEFT / Extracting Character String Data from the Left

		-					_	
FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction extracts a specified number of characters from the left end of a specified character string.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
LEFT	16 bits	Continuous	LEFT 	LEFT(EN,s,n,d);
LEFTP	16 bits	Pulse	LEFTP EN ENO s d n	LEFTP(EN,s,n,d);

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
Input variable	S	Head device storing a character string	String
	n	Number of characters to be extracted	ANY16
Output	ENO	Execution state	Bit
variable	d	Head device storing extracted character string	String

3. Applicable devices

			Bi	t D	ev	ice	s	Word Devices													Others					
Operand type	Operand System user		er	Digit specification					System user			Special unit	Index		Cons tant		Real Number	Character String	Pointer							
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	Х	Y	М	κ	н	E	"□"	Р		
S								٠	٠	٠	•	•	•	•	٠	•			•							
n														•	٠					•	•					
d									•	•	•	•	•	•	•	•			•							

21

Applied (Real T Clock

d Instructions Time Control)

22

1. 16-bit operation (LEFT/LEFTP)

"n" characters are extracted from the left end (that is, from the head) of the character string data stored in the device specified by (s) and later and stored to the device specified by (d) and later.

If the number of characters specified by "n" is "0", the NULL code (0000H) is stored to the device specified by \bigcirc .

When characters are extracted from a character string, "00H" is automatically added at the end of the extracted characters.

- 1) When the number of extracted characters is odd, "00H" is stored in the high-order byte of a device storing the last character.
- 2) When the number of extracted characters is even, "0000H" is stored in the device after the last character.

00H 35H(5)

"ABCDEF12345"

+5

a) A character string stored in the device specified by s and later indicates data stored in devices from the specified device until "00H" is first detected in byte units.

21

Applied Instructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

Applied Instructions (Block Data Operation)

26

Applied Instruction (Character String Control)

uctions

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

ctions

30

temal ee

Device

Cautions

- When handling character codes other than ASCII codes, note the following contents:
 - a) The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which two bytes express one character such as shift JIS codes, the length of one character is detected as "2".
 - b) When extracting characters from a character string including character codes in which two bytes express one character such as shift JIS codes, consider the number of characters to be extracted in units of character codes for one character. Note that the expected character code is not given if only one byte is extracted out of a 2-byte character code.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- 1) When "00H" is not set within the corresponding device range after a device specified by s. (Error code: K6706)
- 2) When "n" exceeds the number of characters specified by (s). (Error code: K6706)
- 3) When the number of devices after a device number specified by d is smaller than the number of devices required to store extracted "n" characters (that is, when "00H" cannot be stored after all character strings and the last character). (Error code: K6706)
- 4) When "n" is a negative value. (Error code: K6706)

Program examples

In the program example shown below, the number of characters which is equivalent to the number stored in D0 is extracted from the left end of the character string data stored in D100 and later, and stored to R10 and later when X010 turns ON.

[Structured ladder/FBD]

[ST]

X010 LEFT FN ENC D100 s d -R10 D0 n

LEFT(X010,D100,D0,R10);

ASCII code for 1st character

ASCII code for 6th character

26.7 MIDR / Random Selection of Character Strings

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction extracts a specified number of characters from arbitrary positions of a specified character string.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	operation	form	Structured ladder/FBD	ST
MIDR	16 bits	Continuous	MIDR — EN ENO— — s1 d— — s2	MIDR(EN,s1,s2,d);
MIDRP	16 bits	Pulse	MIDRP — EN ENO — s1 d — s2	MIDRP(EN,s1,s2,d);

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
	<u>(s1)</u>	Head device storing a character string	String
input variable	<u>(s2</u>)	 Head device specifying the head position and number of characters to be extracted (2 points occupied) s2 : Head character position s2+1 : Number of characters 	ARRAY [12] OF ANY16
Output	ENO	Execution state	Bit
variable	d	Head device storing extracted character string	String

3. Applicable devices

			Bi	t D	ev	ice	S		Word Devices													Others					
Operand type Syste			m	us	er	Digit specification				System user			Special unit	Index		Cons tant		Real Number	Character String	Pointer							
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р			
<u>(s1</u>)								•	•	•	•	•	•	•	•	•			•								
<u>(s2</u>)								•	•	•	•	•	•	•	•	•			•								
d									•	•	•	•	•	•	•	•			•								

1. 16-bit operation (MIDR/MIDRP)

" $\underline{s2}$ + 1" characters are extracted leftward from the position specified by $\underline{s2}$ of the character string data stored in the device specified by $\underline{s1}$ and later, and stored to the device specified by \underline{d} and later. When characters are extracted from a character string, "00H" is automatically added at the end of the extracted characters.

- 1) When the number of extracted characters of the device specified by "(s2) +1" is odd, "00H" is stored in the high-order byte of a device storing the last character.
- 2) When the number of extracted characters of the device specified by "(s2) + 1" is even, "0000H" is stored in the device after the last character.

- a) A character string specified by s1 indicates data stored in devices from the specified device until "00H" is first detected in units of byte.
- b) When the number of characters to be extracted specified by "S2 + 1" is "0", the extraction processing is not executed.
- c) When the number of characters to be extracted specified by "S2 + 1" is "-1", the entire character string specified by S1 is stored to the device specified by d and later.

) Ce

21

AppliedInstructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

Data

26

tions

Cautions

- 1) When handling character codes other than ASCII codes, note the following contents:
 - a) The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which two bytes express one character such as shift JIS codes, the length of one character is detected as "2".
 - b) When extracting characters from a character string including character codes in which two bytes express one character such as shift JIS codes, consider the number of characters to be extracted in units of character codes for one character.
 Note that the expected character code is not given if only one byte is extracted out of a 2-byte character code.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- When "00H" is not set within the corresponding device range after a device specified by s1. (Error code: K6706)
- 2) When the value specified by s2 exceeds the number of characters specified by s1. (Error code: K6706)
- 3) When the number of characters specified by "<u>s</u>2 +1" from the position specified by the device specified by <u>d</u>. (Error code: K6706)
- 4) When the number of devices after a device number specified by d is smaller than the number of devices required to store extracted characters as many as the number specified by "s2 +1" (that is, when "00H" cannot be stored after all character strings and the last character) (Error code: K6706)
- 5) When the contents of the device specified by (s2) is a negative value. (Error code: K6706)
- 6) When the contents of the device specified by "(s2) + 1" is "-2" or less. (Error code: K6706)
- 7) When the contents of the device specified by "<u>s</u> + 1" is a number larger than the number of characters specified by <u>s</u>.
 (Error code: K6706)

Program examples

In the program example shown below, four characters are extracted from the third character from the left end of the character string data stored in D10 and later, and then stored to D0 and later when X000 turns ON.

MIDW / Random Replacement of Character Strings 26.8

-

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction replaces the characters in arbitrary positions inside designated character string with a specified character string.

 \rightarrow For handling of character strings, refer to "FX Structured Programming Manual [Device & Common]."

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language										
name	operation	form	Structured ladder/FBD	ST									
MIDW	16 bits	Continuous	MIDW — EN ENO — s1 d — s2	MIDW(EN,s1,s2,d);									
MIDWP	16 bits	Pulse	MIDWP 	MIDWP(EN,s1,s2,d);									

2. Set data

Variable		Description	Data type			
	EN	Execution condition	Bit			
	<u>(s1)</u>	Head device storing a character string used in overwriting	String			
Input variable	(s2)	 Head device specifying the head position and number of characters to be overwritten (2 points occupied) s2 :Head character position to be overwritten s2+1 :Number of characters to be overwritten 	ARRAY [12] OF ANY16			
Output variable	ENO	Execution state	Bit			
	d	Head device storing a character string overwritte	String			

3. Applicable devices

Operand type	Bit Devices								Word Devices													Others				
	System user						er	Digit specification					System user			Special unit	Index		Cons tant		Real Number	Character String	Pointer			
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	Н	E	"0"	Р		
<u>(s1</u>)								٠	•	•	٠	•	•	•	٠	•			•							
<u>(s2</u>)								•	•	•	•	•	•	•	•	•			•							
d									•	•	•	•	•	•	•	•			•							

xternal Device led

1. 16-bit operation (MIDW/MIDWP)

Character data specified by " $\underline{s2}$ + 1" are extracted from the left end (that is, the head) of the character string data stored in the device specified by $\underline{s1}$ and later, and stored to the position specified by $\underline{s2}$ and later of the character string data stored in the device specified by \underline{d} and later.

- 1) The character string specified by s1 or d indicates data stored in devices from the specified device until "00H" is first detected in byte units.
- 2) When the number of characters to be overwritten specified by "(s2) + 1" is "0", the overwriting processing is not executed.
- 3) When the number of characters to be overwritten specified by "<u>s</u>² + 1" exceeds the last character of the character string stored in the device specified by <u>d</u> and later, data is stored up to the last character.

Characters from the 5th character to the last character are overwritten. Excessive characters, "35H (5)" to "37H (7)", are not stored.

21

Applied Ir (Real Ti Clock C

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

Applied Instruc (Block Data Operation)

tions

26

Applied Instructions (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

(Data

ctions

30

ee

Device

4) When "S2 + 1" (the number of characters to be overwritten) is "-1", the entire character string stored in (s1) and later is stored to the device specified by (d) and later.

Six characters from the 2nd character are overwritten.

Cautions

- 1) When handling character codes other than ASCII codes, note the following contents:
 - a) The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which two bytes express one character such as shift JIS codes, the length of one character is detected as "2".
 - b) When extracting characters from a character string including character codes in which two bytes express one character such as shift JIS codes, consider the number of characters to be extracted in units of character codes for one character.

Note that the expected character code is not given if only one byte is extracted out of a 2-byte character code.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- 1) When "00H" is not set within the corresponding device range after a device specified by s1 or . (Error code: K6706)
- 2) When the value of the device specified by (s_2) exceeds the number of characters specified by (d). (Error code: K6706)
- 3) When the value of the device specified by "S2 + 1" exceeds the number of characters specified by (s1)

(Error code: K6706)

- 4) When the value of the device specified by s2 is a negative value (Error code: K6706)
- 5) When the value of the device specified by "(s2) + 1" is "-2" or less

Program examples

In the program example shown below, four characters are extracted from the character string data stored in D0 and later, and stored to the third character (from the left end) and later for the character string data stored in D100 and later when X010 turns ON.

The 1st to 4th characters are stored (overwritten).
26.9 INSTR / Character string search

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
Δ	×	×	×	×	×	×	×	×

Outline

This instruction searches a specified character string within another character string.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST
INSTR	16 bits	Continuous	INSTR 	INSTR(EN,s1,s2,n,d);
INSTRP	16 bits	Pulse	INSTRP 	INSTRP(EN,s1,s2,n,d);

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
Input	<u>(s1)</u>	Head device storing a character string to search for	String
variable	<u>(s2</u>)	Head device storing a character string to be searched	String
	n	Search start position	ANY16
Output	ENO	Execution state	Bit
variable	d	Head device storing search result	ANY16

3. Applicable devices

			Bi	t D	ev	ice	s					۷	Vor	d D	evio	es				Others				
Operand type			Sy	ste	m	us	er	Dig	it spe	cifica	tion		Sys u	ste ser	n	Special unit		h	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	х	Y	Μ	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
<u>(s1</u>)												•	•	•	•				•				•	
<u>(s2</u>)												•	•	•	•				•					
n														•	•					•	•			
d												•	•	•	•				•					

21

Applied Instructions (Real Time Clock Control)

Function and operation explanation

1. 16-bit operation (INSTR/INSTRP)

The character string stored in the device specified by s1 and later is searched for within the character string of the device specified by s2 and later. The search begins at the "n"th character from the left end (head character) of the device specified by s2 and the search result is stored in the device specified by d.

The search result provides the first matching character (located from the left end (head character)) in the device specified by <u>s</u>2.

- 2) When the searched character string is not detected, "0" is stored in the device specified by d.
- 3) When the search start position "n" is a negative number or "0", search processing is not executed.
- 4) A character string can be directly specified in the character string to search for specified by s1.

Cautions

1) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- 1) When the search start position "n" exceeds the number of characters stored in <a>2 (Error code: K6706)
- 2) When "00H (NULL)" is not located within the corresponding device range starting from the device specified by <a>[s1]. (Error code: K6706)
- 3) When "00H (NULL)" is not located within the corresponding device range starting from the device specified by <u>s2</u>. (Error code: K6706)

Program examples

1) In the program example below, the character string "C123" (D0 and later) is searched from the fifth character from the left end (head character) of the character string "CI2312CIM" (R0 and later) when X000 is set to ON. The search result is stored in D100.

[Structured ladder/FBD]

Character string to be searched

	b15b8	b7b0	These characters are not
R0	49H(I)	43H(C)	searched because the
R1	33H(3)	32H(2)	∫ search start position is "5
R2	32H(2)	31H(1)	Searched from
R3	49H(I)	43H(C)	the 5th character.
R4	00H	4DH(M)	
	"CI231	2CIM"	-

searched because the
search start position is "5".
Searched from
the 5th character.

D1 33H(3) 32H(2) D2 00H "CI23"

49H(I)

Character string to search for b15----b8 b7---- b0

[ST]

D0

INSTR(X000,D0,R0,K5,D100);

43H(C)

D100 0 Because the searched character string is not detected, "0" is stored.

Applied Instructions (External Device) 23 Applied Instru (Extension Function) uctions 24 Applied Instructions (Others)

21

AppliedInstructions (Real Time Clock Control)

22

Data 26 Applied Instructior (Character String Control) uctions

25

tion

28

Applied Instructions (Data Comparison)

29

26.10 \$MOV / Character String Transfer

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction transfers character string data.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in e	ach language
name	Operation	form	Structured ladder/FBD	ST*1
\$MOV	16 bits	Continuous	\$MOV EN ENO s d	-
\$MOVP	16 bits	Pulse	SMOVP EN ENO s d	-

*1. Refer to "Cautions".

2. Set data

Va	riable	Description	Data type
Innut	EN	Execution condition	Bit
variable	S	Directly specified character string (up to 32 characters) or head device storing character string which is handled as the transfer source	String
Output	ENO	Execution state	Bit
variable	d	Head device storing transferred character string	String

3. Applicable devices

	Bit Devices								Word Devices											Others				
Operand type		÷	Sys	ste	m	us	er	Digit specification				System user		Special unit	Index		Co ta	ns nt	Real Number	Character String	Pointer			
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
s								•	•	•	•	•	•	•	•	•			•				•	
d									•	٠	٠	•	•	•	•	•			•					

Function and operation explanation

1. 16-bit operation (\$MOV/\$MOVP)

The character string data stored in the device specified by \bigcirc and later is transferred to the device specified by \bigcirc and later.

From the device number specified by (s) to a device after that which stores "00H" in its high-order or loworder byte are transferred at one time.

"00H" indicates the end of character string.

Even if the device range storing the character string data to be transferred overlaps the device range storing the transferred character string data, transfer is executed.

For example, when a character string stored in D10 to D13 is transferred to D11 to D14, the transfer is executed as shown below.

Cautions

 When "00H" is stored in the low-order byte of the device specified by "S2 + n", "00H" is stored to both the high-order byte and low-order byte of the device specified by "d + n".

2) The Character string transfer instruction is not available in ST.

29

ctions

30

Applied Instructions (External Device Communication)

21

AppliedInstructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Ins (Extensio Function)

uctions

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- 1) When "00H" does not exist in the range specified from device specified by (s) to the last device (Error code: K6706)
- 2) When the specified character string cannot be stored in devices from the device specified by d to the last device. (Error code: K6706)

Program examples

In the program example shown below, character string data stored in D10 to D12 is transferred to D20 through D22 when X000 is set to ON.

[Structured ladder/FBD]

27. Applied Instructions (Data Operation 3)

This chapter introduces the instructions for reading last-in data and controlling leftward/rightward shift instructions with carry.

Instruction name	Function	Reference
FDEL	Deleting Data from Tables	Section 27.1
FDELP		000101127.1
FINS	Inserting Data to Tables	Section 27.2
FINSP		0001011 27.2
POP	Shift Last Data Read [EII O Control]	Section 27.3
POPP		0001011 27.0
SFR	Rit Shift Right with Carny	Section 27.4
SFRP		Section 27.4
SFL	Rit Shift Left with Carny	Section 27.5
SFLP	Dit Ohnt Leit with Oan y	00000127.0

24

Applied Instructions (Others)

25

Applied Instructions (Block Data Operation)

26

Applied Instructions (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

Applied Instructions (Data Table Operation)

30

Applied Instructions (External Device Communication)

27.1 FDEL / Deleting Data from Tables

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
Δ	×	×	×	×	×	×	×	×

Outline

This instruction deletes an arbitrary piece of data from a data table.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
FDEL	16 bits	Continuous	FDEL — EN ENO — s d — n	FDEL(EN,s,n,d);
FDELP	16 bits	Pulse	FDELP — EN ENO — s d — n	FDELP(EN,s,n,d);

2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	S	Device storing deleted data	ANY16
	n	Position of deleted data in table	ANY16
Output	ENO	Execution state	Bit
variable	d	Head device in data table	ANY16

3. Applicable devices

			Bi	t D	evi	ces	S					W	ord	De	vice	es				Others					
Operand type			Sy	ste	m	use	er	Dig	it spe	ecifica	tion		Sys us	ten ser	۱	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer	
	Х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р	
S												•	•	•	•				•						
n														•	•					•	•				
d												•	•	•	•				•						

Function and operation explanation

1. 16-bit operation (FDEL/FDELP)

"n"th data is deleted from a data table (stored in the device specified by \bigcirc and later), and the deleted data is stored in the device specified by \bigcirc . "n + 1"th data and later in the data table are shifted forward one by one, and the number of stored data is subtracted by "1".

Cautions

- The device range used in a data table should be controlled by the user. The data table has the number of pieces of data, which is stored in d, starting from the next device (d + 1) after the device storing the number of pieces of data d.
 - ightarrow Refer to the program example below.
- 2) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.

Related instruction

Instruction	Description
FINS	Inserts data into an arbitrary position in a data table

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

 When the table position "n" from the device specified by d exceeds the "amount of data stored plus one"

(Error code: K6706)

- 2) When the value "n" exceeds the range of the number of pieces of data specified by <u>d</u>. (Error code: K6706)
- 3) When the FDEL instruction is executed under the condition "n \leq 0" (Error code: K6706)
- 4) When the amount of data stored specified by \bigcirc is "0". (Error code: K6706)
- 5) When the data table range exceeds the corresponding device range (Error code: K6706)

ctions

30

) Ce

21

AppliedInstructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

Program examples

In the program example shown below, the second data is deleted from the data table stored in D100 to D105, and the deleted data is stored in D0 when X010 is set to ON.

When the amount of data stored is "0", however, the FDEL instruction is not executed.

(The device range used in the data table is D100 to D107.)

[Structured ladder/FBD]

[ST]

The AND compare instruction (ANDD< , ANDD<=) is not available in ST.

FINS / Inserting Data to Tables 27.2

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
\triangle	×	×	×	×	×	×	×	×

Outline

This instruction inserts data into an arbitrary position in a data table.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST
FINS	16 bits	Continuous	FINS EN ENO s d n	FINS(EN,s,n,d);
FINSP	16 bits	Pulse	FINSP — EN ENO — s d — n	FINSP(EN,s,n,d);

2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input variable	S	Device storing inserted data	ANY16
	n	Data insertion position in table	ANY16
Output	ENO	Execution state	Bit
variable	d	Head device in data table	ANY16

3. Applicable devices

			Bi	t D	evi	ice	s					W	ord	De	vice	es				Others					
Operand type			Sy	ste	m	use	ər	Dig	it spe	ecifica	tion	:	Sys us	tem ser	l	Special unit		l	ndex	Co ta	ns nt	Real Number	Character String	Pointer	
	х	Y	Μ	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	v	Z	Modifier	κ	н	E	"0"	Р	
S												•	•	•	٠				•	•	•				
n														•	•					•	•				
d												•	•	•	•				•						

21

tion Instri uctions

30

xternal Device ē

uctions

Function and operation explanation

1. 16-bit operation (FINS/FINSP)

1) 16-bit data of the device specified by s is inserted in "n"th position in a data table (stored in the device specified by d and later).

"n"th data and later in the data table are shifted backward one by one, and the number of stored data is added by "1".

Cautions

 The device range used in a data table should be controlled by the user. The data table has the number of pieces of data, which is stored in <u>d</u>, starting from the device after the device that indicates the number of stored data <u>d</u>.

 \rightarrow Refer to the program example below.

2) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.

Related instruction

Instruction	Description
FDEL	Deletes an arbitrary data from a data table.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

 When the table position "n" from the device specified by d exceeds the "amount of data stored plus one"

(Error code: K6706)

- When the value "n" exceeds the device range of the data table specified by d (Error code: K6706)
- 3) When the FDEL instruction is executed under the condition " $n \le 0$ " (Error code: K6706)
- 4) When the data table range exceeds the corresponding device range (Error code: K6706)

21

AppliedInstructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instructions (Extension Function)

24

Applied Instructions (Others)

25

Applied Instructions (Block Data Operation)

26

Applied Instructions (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

(Data Table Operation) Applied (Data Instru uctions

30

Instructions

Program examples

In the program example shown below, data stored in D100 is inserted into the third position of the data table stored in D0 to D4 when X010 is set to ON.

When the amount of data stored exceeds "7", however, the FINS instruction is not executed. (The device range used in the data table is D0 to D7.)

[Structured ladder/FBD]

[ST]

The AND compare instruction (AND<= , AND<) is not available in ST.

27.3 POP / Shift Last Data Read [FILO Control]

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction reads the last data written by the shift write (SFWR) instruction for the first-in first-out and first-in last-out control

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
POP	16 bits	Continuous	POP EN ENO s d n	POP(EN,s,n,d);
POPP	16 bits	Pulse	POPP EN ENO s d n	POPP(EN,s,n,d);

2. Set data

١	/ariable	Description	Data type
	EN	Execution condition	Bit
Input	S	Head device storing first-in data (including pointer data)	ANY16
variable	n	Number of pieces of data stored (Add "1" because pointer data is also included.)	ANY16
Output	ENO	Execution state	Bit
variable	d	Device storing last-out data	ANY16

3. Applicable devices

	Bit Devices								Word Devices										Others					
Operand type			Sy	ste	m	use	ər	Dig	it spe	ecifica	tion		Sys us	ten ser	l	Special unit		I	ndex	Co ta	ons nt	Real Number	Character String	Pointer
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
S									•	•	•	•	•	•	•	•			•					
n																				•	•			
d									•	•	•	•	•	•	•	•	•	•	•					

21

AppliedInstructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

Applied (Block

ructions

26

Applied Instructions (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

dInstru k Data ation)

Function and operation explanation

1. 16-bit operation (POP/POPP)

Data for FILO control

	Description
S	Pointer data (amount of data stored)
s+1	
s+2	
s+3	
:	Gata area (First-in data written by shift write (SFWR) instruction)
s+n-3	······
s+n-2	
s+n-1	

- Every time the instruction is executed for the word devices specified by "s to s + n-1", a device "s + Pointer data" is read to the device specified by d. (The last data entry written by the shift write (SFWR) instruction for first-in first-out control is read to the device specified by d.) Specify "n" in the range from "2" to "512".
- 2) Subtract "1" from the value of the pointer data of the device specified by (s).

Related device

ightarrow for the zero flag use method, refer to Section 1.3.4.

Device	Name	Description
M8020	Zero flag	Turns ON when the instruction is executed while the pointer is "0".

Related instruction

Instruction	Description
SFWR	Shift write [for FIFO/FILO control]
SFRD	Shift read [for FIFO control]

Cautions

- When this instruction is programmed in the continuous operation type, the instruction is executed in every operation cycle. As a result, an expected operation may not be achieved. Usually, program this instruction in the "pulse operation type", or let this instruction be executed by a "pulsed command contact.
- 2) When the current value of the pointer specified by s is "0", the zero flag M8020 turns ON and the instruction is not executed.
 Check in advance using a comparison instruction whether the current value of the device specified by s satisfies "1 ≤ current value ≤ (n-1)", and then execute this instruction.
- 3) When the current value of the pointer specified by <u>s</u> is "1", "0" is written to the pointer and the zero flag M8020 turns ON.

Error

- 1) An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
 - a) When the pointer is larger than "n-1". (Error code: K6706)
 - b) When the pointer is smaller than "0". (Error code: K6706)

Program examples

In the program example shown below, among value stored in D20 input first to D101 to D106, the last value input is stored to D10, and "1" is subtracted from the number of stored data (pointer D100) every time X000 turns ON.

[Structured ladder/FBD]

[ST]

SFWR(LDP(TRUE,X010),D20,K7,D100); POP(LDP(TRUE,X000),D100,K7,D10);

When the first-in data is as shown in the table below

Pointer	D100	K3
	D101	H1234
	D102	H5678
Data	D103	HABCD
Dala	D104	H0000
	D105	H0000
	D106	H0000

D20] first-in cor	D nmand)100: I K2→K3	D100: K1→K2	D100: K0→K1			
			\checkmark	\downarrow	\downarrow			
D106	D105	D104	D103	D102	D101	D100		
H0000	H0000	H0000	HABCD	H5678	H1234	K3		
							V	Last-in read command X000:OFF→ON
D106	D105	D104	D103	D102	D101	D100	D10	
H0000	H0000	H0000	HABCD	H5678	H1234	K3→K2	HABCD	
		Do r	not change					

29

Applied Instructions (Data Table Operation)

30

Applied Instructions (External Device Communication)

27.4 SFR / Bit Shift Right with Carry

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction shifts 16 bits stored in a word device rightward by "n" bits.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
SFR	16 bits	Continuous	SFR EN ENO n d	SFR(EN,n,d);
SFRP	16 bits	Pulse	SFRP — EN ENO — n d —	SFRP(EN,n,d);

2. Set data

١	/ariable	Description	Data type		
Input	EN	Execution condition	Bit		
variable	n	Number of times of shift ($0 \le n \le 15$)	ANY16		
Output	ENO	Execution state	Bit		
variable	d	Device storing data to be shifted.	ANY16		

3. Applicable devices

			Bi	t D	evi	ce	S					W	ord	De	vice	es						0	thers				
Operand type			Sy	ste	m	use	ər	Dig	it spe	ecifica	tion		Sys us	sten ser	1	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer			
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р			
n								•	•	•	•	•	•	•	•	•	•	•		•	•						
d									•	•	•	•	•	•	•	•	•	•	•								

Function and operation explanation

1. 16-bit operation (SFR/SFRP)

of shift

1) 16 bits stored in a word device specified by d are shifted rightward by "n" bits.

Specify a value in the range from "0" to "15" as "n".

If "16" or larger value is specified as "n", 16 bits are shifted rightward by the remainder of "(n) divided by (16)".

For example, when "n" is set to "18", 16 bits are shifted rightward by 2 bits as "2" remains when "18" is divided by "16".

2) The ON (1) or OFF (0) status of the "n"th bit (bit "n-1") in the word device specified by d is transferred to the carry flag M8022.

21

22

Applied Instructions (External Device)

23

uctions

24

Applied Instructions (Others)

25

Applied (Block

26

Applied Instructions (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

Applied (Data

30

xtemal Device

ition able Instr ictions

Related device

Becomes "0".

\rightarrow For the carry flag use method, refer to Section 1.3.4.

Device	Name	Description
M8022	Carry flag	Shifts the ON/OFF status of bit "n-1"

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

1) When a negative value is set to "n" (Error code: 6706)

Program examples

In the program example shown below, the contents of Y010 to Y023 are shifted rightward by the number of bits specified by D0 when X020 turns ON.

[Structured ladder/FBD]

[ST]

27.5 SFL / Bit Shift Left with Carry

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction shifts 16 bits stored in a word device leftward by "n" bits.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
SFL	16 bits	Continuous	SFL EN ENO n d	SFL(EN,n,d);
SFLP	16 bits	Pulse	SFLP — EN ENO — n d	SFLP(EN,n,d);

2. Set data

١	/ariable	Description	Data type		
Input	EN	Execution condition	Bit		
variable	n	Number of times of shift	ANY16		
Output	EN	Execution state	Bit		
variable	d	Device storing data to be shifted.	ANY16		

3. Applicable devices

			Bit Devices					Word Devices											Others					
Operand type		;	Sy	ste	m	use	ər	Dig	it spe	cifica	tion		Sys us	sten ser	1	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
n								•	•	•	•	•	•	•	•	•	•	•		•	•			
d									•	•	•	٠	•	•	٠	•	•	٠	•					

Function and operation explanation

1. 16-bit operation (SFL/SFLP)

Command SFL input ΕN ENO -11 n d Device storing data to be shifted. Number of times

of shift

1) 16 bits stored in a word device specified by d are shifted leftward by "n" bits.

Specify a value in the range from "0" to "15" as "n".

If "16" or larger value is specified as "n", 16 bits are shifted leftward by the remainder of "(n) divided by (16)".

For example, when "n" is set to "18", 16 bits are shifted leftward by 2 bits as "2" remains when "18" is divided by "16".

2) The ON (1) or OFF (0) status of the "n + 1"th bit (bit "n") in the word device specified by d is transferred to the carry flag M8022.

Related device

\rightarrow For the carry flag use method, refer to Section 1.3.4.

Device	Name	Description
M8022	Carry flag	Shifts the ON/OFF status of bit "n"

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

1) When a negative value is set to "n" (Error code: 6706)

Program examples

In the program example shown below, the contents of Y010 to Y017 are shifted leftward by the number of bits specified by D0 when X020 turns ON.

[Structured ladder/FBD]

Device

uctions

ructions

28. Applied Instructions (Data Comparison)

This chapter introduces data comparison instructions which can be handled as contact symbols in programming such as LD, AND and OR.

Instruction name	Function	Reference						
LD=								
LD>								
LD<								
LD<>								
LD<=								
LD>=	Data Comparison	Section 29 1						
LDD=	Data Companson	Section 26.1						
LDD>								
LDD<								
LDD<>								
LDD<=								
LDD>=								
AND=								
AND>								
AND<								
AND<>								
AND<=								
AND>=	Data Comparison	Section 28.2						
ANDD=	Data Companson	Section 26.2						
ANDD>								
ANDD<								
ANDD<>								
ANDD<=								
ANDD>=								
OR=								
OR>								
OR<								
OR<>								
OR<=								
OR>=	Data Comparison	Section 28.2						
ORD=		3601011 20.3						
ORD>								
ORD<								
OR<>	-							
ORD<=								
ORD>=								

21

Applied Instructions (Real Time Clock Control)

22

Instru

uctions

30

plied Instructions xternal Device ommunication)

28.1 LD =, >, <, <>, <=, >= / Data Comparison

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	×	×	×

Outline

1. Format and operation, execution form

			Expression in each	language	
name	Operation	form	Structured ladder/FBD	ST ^{*1}	
LD=	16 bits	Continuous	LD= 	-	Extension unction)
					- 24
LD>	16 bits	Continuous	LD> — EN ENO — s1 — s2	-	(Others)
LD<	16 bits	Continuous	LD< EN ENO s1 s2	-	2 (Block Dat Operation)
LD<>	16 bits	Continuous	LD<> EN ENO s1 s2	-	a 2(Strir
LD<=	16 bits	Continuous	LD<= EN ENO 	-	aracter ig Control)
LD>=	16 bits	Continuous	LD>= 	-	(Data Operation 3)
			LDD=		28
LDD=	32 bits	Continuous	— EN ENO — s1 — s2	-	(Data Compari
			LDD>		son)
LDD>	32 bits	Continuous		-	29
			— <u>s2</u>		Data Tat

*1. Refer to "Cautions".

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST*1
LDD<	32 bits	Continuous	LDD< — EN ENO — s1 — s2	-
LDD<>	32 bits	Continuous	LDD<> EN ENO s1 s2	-
LDD<=	32 bits	Continuous	LDD<= - EN ENO - s1 - s2	-
LDD>=	32 bits	Continuous	LDD>= — EN ENO — — s1 — s2	-

*1. Refer to "Cautions".

2. Set data

			Data	type
Va	riable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input variable	<u>(s1)</u>	Device storing comparison data	ANY16	ANY32
	<u>(s2)</u>	Device storing comparison data	ANY16	ANY32
Output variable	ENO	Execution state	Bit	

3. Applicable devices

		Bit D				ice	s				Word Devices									Others				
Operand type			Sy	ste	m	use	ər	Dig	it spe	ecifica	tion		Sy: u	ste ser	m	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	X	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
<u>(s1</u>)								•	•	•	•	•	•	•	▲ 1	▲2	•	•	•	•	•			
<u>(s2</u>)								•	٠	•	•	•	•	•	▲ 1	▲2	•	•	•	•	•			

▲: Refer to "Cautions"

Function and operation explanation

These data comparison instructions are connected to bus lines.

The contents of the devices specified by $\underline{s1}$ are compared with the contents of the device specified by $\underline{s2}$ in the binary format, and a contact becomes conductive (ON) or non-conductive (OFF) depending on the comparison result.

16-bit instruction	32-bit instruction	ON condition	OFF condition
LD=	LDD=	$(\underline{s1}) = (\underline{s2})$	<u>(s1)</u> ≠ <u>(s2</u>)
LD>	LDD>	<u>(s1)</u> > <u>(s2</u>)	$(\underline{s1}) \leq (\underline{s2})$
LD<	LDD<	<u>(s1)</u> < <u>(s2</u>)	<u>(s1)</u> ≥ <u>(s2</u>)
LD<>	LDD<>	<u>(s1)</u> ≠ <u>(s2</u>)	<u>(s1)</u> = <u>(s2</u>)
LD<=	LDD<=	$(\underline{s1}) \leq (\underline{s2})$	<u>(s1)</u> > <u>(s2</u>)
LD>=	LDD>=	$(s1) \ge (s2)$	<u>(s1)</u> < <u>(s2</u>)

Cautions

- Negative values
 When the most significant bit is "1" in the data stored in the device specified by <u>s1</u> or <u>s2</u>, it is
 regarded as a negative value in comparison.

 a) In the 16-bit operation: bit 15
 - b) In the 32-bit operation: bit 31
- When using 32-bit counters (including 32-bit high speed counters) Be sure to execute the 32-bit operation (such as LDD=, LDD> and LDD<) when comparing 32-bit counters.

If a 32-bit counter is specified in the 16-bit operation (such as LD=, LD> and LD<), a program error or operation error will occur.

- 3) Some restrictions to applicable devices
 ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 ▲2: The FX3U and FX3UC PLCs only are applicable.
- 4) The Load compare instruction is not available in ST.

Program examples

[Structured ladder/FBD]

When the current value of the counter C10 is "200", Y010 is driven.

21

AppliedInstructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

28.2 AND=, >, <, < >, <=, >= / Data Comparison

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	0	0	0	0	×	×	×

Outline

These instructions compare numeric values, and set a contact to ON when the condition agrees.

1. Format and operation, execution form

Instruction	Oneration	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST ^{*1}
AND=	16 bits	Continuous	AND= — EN ENO — s1 — s2	-
AND>	16 bits	Continuous	AND> — EN ENO — s1 — s2	-
AND<	16 bits	Continuous	AND< EN ENO s1 s2	-
AND<>	16 bits	Continuous	AND<> EN ENO s1 s2	-
AND<=	16 bits	Continuous	AND<= — EN ENO — s1 — s2	-
AND>=	16 bits	Continuous	AND>= EN ENO s1 s2	-
ANDD=	32 bits	Continuous	ANDD= EN ENO s1 s2	-
ANDD>	32 bits	Continuous	ANDD> — EN ENO — s1 — s2	-
ANDD<	32 bits	Continuous	ANDD< EN ENO s1 s2	-

*1. Refer to "Cautions".

Instruction	Onenstien	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST ^{*1}
ANDD<>	32 bits	Continuous	ANDD<> EN ENO s1 s2	-
ANDD<=	32 bits	Continuous	ANDD<= EN ENO s1 s2	-
ANDD>=	32 bits	Continuous	ANDD>= —EN ENO —s1 —s2	-

*1. Refer to "Cautions".

2. Set data

			Data	type
Va	riable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input variable	<u>(s1)</u>	Device storing comparison data	ANY16	ANY32
	<u>(s2</u>)	Device storing comparison data	ANY16	ANY32
Output variable	ENO	Execution state	Bit	

3. Applicable devices

			Bi	t D	evi	ice	s					W	ord	I De	evic	es						0	thers	
Operand type			Sy	ste	m	use	ər	Dig	it spe	ecifica	tion		Sys u	stei ser	m	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	Х	Y	Μ	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
<u>(s1</u>)								•	•	•	•	•	•	•	▲1	▲2	•	•	•					
<u>(s2</u>)								•	•	•	•	•	•	•	▲1	▲2	•	•	•					

▲: Refer to "Cautions"

Function and operation explanation

These data comparison instructions are connected to other contacts in series.

The contents of the device specified by (s1) are compared with the contents of the device specified by (s2) in binary format, and a contact becomes conductive (ON) or non-conductive (OFF) depending on the comparison result.

16-bit instruction	32-bit instruction	ON condition	OFF condition
AND=	ANDD=	(s1) = (s2)	$(s1) \neq (s2)$
AND>	ANDD>	<u>(s1)</u> > <u>(s2</u>)	$(s1) \leq (s2)$
AND<	ANDD<	<u>(s1)</u> < <u>(s2</u>)	$(s1) \ge (s2)$
AND<>	ANDD<>	$(s1) \neq (s2)$	(s1) = (s2)
AND<=	ANDD<=	$(s1) \leq (s2)$	<u>(s1)</u> > (s2)
AND>=	ANDD>=	$(\underline{s1}) \ge (\underline{s2})$	<u>(s1)</u> < <u>(s2</u>)

25

d Instructions k Data ation)

26

Applied Instructior (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

ictions

30

xternal Device ee

uctions

Cautions

1) Negative values

When the most significant bit is "1" in the data stored in the device specified by $\underline{s1}$ or $\underline{s2}$, it is regarded as a negative value in comparison.

- a) In the 16-bit operation: bit 15
- b) In the 32-bit operation: bit 31
- When using 32-bit counters (including 32-bit high speed counters) Be sure to execute the 32-bit operation (such as ANDD=, ANDD> and ANDD<) when comparing 32-bit counters.

If a 32-bit counter is specified in the 16-bit operation (such as AND=, AND> and AND<), a program error or operation error will occur.

Some restrictions to applicable devices
 ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.

▲2: The FX3U and FX3UC PLCs only are applicable.

4) The AND compare instruction is not available in ST.

Program examples

[Structured ladder/FBD]

When X00 "200" Y010	0 is ON and the 0 is driven.	e current value of the counter C10 is
X000 AND= -EN ENO -s1 -s2	Y10	
When X001 D0 are not "-	is OFF and the -10", Y011 is se	contents of the data register et.
X001 - X K-10 D0	AND<> EN ENO s1 s2	M40
M40 — I I	SET EN ENO d	(Y11)
When X002 i D10 are less	s ON, and the c than "K678,493	contents of the data registers D11 and ", or when M3 turns ON, M50 is driven.
X002 H K678493 – D10 – M3 H	ANDD> EN ENC s1 s2	Y11

21

AppliedInstructions (Real Time Clock Control)

22

28.3 OR=, >, <, < >, <=, >= / Data Comparison

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX 0N	FX0(S)
0	0	0	0	0	0	×	×	×

Outline

1. Format and operation, execution form

Instruction	0	Execution	Expression in eac	h language	e)
name	Operation	form	Structured ladder/FBD	ST ^{*1}	2
OR=	16 bits	Continuous	OR= — EN ENO — s1 — s2	-	(Extension Function)
					2
OR>	16 bits	Continuous	OR> — EN ENO — s1 — s2	-	(Others)
					2
OR<	16 bits	Continuous	OR< 	-	(Block Data Operation)
					2
OR<>	16 bits	Continuous	OR<> — EN ENO— — s1 — s2	-	(Character String Control)
					2
OR<=	16 bits	Continuous	OR<= EN ENO s1 s2	-	(Data Operation 3)
					2
OR>=	16 bits	Continuous	OR>= EN ENO s1 s2	-	(Data Comparison)
					2
ORD=	32 bits	Continuous	ORD= EN ENO s1	-	(Data Table Operation)

*1. Refer to "Cautions".

ommunication led

Device

Instruction	Onenetien	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST ^{*1}
ORD>	32 bits	Continuous	ORD> — EN ENO — — s1 — s2	-
ORD<	32 bits	Continuous	ORD< — EN ENO — s1 — s2	-
OR<>	32 bits	Continuous	OR<> — EN ENO— — s1 — s2	-
ORD<=	32 bits	Continuous	ORD<= EN ENO s1 s2	-
ORD>=	32 bits	Continuous	LD= EN ENO s1 s2	-

*1. Refer to "Cautions".

2. Set data

			Data	type
Va	riable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input variable	<u>(s1)</u>	Device storing comparison data	ANY16	ANY32
	<u>(s2</u>)	Device storing comparison data	ANY16	ANY32
Output variable	ENO	Execution state	Bit	

3. Applicable devices

			Bi	t D	evi	ce	s					W	orc	I De	evic	es						0	thers	
Operand type			Sy	ste	m	use	er	Dig	it spe	ecifica	tion		Sy: u	ste ser	m	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	х	Y	м	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
<u>(s1</u>)								•	•	٠	•	•	•	•	▲1	▲2	•	•	•	•	•			
<u>(s2</u>)								•	•	•	•	•	•	•	▲1	▲2	•	•	•	•	•			

▲: Refer to "Cautions"

21

AppliedInstructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

Applied Instruct (Block Data Operation)

tions

26

Applied Instruction (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

ctions

30

temal ee

uctions

Function and operation explanation

These data comparison instructions are connected to other contacts in parallel.

The contents of the device specified by s1 is compared with the contents of the device specified by s2 in binary format, and a contact becomes conductive (ON) or non-conductive (OFF) depending on the comparison result.

16-bit instruction	32-bit instruction	ON condition	OFF condition
OR=	ORD=	(s1) = (s2)	$(s1) \neq (s2)$
OR>	ORD>	<u>(s1)</u> > <u>(s2</u>)	$(s1) \leq (s2)$
OR<	ORD<	<u>(s1)</u> < <u>(s2</u>)	$(s1) \ge (s2)$
OR<>	OR<>	$(s1) \neq (s2)$	(s1) = (s2)
OR<=	ORD<=	$(s1) \leq (s2)$	<u>(s1)</u> > <u>(s2</u>)
OR>=	ORD>=	$(\underline{s1}) \ge (\underline{s2})$	<u>(s1)</u> < <u>(s2</u>)

Cautions

1) Negative values

When the most significant bit is "1" in the data stored in the device specified by s1 or s2, it is regarded as a negative value in comparison.

- a) In the 16-bit operation: bit 15
- b) In the 32-bit operation: bit 31
- 2) When using 32-bit counters (including 32-bit high speed counters) Be sure to execute the 32-bit operation (such as ORD=, ORD> and ORD<) when comparing 32-bit counters.

If a 32-bit counter is specified in the 16-bit operation (such as OR=, OR> and OR<), a program error or operation error will occur.

- 3) Some restrictions to applicable devices ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable. ▲2: The FX3U and FX3UC PLCs only are applicable.
- 4) The OR compare instruction is not available in ST.

Program examples

[Structured ladder/FBD]

When X001 turns ON or when the current value of the counter C10 is "200", Y000 is driven.

29. Applied Instructions (Data Table Operation)

Instruction name	Function	Reference	
LIMIT			
LIMITP		0.5 54 5 7 00 1	
DLIMIT		Section 29.1	
DLIMITP			
BAND			
BANDP	- Dead Band Cantrol	Castian 20.2	
DBAND		Section 29.2	
DBANDP			
ZONE			
ZONEP	Zana Cantral	Section 20.2	
DZONE		Section 29.5	
DZONEP	1		
SCL			
SCLP	Scaling (Coordinate by Point Data)	Section 29.4	
DSCL	Scaling (Coordinate by Forn Data)	000101120.4	
DSCLP			
DABIN			
DABINP	Decimal ASCII to RIN Conversion	Section 20.5	
DDABIN		Section 29.5	
DDABINP			
BINDA			
BINDAP	RIN to Decimal ASCII Conversion	Section 20.6	
DBINDA		3601011 29.0	
DBINDAP			
SCL2			
SCL2P	Scaling 2 (Coordinate by X/Y Data)	Section 20.7	
DSCL2		0501011 23.7	
DSCL2P	1		

29.1 LIMIT / Limit Control

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction provides the upper limit value and lower limit value for an input numeric value, and control the output value using these limit values.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST
LIMIT	16 bits	Continuous	LIMIT — EN ENO — s1 d — s2 — s3	LIMIT(EN,s1,s2,s3,d);
LIMITP	16 bits	Pulse	LIMITP — EN ENO — s1 d — s2 — s3	LIMITP(EN,s1,s2,s3,d);
DLIMIT	32 bits	Continuous	DLIMIT 	DLIMIT(EN,s1,s2,s3,d);
DLIMITP	32 bits	Pulse	DLIMITP — EN ENO — — s1 d — — s2 — s3	DLIMITP(EN,s1,s2,s3,d);

2. Set data

			Data type				
Va	riable	Description	16-bit operation	32-bit operation			
	EN	Execution condition	Bit				
Input variable	<u>(s1)</u>	Lower limit value (minimum output value)	ANY16	ANY32			
	<u>(s2</u>)	Upper limit value (maximum output value)	ANY16	ANY32			
	<u>(s3)</u>	Input value controlled by the upper and lower limit values	ANY16	ANY32			
Output variable	ENO	Execution state	Bit				
	d	Head device storing the output value controlled by the upper and lower limit values	ANY16	ANY32			

28

Applied Instructions (Data Comparison)

29

Applied Instructions (Data Table Operation)

30

Applied Instructions (External Device Communication)

3. Applicable devices

			Bi	t D	evi	ce	s	Word Devices												Others				
Operand type	System user							Digit specification				System user			Special unit Index		Cons Real tant Number		Real Number	Character String	Pointer			
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U 🗆 \G 🗆	۷	z	Modifier	K	н	Е	"0"	Р
<u>(s1</u>)								•	•	•	•	•	•	•	•	•			•	•	•			
<u>(s2</u>)								•	•	•	•	•	•	•	•	•			•	•	•			
<u>(s3</u>)								•	•	•	•	•	•	•	•	•			•					
d									•	•	•	•	•	•	•	•			•					

Function and operation explanation

1. 16-bit operation (LIMIT/LIMITP)

Depending on how the input value (16-bit binary value) of the device specified by \underline{s} compares to the upper and lower limit range between the devices specified by \underline{s} and \underline{s} , the output value stored in the device specified by \underline{d} is controlled.

The output value is controlled as shown below.

- 4) When controlling the output value using only the upper limit value, set "-32768" to the lower limit value of the device specified by <u>s1</u>.
- 5) When controlling the output value using only the lower limit value, set "32767" to the upper limit value of the device specified by $\underline{s2}$.

2. 32-bit operation (DLIMIT/DLIMITP)

Depending on how the input value (32-bit binary value) of the device specified by \underline{s} compares to the range between the upper and lower limits specified by \underline{s} and \underline{s} , the output value to be stored in the device specified by \underline{d} is controlled.

- When controlling the output value using only the upper limit value, set "-2,147,483,648" to the lower limit value specified in <u>s1</u>.
- 5) When controlling the output value using only the lower limit value, set "2,147,483,647" to the upper limit value specified in <u>s2</u>.

Error

An operation error is caused when the instruction is executed in the setting status shown below. The error flag M8067 turns ON, and the error code (K6706) is stored in D8067.

"(Contents of the device specified by (s1)) > (contents of the device specified by (s2))

Program example

X000

-11

1. Program example 1

In the program example shown below, the BCD data set in X020 to X037 is controlled by the limit values "500" to "5000", and the controlled value is output to D1 when X000 turns ON.

[Structured ladder/FBD]

K4X020

K500

K5000 -

[ST]

BIN(X000,K4X020,D0); DLIMIT(X000,K500,K5000,D0,D10);

Operation

1) In the case of "D0 < 500", "500" is output to D1.

BIN

DLIMIT

ENO

FNC

d

d

D0

- D10

ΕN

s

FN

s1

s2

D0-s3

- 2) In the case of "500 \leq D0 \leq 5000", the value of D0 is output to D1.
- 3) In the case of "5000 < D0", "5000" is output to D1.

2. Program example 2

In the program example shown below, the BCD data set in X020 to X057 is controlled by the limit values "10000" and "1,000,000", and the controlled value is output to D11 and D10 when X000 turns ON.

[Structured ladder/FBD]

[ST]

DBIN(X000,K8X020,D0); DLIMIT(X000,K10000,K100000,D0,D10);

Operation 1

- In the case of "(D1, D0) < 10000", "10000" is set to (D11, D10).
- 2) In the case of "10000 \leq (D1, D0) \leq 1,000,000", the value of (D1, D0) is output to (D11, D10).
- In the case of "1,000,000 < (D1, D0)", "1,000,000" is output to (D11, D10)

BAND / Dead Band Control 29.2

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction provides the upper limit value and lower limit value of the dead band for an input numeric value, and controls the output value using these limit values.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST
BAND	16 bits	Continuous	BAND EN ENO s1 d s2 s3	BAND(EN,s1,s2,s3,d);
BANDP	16 bits	Pulse	BANDP EN ENO s1 d s2 s3	BANDP(EN,s1,s2,s3,d);
DBAND	32 bits	Continuous	DBAND — EN ENO — — s1 d — — s2 — s3	DBAND(EN,s1,s2,s3,d);
DBANDP	32 bits	Pulse	DBANDP — EN ENO — — s1 d — — s2 — s3	DBANDP(EN,s1,s2,s3,d);

2. Set data

			Data	type
Va	riable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input	<u>(s1</u>)	Lower limit value of the dead band (no-output band)	ANY16	ANY32
variable	<u>(s2</u>)	Upper limit value of the dead band (no-output band)	ANY16	ANY32
	<u>(s3)</u>	Input value controlled by the dead band	ANY16	ANY32
Output	ENO	Execution state	Bit	
variable	d	Device storing the output value controlled by the dead band.	ANY16	ANY32

3. Applicable devices

			Bi	t D	evi	ice	S					W	orc	l De	evic	es						C	thers	
Operand type			Sy	ste	m	us	er	Dig	Digit specification					ster ser	n	Special unit	Index		Co ta	ons Int	Real Number	Character String	Pointer	
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	Κ	н	E	"0"	Р
<u>(s1)</u>								•	•	•	•	•	•	•	•	•			•	•	•			
<u>(s2</u>)								•	•	•	•	•	•	•	•	•			•	•	•			
<u>(s3)</u>								•	•	•	•	•	•	•	•	•			•					
d									•	•	•	•	•	•	•	•			•					

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

(Data Table ation) Instri uctions

30

(External Device Communication) lied

uctions

21

AppliedInstructions (Real Time Clock Control)

22

1. 16-bit operation (BAND/BANDP)

Depending on how the input value (16-bit binary value) of the device specified by $\underline{s3}$ compares to the upper and lower limit dead band range between the devices specified by $\underline{s1}$ and $\underline{s2}$, the output value to be stored in the device specified by \underline{d} is controlled.

The output value is controlled as shown below.

2. 32-bit operation (DBAND/DBANDP)

Depending on how the input value (32-bit binary value) specified by $\underline{s3}$ compares to the upper and lower limit dead band range between the devices specified by $\underline{s1}$ and $\underline{s2}$, the output value to be stored in the device specified by \underline{d} is controlled.

The output value is controlled as shown below.

21

AppliedInstructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

Applied Instructions (Block Data Operation)

26

Applied Instructic (Character String Control)

uctions

ctions

leo

27

Cautions

- 1) When the output value overflows, it is handled as follows:
- a) In the 16-bit operation The output value is a 16-bit binary value with sign. Accordingly, if the operation result is outside the range from -32768 to 32767, it is handled as follows: Lower limit value of dead band (s1) = 10Output value =-32,768-10 =8000H-AH Input value <u>s3</u> =-32,768 =7FF6H =32,758 b) In the 32-bit operation
 - The output value is a 32-bit binary value with sign. Accordingly, if the operation result is outside the range from -2,147,483,648 to 2,147,483,647, it is handled as follows:

Lower limit value of dead band s1 =1000 Input value <u>s3</u> =-2,147,483,648

Error

An operation error is caused when the instruction is executed in the setting status shown below. The error flag M8067 turns ON, and the error code (K6706) is stored in D8067.

(Contents of the device specified by $(\underline{s1})$) > (contents of the device specified by $(\underline{s2})$)

Program example

1. Program example 1

In the program example shown below, the BCD data set in X020 to X037 is controlled by the dead band from "-1000" to "1000", and a controlled value is output to D1 when X000 turns ON.

[Structured ladder/FBD]

[ST]

BIN(X000,K4X020,D0); BAND(X000,K-1000,K1000,D0,D1);

Operation

- 1) In the case of "D0 < (-1000)", "D0 (-1000)" is set to D1.
- 2) In the case of "(-1000 \leq D0 \leq 1000", "0" is output to D1.
- 3) In the case of "1000 < D0", "D0 1000" is output to D1.

2. Program example 2

In the program example shown below, the BCD data set in X020 to X057 is controlled by the dead band from "-10000" to "10000", and a controlled value is output to D11 and D10 when X000 turns ON.

[Structured ladder/FBD]

[ST]

DBIN(X000,K8X020,D0); DBAND(X000,K-10000,K10000,D0,D10);

Operation

- In the case of "(D1, D0) < (-10000)", "(D1, D0) (-10000)" is set to (D11, D10).
- 2) In the case of "(-10000 \leq (D1, D0) \leq 10000", "0" is output to (D11, D10).
- In the case of "10000 < (D1, D0)", "(D1, D0) 10000" is output to (D11, D10).

ZONE / Zone Control 29.3

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

1. Format and operation, execution form

Depending specified.	on wheth	er the inpu	t value is positive or negative, the outp	out value is controlled by the bias value	Applied Instruction (External Device
Instruction		Execution	Expression in	each language	∽ 23
name	Operation	form	Structured ladder/FBD	ST	⊥⊃ ⊐≘≥
ZONE	16 bits	Continuous	ZONE — EN ENO — s1 d — s2	ZONE(EN,s1,s2,s3,d);	pplied Instructions Extension unction)
			—s3		24
ZONEP	16 bits	Pulse	ZONEP — EN ENO — — s1 d — — s2 — s3	ZONEP(EN,s1,s2,s3,d);	Applied Instructions (Others)
					25
DZONE	32 bits	Continuous	DZONE EN ENO s1 d s2 s3	DZONE(EN,s1,s2,s3,d);	Applied Instructions (Block Data Operation)
			DZONED		26
DZONEP	32 bits	Pulse	-EN ENO- -s1 d- -s2 -s3	DZONEP(EN,s1,s2,s3,d);	Applied Instructions (Character String Control)

2. Set data

			Data	type
Va	riable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input	<u>(s1)</u>	Negative bias value to be added to the input value	ANY16	ANY32
variable	<u>s2</u>	Positive bias value to be added to the input value	ANY16	ANY32
	<u>(s3)</u>	Input value controlled by the zone	ANY16	ANY32
Output	ENO	Execution state	Bit	
variable	d	Head device storing the output value controlled by the zone	ANY16	ANY32

3. Applicable devices

			Bi	t D	evi	ice	s					W	or	d De	evic	es						0	thers	
Operand type			Sy	ste	m	us	er	Dig	igit specification					System user		Special unit Index		ndex	Co ta	ons Int	Real Number	Character String	Pointer	
	х	Y	М	Т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	E	"0"	Р
<u>(s1</u>)								•	•	•	•	•	•	•	•	•			•	•	•			
<u>s2</u>								•	•	•	•	•	•	•	•	•			•	•	•			
<u>(s3)</u>								•	•	•	•	•	•	•	•	•			•					
d									•	•	•	•	•	•	•	•			•					

28

Applied Instructions (Data Comparison)

29

30

uperation, Data Instr a ctions

Communication) lied

ÌCe

21

Applied Instructions (Real Time Clock Control)

22

1. 16-bit operation (ZONE/ZONEP)

The bias value specified by (s1) or (s2) is added to the input value specified by (s3), and output to the device specified by (d).

The bias value is added as shown below.

2. 32-bit operation (DZONE/DZONEP)

The bias value specified by (s) or (s) is added to the input value of the device specified by (s), and output to the device specified by (d).

The bias value is added as shown below:

30 Applied Instruction: (External Device Communication)

Applied Instructions (Data Comparison)

29

ata Table

2. Program example 2

In the program example below, the BCD data set in X020 to X057 is controlled by the zone from "-10000" to "10000", and the controlled value is output to D11 and D10 when X000 turns ON.

[Structured ladder/FBD]

[ST]

DBIN(X000,K8X020,D0);

DZONEP(X000,K-10000,K10000,D0,D1);

Operation

- In the case of "(D1, D0) < 0", "(D1, D0) + (-10000)" is output to (D11, D10).
- 2) In the case of "(D1, D0) = 0", "0" is output to (D11, D10).
- In the case of "0 < (D1, D0)", "(D1, D0) + 10000" is output to (D11, D10)

29.4 SCL / Scaling (Coordinate by Point Data)

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction executes scaling of the input value using a specified data table, and outputs the result. SCL2 is also available with a different data table configuration for scaling.

\rightarrow For SCL2 instruction, refer to Section 29.7.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST
SCL	16 bits	Continuous	SCL = EN ENO = s1 d = s2	SCL(EN,s1,s2,d);
SCLP	16 bits	Pulse	SCLP — EN ENO — s1 d — s2	SCLP(EN,s1,s2,d);
DSCL	32 bits	Continuous	DSCL — EN ENO — s1 d — s2	DSCL(EN,s1,s2,d);
DSCLP	32 bits	Pulse	DSCLP — EN ENO — s1 d — s2	DSCLP(EN,s1,s2,d);

2. Set data

			Data	type
Va	riable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input variable	<u>(s1)</u>	Input value used in scaling or device storing the input value	ANY16	ANY32
	<u>(s2</u>)	Head device storing the conversion table used in scaling	ANY16	ANY32
Output	ENO	Execution state	Bit	
variable	d	Device storing the output value controlled by scaling	ANY16	ANY32

3. Applicable devices

			Bi	t D	evi	ce	s					W	ord	l De	evice	es						0	thers	
Operand type			Sy	ste	m	use	ər	Dig	Digit specification				System user		Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer	
	X	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	E	"0"	Р
<u>(s1</u>)								•	•	•	•	•	•	•	•	•			•	•	•			
<u>(s2</u>)														•	•				•					
d									•	٠	٠	٠	٠	•	٠	•			•					

21

Applied (Real T Clock

22

Applied Instructions (External Device)

dInstructions Time Control)

1. 16-bit operation (SCL/SCLP)

The input value of the device specified by (s) is processed by scaling for the specified conversion characteristics, and stored to a device number specified by (d). Conversion for scaling is executed based on the data table stored in a device specified in (s) and later.

If the output data is not an integer, however, the number in the first decimal place is rounded.

ightarrow For the method to set the conversion table for scaling, refer to the next page.

*1. Input value used in scaling or device storing the input value

*2. Head device storing the conversion table used in scaling

Set	item	Device assignment in setting data table
Number of coordina ("5" in the case sho	(s2)	
Point 1	X coordinate	<u>s</u> 2+1
	Y coordinate	<u>(s2)</u> +2
Point 2	X coordinate	<u>(s2)</u> +3
1 01112	Y coordinate	<u>(s2)</u> +4
Point 3	X coordinate	<u>s2</u> +5
	Y coordinate	<u>s2</u> +6
Point 4	X coordinate	<u>(s2)</u> +7
	Y coordinate	<u>s2</u> +8
Point 5	X coordinate	<u>s2</u> +9
	Y coordinate	<u>(s2)</u> +10

Conversion setting data table for scaling

*3. Device storing the output value controlled by scaling

2. 32-bit operation (DSCL/DSCLP)

The input value specified by (s_1) is processed by scaling for the specified conversion table, and stored to a device number specified in (d). Conversion for scaling is executed based on the data table stored in a device specified in (s_2) and later.

If the output data is not an integer, however, the number in the first decimal place is rounded.

Conversion setting data table for scaling

Set it	Device assignment in setting data table	
Number of coordinate ("5" in the case show	[<u>s2</u> +1, <u>s2</u>]	
Point 1	X coordinate	[<u>\$2</u> +3, <u>\$2</u> +2]
	Y coordinate	[<u>\$2</u> +5, <u>\$2</u> +4]
Point 2	X coordinate	[<u>\$2</u> +7, <u>\$2</u> +6]
	Y coordinate	[<u>\$2</u> +9, <u>\$2</u> +8]
Point 3	X coordinate	[\$2+11,\$2+10]
	Y coordinate	[(\$2)+13, (\$2)+12]
Point 4	X coordinate	[(\$2)+15, (\$2)+14]
	Y coordinate	[(\$2)+17, (\$2)+16]
Point 5	X coordinate	[(\$2)+19, (\$2)+18]
	Y coordinate	[<u>s</u> 2+21, <u>s</u> 2+20]

*1. Input value used in scaling or device storing the input value

- *2. Head device storing the conversion table used in scaling
- *3. Device storing the output value controlled by scaling

3. Setting the conversion table for scaling

The conversion table for scaling is set based on the data table stored in a device specified in (s2) and later. The data table has the following configuration:

Set ite	m	Device assign	ment in setting data table
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	16-bit operation	32-bit operation
Number of coordin	nate points	<u>(s2)</u>	$\left[\underline{s2}+1,\underline{s2}\right]$
Point 1	X coordinate	<u>s2</u> +1	[<u>s2</u> +3, <u>s2</u> +2]
I OIII I	Y coordinate	<u>s2</u> +2	[<u>s2</u> +5, <u>s2</u> +4]
Point 2	X coordinate	<u>s2</u> +3	[<u>s2</u> +7, <u>s2</u> +6]
T OIL 2	Y coordinate	<u>s2</u> +4	$[\underline{s2}+9,\underline{s2}+8]$
÷	:	:	:
Point n (last)	X coordinate	<u>s2</u> +2n-1	[<u>s2</u> +4n-1, <u>s2</u> +4n-2]
	Y coordinate	(s2)+2n	$[\underline{s2}+4n+1, \underline{s2}+4n]$

4. Setting example of the conversion table for scaling

A setting example for the 16-bit operation is shown below.

For the 32-bit operation, set each item using a 32-bit binary value.

In the case of the conversion characteristics for scaling shown in the figure below, set the following data table.

Setting the conversion setting data table for scaling

		Setting o	levice and setting c	ontents			
Set i	tem	When R0 is	specified in <a>s 2	Setting contents	Remarks		
Number of coordinate points		<u>s2</u>	R0	K10			
Point 1	X coordinate	<u>s2</u> +1	R1	K5			
	Y coordinate	<u>(s2</u>)+2	R2	K7			
Point 2	X coordinate	<u>s2</u> +3	R3	K20			
	Y coordinate	<u>s2</u> +4	R4	K30			
Point 3	X coordinate	<u>s2</u> +5	R5	K50			
r ont 5	Y coordinate	<u>s2</u> +6	R6	K100			
Point 4	X coordinate	<u>s2</u> +7	R7	K200			
	Y coordinate	<u>s2</u> +8	R8	K25	When coordinates are specified using three points in this		
	X coordinate	<u>s2</u> +9	R9	K200	In this example, the output value (intermediate value) is		
Fullt 5	Y coordinate	<u>s2</u> +10	R10	K70	specified by the Y coordinate of the point 5.		
Point 6	X coordinate	<u>s2</u> +11	R11	K200	value at the second point is also output.		
Foint o	Y coordinate	<u>s2</u> +12	R12	K250			
Point 7	X coordinate	<u>s2</u> +13	R13	K250			
r ont <i>i</i>	Y coordinate	<u>s2</u> +14	R14	K90			
Doint 9	X coordinate	<u>s2</u> +15	R15	K350	When coordinates are specified using two points in this		
r ont o	Y coordinate	<u>s2</u> +16	R16	K90	way, the output value is the Y coordinate at the next point.		
Point 0	X coordinate	<u>s2</u> +17	R17	K350	In this example, the output value is specified by the Y		
Point 9	Y coordinate	<u>s2</u> +18	R18	K30			
Point 10	X coordinate	<u>s2</u> +19	R19	K400			
	Y coordinate	<u>(s2</u>)+20	R20	K7			

AppliedInstructions (Real Time Clock Control) 22 Applied Instructions (External Device) 23 Applied Instructions (Extension Function) 24 Applied Instructions (Others) 25 ଚୁଚ୍ଚିଚ୍ଚ edInstructions ck Data ration)

26

Applied Instructions (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

Applied (Data ation able Instri uctions

30

Communication ternal lied

Device ructions

21

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- 1) When the Xn data is not set in the ascending order in the data table (error code: K6706) The data table is searched from the low-order side of device numbers in the data table in the operation. Accordingly, even if only some Xn data is set in the ascending order in the data table, the instruction is executed without operation error up to the area of the data table in which the Xn data is set in the ascending order.
- 2) When the device specified by s1 is outside the data table range (error code: K6706)
- 3) When the value exceeds the 32-bit data range in the middle of operation (error code: K6706) In this case, check whether the distance between points is not "65535" or more. If the distance is "65535" or more, reduce the distance between points.

Program example

In the program example shown below, the value input to D0 is processed by scaling based on the conversion table for scaling set in R0 and later, and output to D10.

Program

[ST] SCL (M8000, D0, R0, D10);

Operation

Conversion setting data table for scaling

Se	et item	Device	Setting contents
Number of a	aardinata nainta	DO	Ke
	coordinate points	RU	NO
Point 1	X coordinate	R1	K0
	Y coordinate	R2	K0
Point 2	X coordinate	R3	K10
	Y coordinate	R4	K50
Doint 2	X coordinate	R5	K30
FUIL 3	Y coordinate	R6	K100
Point 4	X coordinate	R7	K40
	Y coordinate	R8	K45
Point 5	X coordinate	R9	K50
r oint 5	Y coordinate	R10	K30
Point 6	X coordinate	R11	K60
	Y coordinate	R12	K0

29.5 DABIN / Decimal ASCII to BIN Conversion

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)
\triangle	×	×	×	×	×	×	×	×

Outline

This instruction converts numeric data expressed in decimal ASCII codes (30H to 39H) into binary data.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language								
name	operation	form	Structured ladder/FBD	ST							
DABIN	16 bits	Continuous	DABIN — EN ENO — s d	DABIN(EN,s,d);	Function)						
DABINP	16 bits	Pulse	DABINP — EN ENO — s d	DABINP(EN,s,d);							
DDABIN	32 bits	Continuous	DDABIN EN ENO s d	DDABIN(EN,s,d);							
DDABINP	32 bits	Pulse	DDABINP EN ENO s d	DDABINP(EN,s,d);	Òperatio						

2. Set data

			Data	type
Va	riable	Description	16-bit operation	32-bit operation
Input	EN	Execution condition	Bit	
variable	S	Head device storing data (ASCII codes) to be converted into binary data	String	String
Output	ENO Execution state		Bit	
variable	D	Device storing conversion result	ANY16	ANY32

3. Applicable devices

	Bit Devices					s		Word Devices								Others								
Operand type			Sy	ste	m	use	ər	Dig	it spe	ecifica	tion		Sys u	ster ser	n	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	Х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	E	"0"	Р
ß												•	•	•	•				•					
d									•	•	•	•	•	•	•	•	•	•	•					

21

30

plied instructions xternal Device ommunication)

1. 16-bit operation (DABIN/DABINP)

1) Data expressed in decimal ASCII codes (30H to 39H) and stored in the device specified by s is converted into 16-bit binary data, and stored in the device specified by d.

	b15b8	b7b0		
<u>s</u> +0	ASCII code for 10000's digit	Sign data		b15b0
+1	ASCII code for 100's digit	ASCII code for 1000's digit		d
+2	ASCII code for 1's digit	ASCII code for 10's digit	,	
		•		16-bit binary data(BIN)

For example, when the device specified by \bigcirc stores ASCII codes expressing "-25108", 16-bit binary data is stored in the device specified by \bigcirc as follows:

	b15 b8	b7 b0	
<u>s</u> +0	32H(2)	2DH(-)	b15 b0
+1	31H(1)	35H(5)	<u>-25108</u>
+2	38H(8)	30H(0)	,

- 2) The numeric range of data stored in the device specified by s is from "-32768" to "32767".
- 3) As "sign data", "20H (space)" is set when the data to be converted is positive, and "2DH (-)" is set when the data to be converted is negative.
- 4) An ASCII code for each digit is within the range from 30H to 39H.
- 5) When an ASCII code for each digit is "20H (space)" or "00H (NULL)", it is handled as "30H".

2. 32-bit operation (DDABIN/DDABINP)

1) Data expressed in decimal ASCII codes (30H to 39H) and stored in the device specified by s is converted into 32-bit binary data, and stored in the device specified by d.

	b15b8	b7b0		
<u>s</u> +0	ASCII code for 1,000,000,000's digit	Sign data		
+1	ASCII code for 10,000,000's digit	ASCII code for 100,000,000's digit	b31b16	b15b0
+2	ASCII code for 100,000's digit	ASCII code for 1,000,000's digit	High order 16 bits	Low order 16 bits
+3	ASCII code for 1000's digit	ASCII code for 10000's digit		
+4	ASCII code for 10's digit	ASCII code for 100's digit	32_hit	r data
+5	(Ignored)	ASCII code for 1's digit	52-51	uuu

For example, when the device specified by stores ASCII codes expressing "-1,234,543,210", 32-bit binary data is stored in the device specified by d as follows:

	b15b8	b7b0	
<u>s</u> +0	31H(1)	2DH(-)	
+1	33H(3)	32H(2)	(d)+1 (d)
+2	35H(5)	34H(4)	
+3	33H(3)	34H(4)	-1234543210
+4	31H(1)	32H(2)	
+5	(Ignored)	30H(0)	

21

Applied Instructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

Applied Instruc (Block Data Operation)

tions

26

Applied Instruction (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

(Data

abl ctions

30

Device

uctions

2) The numeric range of data stored in the device specified by (s) is from "-2,147,483,648" to "2,147,483,647".

The high-order byte of \bigcirc + 5 is ignored.

- 3) As "sign data", "20H (space)" is set when the data to be converted is positive, and "2DH (-)" is set when the data to be converted is negative.
- 4) An ASCII code for each digit is within the range from 30H to 39H.
- 5) When an ASCII code for each digit is "20H (space)" or "00H (NULL)", it is handled as "30H".

Related instructions

Instruction	Description
ASCI	Converts hexadecimal codes into ASCII codes.
HEX	Converts ASCII codes into hexadecimal codes.
STR	Converts binary data into a character string (ASCII codes).
VAL	Converts a character string (ASCII codes) into binary data.
BINDA	Converts binary data into decimal ASCII codes (30H to 39H).

Cautions

1) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- 1) When the sign data is any value other than "20H (space)" or "2DH (-)". (Error code: K6706)
- 2) When an ASCII code for each digit stored in \bigcirc to \bigcirc + 2 (5) is any value other than "30H" to "39H", "20H (space)", or "00H (NULL)". (Error code: K6706)
- 3) When the numeric range of (s) to (s) + 2 (5) is outside the following range. (Error code: K6706)

	Setting range
16-bit operation	-32768 to 32767
32-bit operation	-2,147,483,648 to 2,147,483,647

4) When the device specified by s exceeds the device range. (Error code: K6706)

Program example

In the program example below, the sign and decimal ASCII codes in five digits stored in D20 to D22 are converted into a binary value and stored in D0 when X000 turns ON.

29.6 BINDA / BIN to Decimal ASCII Conversion

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)	
Δ	×	×	×	×	×	×	×	×	

Outline

This instruction converts binary data into decimal ASCII codes (30H to 39H).

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
BINDA	16 bits	Continuous	BINDA EN ENO s d	BINDA(EN,s,d);
BINDAP	16 bits	Pulse	BINDAP EN ENO s d	BINDAP(EN,s,d);
DBINDA	32 bits	Continuous	DBINDA — EN ENO — s d	DBINDA(EN,s,d);
DBINDAP	32 bits	Pulse	DBINDAP EN ENO s d	DBINDAP(EN,s,d);

2. Set data

			Data type			
Va	riable	Description	16-bit operation	32-bit operation		
Input	EN	Execution condition	Bit			
variable	S	Device storing binary data to be converted into ASCII codes	ANY16	ANY32		
Output	ENO	Execution state	Bit			
variable	d	Head device storing conversion result	String	String		

3. Applicable devices

Operand type	Bit Devices					Word Devices						Others												
	System user			Dig	Digit specification Sp		Special unit		Special unit	Index		Index		ns nt	Real Number	Character String	Pointer							
	х	Y	Μ	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"0"	Р
s								•	•	•	•	•	•	•	٠	•	•	•	•	•	•			
d												•	•	•	•				•					

21 Function and operation explanation Applied Instructions (Real Time Clock Control) 1. 16-bit operation (BINDA/BINDAP) 1) Each digit of 16-bit binary data stored in the device specified by s is converted into an ASCII code (30H to 39H), and stored in the device specified by \bigcirc and later. 22 Command BINDAP Applied Instructions (External Device) input FN ENO Device storing binary data to be s d Head device storing conversion result converted into ASCII codes b15---b8b7 23 b0 +0 ASCII code for 10000's digit Sign data b0 Applied Instru b15 +1 ASCII code for 100's digit ASCII code for 1000's digit (s)+2 ASCII code for 10's digit ASCII code for 1's digit +3 0000H or source data M8091=OFF:0000H uctions 16-bit binary data M8091=ON: Does not change. 24 For example, when the device specified by stores "-12345", the conversion result is stored in the Applied Instructions (Others) device specified by d and later as follows: b15 - ----- b8 b7 ------b0<u>d</u>+0 31H(1) 2DH(-) -b0 b15-+1 33H(3) 32H(2) -12345 S Γ 25 +2 34H(4) 35H(5) +3 0000H or source data M8091=OFF:0000H Applied (Block M8091=ON:Does not change. (Data (Data ation) The numeric range of 16-bit binary data stored in the device specified by s is from "-32768" to 2) tions "32767". 26 3) The conversion result stored in the device specified by d is as follows: a) As "sign data", "20H (space)" is set when the 16-bit binary data stored in the device specified by 💿 Applied Instructions (Character String Control) is positive, and "2DH (-)" is set when 16-bit binary data stored in the device specified by 💿 is negative. b) "20H (space)" is stored for "0" on the left side of the effective digits (zero suppression). 00325 27 Effective digits Applied Instructions (Data Operation 3) 20H c) (d) + 3 is set as follows depending on the ON/OFF status of M8091. **ON/OFF** status Contents of processing 28 M8091=OFF d +3 is set to "0000H (NULL)". Applied Instructions (Data Comparison) M8091=ON d+3 does not change

29

ctions

30

) Ce

2. 32-bit operation (DBINDA/DBINDAP)

1) Each digit of 32-bit binary data stored in the device specified by s is converted into an ASCII code (30H to 39H), and stored in the device specified by d and later.

For example, when the device specified by s stores "-12,345,678", the conversion result is stored in the device specified by d and later as follows:

- 2) The numeric range of 32-bit binary data stored in the device specified bay s is from "-2,147,483,648" to "2,147,483,647".
- 3) The conversion result stored in the device specified by \bigcirc is as follows:
 - a) As "sign data", "20H (space)" is set when the 32-bit binary data stored in the device specified by s is positive, and "2DH (-)" is set when 32-bit binary data stored in the device specified by s is negative.
 - b) "20H (space)" is stored for "0" on the left side of the effective digits (zero suppression).

0 0 1 2 0 3 4 5 6 0 Effective digits 20H

c) The high-order byte of d + 5 is set as follows depending on the ON/OFF status of M8091.

ON/OFF status	Contents of processing
M8091=OFF	The high-order byte of \bigcirc + 5 is set to "00H (NULL)".
M8091=ON	The high-order byte of \bigcirc + 5 is set to "20H (space)".

Related devices

Device	Name	Description
M8091	Output character quantity selector signal	 For 16-bit operation When M8091 is OFF, d + 3 is set to "0000H (NULL)". When M8091 is ON, d + 3 does not change. For 32-bit operation When M8091 is OFF, the high-order byte of d + 5 is set to "00H (NULL)". When M8091 is ON, the high-order byte of d + 5 is set to "20H (space)".

21

Applied (Real T Clock (

edInstructions Il Time k Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

Applied Instructions (Block Data Operation)

26

Applied Instructions (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

Data able ictions

30

plied Ins

(External Device Communication)

Related instructions

Instruction	Description
ASCI	Converts hexadecimal codes into ASCII codes.
HEX	Converts ASCII codes into hexadecimal codes.
DESTR	Converts binary floating point data into a character string data (ASCII code) with the specified number of digits.
DEVAL	Converts character string data (ASCII code) into binary floating point data.
DABIN	Converts numeric value data expressed in decimal ASCII codes (30H to 39H) into binary data.

Cautions

- 1) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.
- 2) Occupied device points

The table below shows the occupied device points of the device specified by d for 16-bit operation (BINDA/BINDAP) when M8091 is ON or OFF and 32-bit operation (DBINDA/DBINDAP).

		Occupied points of d
16-bit operation	M8091=ON	3
	M8091=OFF	4
32-bit operation	•	6

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

When the occupied device points of the ASCII code character string in the device specified by d 1) exceed the corresponding device range. (Error code: K6706)

Program example

In the program example below, 16-bit binary data stored in D1000 is converted into decimal ASCII codes when X000 is set to ON, and the ASCII codes converted by PR (FNC77) instruction are output one by one in the time division method to Y040 to Y051.

By setting to OFF the output character selector signal M8091 and setting to ON PR mode flag M8027, ASCII codes up to "00H" are output.

\rightarrow For PR mode flag and PR instruction, refer to Section 14.8.

29.7 SCL2 / Scaling 2 (Coordinate by X/Y Data)

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)	
0	×	×	×	×	×	×	×	×	

Outline

This instruction executes scaling of the input value using a specified data table, and outputs the result. SCL instruction is also available with a different data table configuration for scaling.

\rightarrow For SCL instruction, refer to Section 29.4.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	Expression in each language				
name	operation	form	Structured ladder/FBD	ST				
SCL2	16 bits	Continuous	SCL2 EN ENO 	SCL2(EN,s1,s2,d);				
SCL2P	16 bits	Pulse	SCL2P - EN ENO - s1 d - s2	SCL2P(EN,s1,s2,d);				
DSCL2	32 bits	Continuous	DSCL2 — EN ENO — s1 d — s2	DSCL2(EN,s1,s2,d);				
DSCL2P	32 bits	Pulse	DSCL2P — EN ENO — s1 d — s2	DSCL2P(EN,s1,s2,d);				

2. Set data

			Data	type
Va	riable	Description	16-bit operation	32-bit operation
	EN	Execution condition	Bit	
Input variable	<u>(s1</u>)	Input value used in scaling or device storing the input value	ANY16	ANY32
	<u>s2</u>	Head device storing the conversion table used in scaling	ANY16	ANY32
Output	ENO	Execution state	Bit	
variable	d	Device storing the output value controlled by scaling	ANY16	ANY32

3. Applicable devices

																				_				
			Bi	t D	evi	ce	s		Word Devices					Others										
Operand type			Sy	ste	m	use	ər	Dig	it spe	ecifica	tion		Sy: u	stei ser	m	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	z	Modifier	κ	н	E	"0"	Р
<u>(s1</u>)								•	•	•	•	•	•	•	٠	•			•	•	•			
<u>s2</u>														•	٠				•					
d									٠	٠	٠	٠	•	•	٠	•			•					

21

AppliedInstructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instr

uctions

24

Applied Instructions (Others)

25

Data

26

Applied Instructions (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

ata

ctions

30

plied ins

Device

tions

Function and operation explanation

1. 16-bit operation (SCL2/SCL2P)

The input value specified in (s) is processed by scaling for the specified conversion characteristics, and stored to a device number specified in (d). Conversion for scaling is executed based on the data table stored in a device specified in (s) and later.

If the output data is not an integer, however, the number in the first decimal place is rounded.

\rightarrow For the method to set the conversion table for scaling, refer to the next page.

- *1. Input value used in scaling or device storing the input value
- *2. Head device storing the conversion table used in scaling
- *3. Device storing the output value controlled by scaling

Conversion setting data table for scaling						
Set it	em	Device assignment in setting data table				
Number of coordinat ("5" in the case show	e points /n in the left figure)	<u>(s2)</u>				
	Point 1	<u>s2</u> +1				
	Point 2	<u>s2</u> +2				
X coordinate	Point 3	<u>s2</u> +3				
	Point 4	<u>s2</u> +4				
	Point 5	<u>(s2)</u> +5				
	Point 1	<u>s2</u> +6				
	Point 2	<u>(s2)</u> +7				
Y coordinate	Point 3	<u>(s2)</u> +8				
	Point 4	<u>(s2)</u> +9				
	Point 5	<u>s</u> 2+10				

2. 32-bit operation (DSCL2/DSCL2P)

The input value specified by (s) is processed by scaling for the specified conversion table, and stored to a device number specified in (d). Conversion for scaling is executed based on the data table stored in a device specified in (s) and later.

If the output data is not an integer, however, the number in the first decimal place is rounded.

Set it	Set item						
Number of coordinat ("5" in the case show	Number of coordinate points ("5" in the case shown in the left figure)						
	Point 1	[(\$2)+3, (\$2)+2]					
	Point 2	[<u>\$2</u> +5, <u>\$2</u> +4]					
X coordinate	Point 3	[<u>s2</u> +7, <u>s2</u> +6]					
	Point 4	[<u>\$2</u> +9, <u>\$2</u> +8]					
	Point 5	[(\$2)+11,(\$2)+10]					
	Point 1	[(\$2)+13, (\$2)+12]					
	Point 2	[(\$2)+15, (\$2)+14]					
Y coordinate	Point 3	[(\$2)+17, (\$2)+16]					
	Point 4	[<u>\$2</u> +19, <u>\$2</u> +18]					
	Point 5	[\$2]+21, \$2]+20]					

Conversion setting data table for scaling

3. Setting the conversion table for scaling

The conversion table for scaling is set based on the data table stored in a device specified in (s_2) and later. The data table has the following configuration:

\rightarrow For a setting example, refer to the next page.

Sof	item	Device assignr	ment in setting data table
001	. item	16-bit operation	32-bit operation
Number of coordinate	e points	<u>(s2)</u>	[<u>s2</u> +1, <u>s2</u>]
	Point 1	<u>s</u> 2+1	[<u>\$2</u> +3, <u>\$2</u> +2]
X coordinate	Point 2	<u>s2</u> +2	[<u>s2</u> +5, <u>s2</u> +4]
	:	:	:
	Point n (last)	<u>s</u> 2)+n	[<u>s</u> 2+2n+1, <u>s</u> 2+2n]
	Point 1	<u>s</u> 2)+n+1	[<u>s</u> 2+2n+3, <u>s</u> 2+2n+2]
Y coordinate	Point 2	(s2)+n+2	[<u>s2</u> +2n+5, <u>s2</u> +2n+4]
	:	:	:
	Point n (last)	<u>s</u> 2)+2n	[<u>s2</u> +4n+1, <u>s2</u> +4n]

Point 2 (20, 30)

Set item

Number of coordinate points

Point 1

Point 2

Point 3

Point 4

Point 5

Point 6

X coordinate

Point 1 (5,7)

21 Applied Instructions (Real Time Clock Control) For the 32-bit operation, set each item using a 32-bit binary value. In the case of the conversion characteristics for scaling shown in the figure below, set the following data table. 22 Applied Instructions (External Device) Point 8(350,90) Point 10(400,7) 23 ⇒ χ Applied Instru (Extension Function) uctions Remarks contents 24 Applied Instructions (Others) 25 Refer to *1. 응 문 문 문 JInstructions k Data ration) 26 Applied Instructions (Character String Control)

Setting the conversion setting data table for scaling

(s2)

<u>s</u>2)+1

s2+2

s2+3

<u>s</u>2+4

s2)+5

s2 +6

Setting example of the conversion table for scaling A setting example for the 16-bit operation is shown below.

Point 3

(50, 100)

Point 6(200,250)

Point 4(200,25)

When R0 is specified in <a>S2

Point 5

(200, 70)

Point 7

(250, 90)

Setting device and setting contents

R0

R1

R2

R3

R4

R5

R6

Point 9 (350, 30)

Setting

K10

K5

K20

K50

K200

K200

K200

	Point 7	<u>s</u> 2)+7	R7	K250			
	Point 8	<u>s</u> 2+8	R8	K350	Refer to *2		
	Point 9	<u>s</u> 2+9	R9	K350			
	Point 10	<u>s</u> 2+10	R10	K400			
	Point 1	(s2)+11	R11	K7			
	Point 2	<u>s</u> 2+12	R12	K30			
	Point 3	<u>s</u> 2+13	R13	K100			
	Point 4	<u>s</u> 2)+14	R14	K25			
V coordinate	Point 5	(s2)+15	R15	K70	Refer to *1.		
	Point 6	<u>s</u> 2+16	R16	K250	1		
	Point 7	<u>s</u> 2+17	R17	K90			
	Point 8	<u>s</u> 2+18	R18	K90	Refer to *2		
	Point 9	<u>s</u> 2)+19	R19	K30			
	Point 10	<u>s</u> 2+20	R20	K7			
*1. Whe can	n coordinate be set to an	es are spec intermediat	ified using three p te value.	points as sho	wn in the points 4, 5 and 6, the output value		

In this example, the output value (intermediate value) is specified by the Y coordinate of the point 5. If the X coordinate is same at three points or more, the value at the second point is output also.

*2. When coordinates are specified using two points as shown in the points 8 and 9, the output value is the Y coordinate at the next point. In this example, the output value is specified by the Y coordinate of the point 9.

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

Applied speration able ictions

30

Device

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- 1) When the Xn data is not set in the ascending order in the data table (error code: K6706) The data table is searched from the low-order side of device numbers in the data table in the operation. Accordingly, even if only some Xn data is set in the ascending order in the data table, the instruction is executed without operation error up to the area of the data table in which the Xn data is set in the ascending order.
- 2) When the device specified by s1 is outside the data table range (error code: K6706)
- 3) When the value exceeds the 32-bit data range in the middle of operation (error code: K6706) In this case, check whether the distance between points is not "65535" or more. If the distance is "65535" or more, reduce the distance between points.

Program example

In the program example shown below, the value input to D0 is processed by scaling based on the conversion table for scaling set in R0 and later, and output to D10.

Program

[Structured ladder/FBD]

[ST]

SCL2(M8000,D0,R0,D10);

Operation

Conversion setting data table for scaling

Set	item	Device	Setting contents
Number of co	ordinate points	R0	K6
	Point 1	R1	K0
	Point 2	R2	K10
X coordinate	Point 3	R3	K30
X coordinate	Point 4	R4	K40
	Point 5	R5	K50
	Point 6	R6	K60
	Point 1	R7	K0
	Point 2	R8	K50
V coordinate	Point 3	R9	K100
1 coordinate	Point 4	R10	K45
	Point 5	R11	K30
	Point 6	R12	K0

30. Applied Instructions (External Device Communication)

This chapter introduces the instructions for executing inverter communication and MODBUS communication.

Instruction name	Function	Reference
IVCK	Inverter Status Check	Section 30.1
IVDR	Inverter Drive	Section 30.2
IVRD	Inverter Parameter Read	Section 30.3
IVWR	Inverter Parameter Write	Section 30.4
IVBWR	Inverter Parameter Block Write	Section 30.5
IVMC	Inverter Multi Command	Section 30.6
ADPRW	MODBUS Read / Write	Section 30.7

21

Applied Instructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instructions (External Device Communication)

29

30.1 IVCK / Inverter Status Check

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	Δ	0	×	×	×	×	×	×

Outline

This instruction reads the operation status of an inverter to a PLC using the computer link operation function of the inverter. Applicable inverters vary depending on the version.

This instruction corresponds to the EXTR (K10) instruction in the FX2N and FX2NC series.

ightarrow For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language						
name	operation	form	Structured ladder/FBD	ST					
IVCK	16 bits	Continuous	IVCK — EN ENO — s1 d — s2 — n	IVCK(EN,s1,s2,n,d);					

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
Input	<u>(s1)</u>	Inverter station number	ANY16
variable	<u>(s2</u>)	Inverter instruction code	ANY16
	n	Channel to be used (K1:ch1,K2:ch2 ^{*1})	ANY16
Output	ENO	Execution state	Bit
variable	d	Device storing the read value	ANY16

*1. "ch2" is not available for use for the FX3S and FX3G (14-point and 24-point type) PLCs.

3. Applicable devices

			Bi	t D	evi	ce	s					W	or	d b	evic	es						0	thers	
Operand type			Sy	ste	m	use	er	Dig	it spe	cifica	tion		Sy: u	ste ser	m	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	E	"0"	Р
<u>(s1</u>)														•	▲1	▲2			•	•	•			
<u>(s2</u>)														•	▲1	▲2			•	•	•			
n																				•	•			
d									•	•	•			•	▲1	▲2			•					

▲: Refer to "Cautions".

 \rightarrow For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. 16-bit operation (IVCK)

The operation status corresponding to the instruction $code^{*1}$ specified in the device specified by $\underline{s2}$ of an inverter connected to communication port n whose station number is specified in the device specified by $\underline{s1}$ is read and transferred to the device specified by $\underline{c1}$.

*1. Refer to the instruction code list.

2. Instruction codes of inverters

The table below shows the inverter instruction codes specified in $\underline{s2}$ along with their functions. Only use the instruction codes shown below. Use of instruction codes not shown below may cause communication errors.

Do not use instruction codes not shown in the table below. They may cause communication errors. For instruction codes, refer to the pages in the inverter manual where the computer link function is explained in detail.

Instruction code	Poad contonts	Corresponding inverter										
specified in s2	Read contents	F700	A700	E700	D700	V500	F500	A500	E500	S500		
H7B	Operation mode	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
H6F	Output frequency (number of rotations)	\checkmark	\checkmark	\checkmark	\checkmark	√*1	\checkmark	\checkmark	\checkmark	\checkmark		
H70	Output current	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
H71	Output voltage	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-		
H72	Special monitor	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	-	-		
H73	Special monitor selection number	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	-	-		
H74	Abnormal contents	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
H75	Abnormal contents	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√	\checkmark	\checkmark		
H76	Abnormal contents	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-		
H77	Abnormal contents	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-		
H79	Inverter status monitor (extension)	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-		
H7A	Inverter status monitor	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
H6E	Set frequency (read from E2PROM)	\checkmark	\checkmark	\checkmark	~	√*1	\checkmark	~	\checkmark	~		
H6D	Set frequency (read from RAM)	\checkmark	~	\checkmark	~	√*1	\checkmark	~	\checkmark	~		
H7F	Link parameter extended setting	These	codes o	cannot I	be spec	ified in	<u>s2</u> 0	f the IV	CK instr	uction.		
H6C	Second parameter changing	specifi	are aut cation c	omatica ode" is s	any proc specified	cessed the IVI	wnen RD instr	a secc uction.	na par	ameter		

*1. Please write "0" to instruction code HFF (Link parameter expansion setting) just before the IVCK instruction when reading frequency.

When "0" is not written, reading of the frequency may not be executed normally.

3. Related devices

\rightarrow For the instruction execution complete flag use method, refer to Section 1.3.4.

Nun	nber	Description	Nun	nber	Description				
ch1	ch2	Description	ch1	ch2	Description				
M8	029	Instruction execution complete	D8063	D8438	Error code of serial communication error*1				
M8063	M8438	Serial communication error ^{*1}	D8150	D8155	Response wait time in inverter communication ^{*1}				
M8151	M8156	Inverter communicating	D8151	D8156	Step number in inverter communication ^{*3}				
M8152	M8157	Inverter communication error ^{*2}	D8152	D8157	Error code of inverter communication error*2				
M8153	M8158	Inverter communication error latch ^{*2}	D8153	D8158	Latch of inverter communication error occurrence step $^{\star 2^{\star 3}}$				
M8154	M8159	IVBWR instruction error ^{*2}	D8154	D8159	IVBWR instruction error parameter number*2*3				

*1. Cleared when PLC power supply is turned from OFF to ON.

*2. Cleared when the PLC mode switches from STOP to RUN.

*3. Initial value: -1

29

ctions

30

Refer to the pages in the inverter manual on which the computer link function is explained in detail.

Cautions

\rightarrow For other cautions, refer to the Data Communication Edition manual.

- 1) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
- 2) It is not permitted to use an "IVCK, IVDR, IVRD, IVRR, IVBWR^{*1} or IVMC" instruction and a following instruction for the same port:
 - "RS or RS2" instruction
 - "ADPRW" instruction
 - "FLCRT^{*1}, FLDEL^{*1}, FLWR^{*1}, FLRD^{*1}, FLCMD^{*1} or FLSTRD^{*1}" instruction
- 3) Two or more inverter communication instructions (IVCK, IVDR, IVRD, IVWR, IVBWR^{*1} and IVMC) can be driven for the same port at the same time.
- 4) Some restrictions to applicable devices
 - ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 - ▲2: The FX₃U and FX₃UC PLCs only are applicable.
 - *1. The instruction is not provided in the FX3S, FX3G and FX3GC PLCs.

PLC applicable version

The table below shows PLC versions applicable to each inverter.

PLC	FREQROL-V500/F500/A500/E500/S500	FREQROL-F700/A700	FREQROL-E700/D700
FX3S	Ver.	.1.00 or later	
FX3G	Ver.	.1.10 or later	
FX3GC	Ver.	.1.40 or later	
FX3U	Ver.2.20 or later		Ver.2.32 or later
FX3UC	Ver.1.00 or later	Ver.2.20 or later	Ver.2.32 or later

30.2 IVDR / Inverter Drive

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)	
0	Δ	0	×	×	×	×	×	×	

Outline

This instruction writes a inverter operation required control value to the PLC using the computer link operation function of the inverter.

This instruction corresponds to the EXTR (K11) instruction in the FX2N and FX2NC series PLCs.

ightarrow For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
IVDR	16 bits	Continuous	IVDR — EN ENO — s1 — s2 — s3 — n	IVDR(EN,s1,s2,s3,n);

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
	<u>(s1)</u>	Inverter station number	ANY16
Input	<u>s2</u>	Inverter instruction code	ANY16
variable	<u>(s3)</u>	Set value to be written to the inverter parameter or device storing the data to be set.	ANY16
	n	Channel to be used (K1:ch1, K2:ch2*1)	ANY16
Output variable	ENO	Execution state	Bit

*1. "ch2" is not available for use for FX3s and FX3G (14-point and 24-point type) PLCs.

3. Applicable devices

			Bi	t D	ev	ice	s					N	lor	d F	evice	s						0	thers	
Operand type			Sy	ste	m	us	er	Dig	it spe	ecifica	tion	Sy	/ste	m	user	Special unit		I	ndex	Co ta	ons Int	Real Number	Character String	Pointer
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	K	н	E	"0"	Р
<u>(s1</u>)														•	▲ 1	▲2			•	•	•			
<u>(s2</u>)														•	▲ 1	▲2			•	●	•			
<u>(s3)</u>								•	•	•	•			•	▲ 1	▲2			•	●	•			
n																				•	٠			

▲: Refer to "Cautions".

ictions

30

nmunication)

\rightarrow For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. 16-bit operation (IVDR)

The control value specified in the device specified by $\underline{s3}$ is written to the instruction code^{*1} in the device specified by $\underline{s2}$ of an inverter connected to a communication port n whose station number is specified in the device specified by $\underline{s1}$.

*1. Refer to the instruction code list. Refer to the pages in the inverter manual on which the computer link function is explained in detail.

2. Instruction codes of inverters

The table below shows the inverter instruction codes specified in <u>S2</u> along with their functions. For instruction codes, refer to the pages in the inverter manual where the computer link function is explained in detail.

Hexadecimal instruction				C	Corresp	onding	inverte	r		
code of inverter specified in s2	Written contents	F700	A700	E700	D700	V500	F500	A500	E500	S500
HFB	Operation mode	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HF3	Special monitor selection number	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-
HF9	Operation command (extension)	√	\checkmark	\checkmark	\checkmark	-	-	-	-	-
HFA	Operation command	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HEE	Set frequency (written to EEPROM)	~	\checkmark	\checkmark	\checkmark	√*3	~	~	~	\checkmark
HED	Set frequency (written to RAM)	~	\checkmark	\checkmark	\checkmark	√*3	\checkmark	\checkmark	\checkmark	\checkmark
HFD ^{*1}	Inverter reset ^{*2}	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HF4	Abnormal contents all clear	~	~	~	~	-	~	~	~	~
HFC	Parameter all clear	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HFC	User clear	-	-	-	-	-	\checkmark	\checkmark	-	-
HFF	Link parameter extended setting	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

*1. The instruction code "HFD (inverter reset)" does not request a response from the inverter. Accordingly, even if inverter reset is executed to a station number at which an inverter is not connected, error does not occur.

It takes about 2.2 seconds to complete execution of inverter reset.

- *2. When resetting the inverter, please specify H9696 as <u>s</u>. Do not use H9966.
- *3. Please write "0" to instruction code HFF (Link parameter expansion setting) just before the IVDR instruction when writing frequency.

When "0" is not written, writing of the frequency may not be executed normally.

3. Related devices

\rightarrow For the instruction execution complete flag use method, refer to Section 1.3.4.

Nun	nber	Description	Nun	nber	Description
ch1	ch2	Description	ch1	ch2	Description
M8	029	Instruction execution complete	D8063	D8438	Error code of serial communication error ^{*1}
M8063	M8438	Serial communication error ^{*1}	D8150	D8155	Response wait time in inverter communication ^{*1}
M8151	M8156	Inverter communicating	D8151	D8156	Step number in inverter communication*3
M8152	M8157	Inverter communication error ^{*2}	D8152	D8157	Error code of inverter communication error*2
M8153	M8158	Inverter communication error latch ^{*2}	D8153	D8158	Latch of inverter communication error occurrence $step^{*2^{*3}}$
M8154	M8159	IVBWR instruction error ^{*2}	D8154	D8159	IVBWR instruction error parameter number*2*3

*1. Cleared when PLC power supply is turned from OFF to ON.

*2. Cleared when the PLC mode switches from STOP to RUN.

*3. Initial value: -1

Cautions

\rightarrow For other cautions, refer to the Data Communication Edition manual.

- 1) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
- 2) It is not permitted to use an "IVCK, IVDR, IVRD, IVRR, IVBWR^{*1} or IVMC" instruction and a following instruction for the same port:
 - "RS or RS2" instruction
 - "ADPRW" instruction
 - "FLCRT*1, FLDEL*1, FLWR*1, FLRD*1, FLCMD*1 or FLSTRD*1" instruction
- 3) Two or more inverter communication instructions (IVCK, IVDR, IVRD, IVWR, IVBWR^{*1} and IVMC) can be driven for the same port at the same time.
- 4) Some restrictions to applicable devices
 - ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 - ▲2: The FX₃U and FX₃UC PLCs only are applicable.
 - *1. The instruction is not provided in the FX3S, FX3G and FX3GC PLCs.

PLC applicable version

The table below shows PLC versions applicable to each inverter.

PLC	FREQROL-V500/F500/A500/E500/S500	FREQROL-F700/A700	FREQROL-E700/D700
FX3S	Ver.	.1.00 or later	
FX3G	Ver.	.1.10 or later	
FX3GC	Ver.	.1.40 or later	
FX3U	Ver.2.20 or later		Ver.2.32 or later
FX3UC	Ver.1.00 or later	Ver.2.20 or later	Ver.2.32 or later

29

ictions

30

nmunication)

21

30.3 IVRD / Inverter Parameter Read

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	Δ	0	×	×	×	×	×	×

Outline

This instruction reads an inverter parameter to the PLC using the computer link operation function of the inverter.

This instruction corresponds to the EXTR (K12) instruction in the FX2N and FX2NC series PLCs.

\rightarrow For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language			
name	operation	form	Structured ladder/FBD	ST			
IVRD	16 bits	Continuous	IVRD — EN ENO — s1 d — s2 — n	IVRD(EN,s1,s2,n,d);			

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
Input	<u>(s1)</u>	Inverter station number	ANY16
variable	<u>(s2</u>)	Inverter parameter number	ANY16
	n	Channel to be used (K1:ch1,K2:ch2*1)	ANY16
Output	ENO	Execution state	Bit
variable	d	Device storing the read value	ANY16

*1. "ch2" is not available for use for the FX3S and FX3G (14-point and 24-point type) PLCs.

3. Applicable devices

			Bi	t D	evi	ces	5		Word Devices						Others									
Operand type			Sy	ste	m	use	ər	Dig	it spe	cifica	tion		Sy: u	ste ser	m	Special unit		I	ndex	Co ta	ons Int	Real Number	Character String	Pointer
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	K	н	E	"0"	Р
<u>(s1</u>)														•	▲ 1	▲2			•	•	•			
<u>(s2</u>)														•	▲ 1	▲2			•	•	•			
n																				•	•			
d														•	▲ 1	▲2			•					

▲: Refer to "Cautions".

 \rightarrow For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. 16-bit operation (IVRD)

The value of the parameter in the device specified by $\underline{s2}$ is read from an inverter connected to a communication port n whose station number is in the device specified by $\underline{s1}$, and output to the device specified by \underline{d} .

2. Related devices

\rightarrow For the instruction execution complete flag use method, refer to Section 1.3.4.

Nun	nber	Description	Nun	nber	Description
ch1	ch2	Description	ch1	ch2	Description
M8	029	Instruction execution complete	D8063	D8438	Error code of serial communication error*1
M8063	M8438	8 Serial communication error*1		D8155	Response wait time in inverter communication*1
M8151	M8156	Inverter communicating	D8151	D8156	Step number in inverter communication*3
M8152	M8157	Inverter communication error ^{*2}	D8152	D8157	Error code of inverter communication error*1
M8153	M8158	Inverter communication error latch*2	D8153	D8158	Latch of inverter communication error occurrence $step^{\star 2^{\star 3}}$
M8154	M8159	IVBWR instruction error*2	D8154	D8159	IVBWR instruction error parameter number*2*3

*1. Cleared when PLC power supply is turned from OFF to ON.

- *2. Cleared when the PLC mode switches from STOP to RUN.
- *3. Initial value: -1

Cautions

\rightarrow For other cautions, refer to the Data Communication Edition manual.

- 1) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
- 2) It is not permitted to use an "IVCK, IVDR, IVRD, IVWR, IVBWR^{*1} or IVMC" instruction and a following instruction for the same port:
 - "RS or RS2" instruction
 - "ADPRW" instruction
 - "FLCRT^{*1}, FLDEL^{*1}, FLWR^{*1}, FLRD^{*1}, FLCMD^{*1} or FLSTRD^{*1}" instruction
- 3) Two or more inverter communication instructions (IVCK, IVDR, IVRD, IVWR, IVBWR^{*1} and IVMC) can be driven for the same port at the same time.
- 4) Some restrictions to applicable devices
 - ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable.
 - ▲2: The FX₃U and FX₃UC PLCs only are applicable.
- *1. The instruction is not provided in the FX3S, FX3G and FX3GC PLCs.

PLC applicable version

The table below shows PLC versions applicable to each inverter.

PLC	FREQROL-V500/F500/A500/E500/S500	FREQROL-E700/D700									
FX3S	Ver.1.00 or later										
FX3G	Ver	Ver.1.10 or later									
FX3GC	Ver	.1.40 or later									
FX3U	Ver.2.20 or later		Ver.2.32 or later								
FX3UC	Ver.1.00 or later	Ver.2.20 or later	Ver.2.32 or later								

30.4 IVWR / Inverter Parameter Write

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	Δ	0	×	×	×	×	×	×

Outline

This instruction writes a parameter of an inverter using the computer link operation function of the inverter. This instruction corresponds to the EXTR (K13) instruction in the FX2N and FX2NC series PLCs. \rightarrow For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language										
name	operation	form	Structured ladder/FBD	ST									
IVWR	16 bits	Continuous	IVWR 	IVWR(EN,s1,s2,s3,n);									

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
	<u>(s1)</u>	Inverter station number	ANY16
Input	<u>(s2</u>)	Inverter parameter number	ANY16
variable	<u>(s3)</u>	Set value to be written to the inverter parameter or device storing the data to be set	ANY16
	n	Channel to be used (K1:ch1,K2:ch2 ^{*1})	ANY16
Output variable	ENO	Execution state	Bit

*1. "ch2" is not available for use for the FX3S and FX3G (14-point and 24-point type) PLCs.

3. Applicable devices

	Bit Devices						s					W	orc	I De	evice	es				Others				
Operand type			Sy	ste	m	use	ər	Dig	it spe	ecifica	tion		Sy: u	stei ser	m	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	Х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	Κ	н	E	"0"	Р
<u>(s1</u>)														•	▲ 1	▲2			•	•	•			
<u>(s2</u>)														•	▲ 1	▲2			•	•	•			
<u>(s3)</u>														•	▲ 1	▲2			•	•	•			
n																				•	•			

▲: Refer to "Cautions".

 \rightarrow For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. 16-bit operation (IVWR)

A value specified in the device specified by (s_3) is written to a parameter in the device specified by (s_2) in an inverter connected to a communication port n whose station number is in the device specified by (s_1) .

*1. Mitsubishi Electric's FREQROL - F700, A700, E700, D700, V500, F500, A500, E500 and S500 series general purpose inverters

2. Related devices

\rightarrow For the instruction execution complete flag use method, refer to Section 1.3.4.

Nun	nber	Description	Nun	nber	Description
ch1	ch2	Description	ch1	ch2	Description
M8	029	Instruction execution complete	D8063	D8438	Error code of serial communication error*1
M8063	M8438	Serial communication error*1	D8150	D8155	Response wait time in inverter communication*1
M8151	M8156	Inverter communicating	D8151	D8156	Step number in inverter communication*3
M8152	M8157	Inverter communication error*2	D8152	D8157	Error code of inverter communication error*2
M8153	M8158	Inverter communication error latch*2	D8153	D8158	Latch of inverter communication error occurrence step*2*3
M8154	M8159	IVBWR instruction error*2	D8154	D8159	IVBWR instruction error parameter number*2*3

- *1. Cleared when PLC power supply is turned from OFF to ON.
- *2. Cleared when the PLC mode switches from STOP to RUN.
- *3. Initial value: -1

Cautions

\rightarrow For other cautions, refer to the Data Communication Edition manual.

- 1) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
- 2) It is not permitted to use an "IVCK, IVDR, IVRD, IVRR, IVBWR^{*1} or IVMC" instruction and a following instruction for the same port:
 - "RS or RS2" instruction
 - "ADPRW" instruction
 - "FLCRT^{*1}, FLDEL^{*1}, FLWR^{*1}, FLRD^{*1}, FLCMD^{*1} or FLSTRD^{*1}" instruction
- Two or more inverter communication instructions (IVCK, IVDR, IVRD, IVWR, IVBWR^{*1} and IVMC) can be driven for the same port at the same time.
- 4) Cautions on using the password function in the D700 Series.
 - a) When a communication error occurs

When a communication error occurs in an inverter communication instruction, the FX PLC automatically retries communication up to 3 times^{*2}.

Accordingly, note that the number of times of password reset error displayed in accordance with the setting of Pr297 may not agree with the actual number of times of password input error as described below when a password reset error occurs in the D700 Series in which "display of the number of times of password reset error"^{*3} is made valid using Pr297.

Do not execute automatic retry (re-driving of an inverter instruction) using a sequence program when writing data to Pr297.

21

Cases in which a password reset error occurs in an inverter communication instruction, and the actual number of times of reset error in such cases.

- When a wrong password is written to Pr297 due to a password input error When the writing instruction is executed once, a password reset error occurs 3 times.
- When the password cannot be written correctly to Pr297 due to noise, etc. A password reset error occurs up to 3 times.
- b) When registering the password

When registering the password in the D700 Series inverter using an inverter communication instruction, write the password to Pr297, read Pr297, and then confirm that registration of the password is completed normally^{*4}.

If writing of the password to Pr297 is not completed normally due to noise, etc., the FX PLC automatically retries writing, and the registered password may be reset by the retry.

5) Some restrictions to applicable devices

▲1: The FX3G, FX3G, FX3U and FX3UC PLCs only are applicable.

▲2: The FX₃U and FX₃UC PLCs only are applicable.

- *1. The instruction is not provided in the FX3S, FX3G and FX3GC PLCs.
- *2. The FX PLC executes the first communication, and then retries communication twice (3 time in total).
- *3. When "display of the number of times of password reset error" is made valid in the D700 Series using Pr297 and when a password reset error occurs 5 times, the "reading/writing restriction" cannot be reset even if the right password is input.

For recovery from this status, it is necessary to all-clear all parameters in the D700 Series.

*4. When the value given as a result of reading Pr297 is "0" to "4", registration of the password is completed normally.

PLC applicable version

The table below shows PLC versions applicable to each inverter.

PLC	FREQROL-V500/F500/A500/E500/S500 FREQROL-F700/A700 FREQROL-E700/											
FX3S	Ver.1.00 or later											
FX3G	Ver	Ver.1.10 or later										
FX3GC	Ver	.1.40 or later										
FX3U	Ver.2.20 or later	Ver.2.20 or later Ver.2.32 or later										
FX3UC	Ver.1.00 or later	Ver.2.20 or later	Ver.2.32 or later									
30.5 IVBWR / Inverter Parameter Block Write

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)	
0	×	×	×	×	×	×	×	×	

Outline

This instruction writes parameters of an inverter at one time using the computer link operation function of the inverter.

\rightarrow For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST
IVBWR	16 bits	Continuous	IVBWR — EN ENO — s1 — s2 — s3 — n	IVBWR(EN,s1,s2,s3,n);

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
	<u>(s1)</u>	Inverter station number	ANY16
Input variable	<u>(s2</u>)	Number of parameters in an inverter to be written at one time.	ANY16
	<u>(s3)</u>	Head device of a parameter table to be written to an inverter	ANY16
	n	Channel to be used (K1:ch1,K2:ch2)	ANY16
Output variable	ENO	Execution state	Bit

3. Applicable devices

			Bit	t D	evi	ce	s					W	orc	d De	evice	es				Others					
Operand type			Sys	ste	m	use	ər	Dig	it spe	cifica	tion		Sy: u	stei ser	m	Special unit		h	ndex	Co ta	ns nt	Real Number	Character String	Pointer	
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	Е	"0"	Р	
<u>(s1</u>)														•	•	•			٠	•	•				
<u>(s2</u>)														•	•	•			٠	•	•				
<u>(s3)</u>														•	•	•			٠						
n																				•	٠				

30

nmunication)

Function and operation explanation

\rightarrow For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. 16-bit operation (IVBWR)

A data table^{*1} (parameter numbers and set values) specified in $\underline{s2}$ and $\underline{s3}$ is written to an inverter connected to a communication port n whose station number is in the device specified by $\underline{s1}$ all at once.

- *1. The table below shows the data table format.
 - (s2) : Number of parameters to be written

(s3) : Head device number of data table

Device	Parameter numbers	to be written and set values					
<u>(s3)</u>	1st parameter	Parameter number					
<u>s</u> 3)+1	Tot parameter	Set value					
<u>s</u> 3)+2	2nd parameter	Parameter number					
<u>s</u> 3)+3		Set value					
:	:	:					
<u>s3</u> +2 <u>s2</u> -4	(2) 1"th parameter	Parameter number					
<u>s</u> 3+2 <u>s</u> 2-3		Set value					
<u>s</u> 3+2 <u>s</u> 2-2	(c2) th parameter	Parameter number					
<u>s3</u> +2 <u>s2</u> -1		Set value					

2. Related devices

\rightarrow For the instruction execution complete flag use method, refer to Section 1.3.4.

Nur	nber	Description	Nur	nber	Description					
ch1	ch2	Description	ch1	ch2	Description					
M8	029	Instruction execution complete	D8063	D8438	Error code of serial communication error*1					
M8063	M8438	Serial communication error*1	D8150	D8155	Response wait time in inverter communication*1					
M8151	M8156	Inverter communicating	D8151	D8156	Step number in inverter communication*3					
M8152	M8157	Inverter communication error*2	D8152	D8157	Error code of inverter communication error*2					
M8153	M8158	Inverter communication error latch*2	D8153	D8158	Latch of inverter communication error occurrence step $^{\ast 2^{\ast}3}$					
M8154	M8159	IVBWR instruction error*2	D8154	D8159	IVBWR instruction error parameter number*2*3					

*1. Cleared when PLC power supply is turned from OFF to ON.

- *2. Cleared when the PLC mode switches from STOP to RUN.
- *3. Initial value: -1

Cautions

\rightarrow For other cautions, refer to the Data Communication Edition manual.

- 1) It is not permitted to use an "IVCK, IVDR, IVRD, IVWR, IVBWR or IVMC" instruction and a following instruction for the same port:
 - "RS or RS2" instruction
 - "ADPRW" instruction
 - "FLCRT, FLDEL, FLWR, FLRD, FLCMD or FLSTRD" instruction
- Two or more inverter communication instructions (IVCK, IVDR, IVRD, IVRD, IVBWR and IVMC) can be driven for the same port at the same time.

PLC pplicable version

The table below shows PLC versions applicable to each inverter.

PLC	FREQROL-V500/F500/A500/E500/S500	FREQROL-F700/A700	FREQROL-E700/D700
FX3U	Ver.2.20 or later		Ver.2.32 or later
FX3UC	Ver.1.00 or later	Ver.2.20 or later	Ver.2.32 or later

30.6 IVMC / Inverter Multi Command

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
\bigtriangleup	Δ	0	×	×	×	×	×	×

Outline

This instruction writes 2 types of settings (operation command and set frequency) to the inverter, and reads 2 types of data (inverter status monitor, output frequency, etc.) from the inverter at the same time. \rightarrow For detailed explanation of the instruction, refer to the Data Communication Edition manual.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST
IVMC	16 bits	Continuous	IVMC EN ENO s1 d s2 s3 n	IVMC(EN,s1,s2,s3,n,d);

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
	<u>(s1)</u>	Inverter station number (K0 to K31)	ANY16
Input variable	<u>(s2)</u>	Multiple instructions for inverter: Send/receive data type specification	ANY16
·	<u>(53)</u>	Head device which stores data to be written to the inverter (Occupies 2 points.)	ARRAY[01] OF ANY16
	n	Channel to be used (K1: ch1, K2: ch2 ^{*1})	ANY16
Output	ENO	Execution state	Bit
variable	d	Head device which stores values to be read from the inverter (Occupies 2 points.)	ARRAY[01] OF ANY16

*1. "ch2" is not available for use for the FX3S and FX3G (14-point and 24-point type) PLCs.

3. Applicable devices

			Bi	t D	evi	ice	s					W	ord	1 D	evic	es				Others						
Operand type			Sy	ste	m	use	er	Dig	it spe	ecifica	tion		Sy: u	ste ser	m	Special unit		I	ndex	Co ta	ons Int	Real Number	Character String	Pointer		
	х	Y	Μ	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U⊟\G□	۷	z	Modifier	κ	н	E	"0"	Р		
<u>(s1</u>)														•	▲ 1	▲2			•	•	•					
<u>(s2</u>)														•	▲1	▲2			•	•	•					
<u>(s3)</u>														•	▲ 1	▲2			•							
n																				•	•					
d														•	▲ 1	▲2			•							

▲: Refer to "Cautions".

29

ctions

30

nmunication)

Function and operation explanation

1. 16-bit operation

This instruction executes multiple commands of an inverter connected to a communication port n whose station number is specified by the device specified in <u>s1</u>.

Specify the send/receive data type using $\underline{s2}$, the head device which stores data to be written to the inverter using $\underline{s3}$, and the head device which stores values to be read from the inverter using \underline{d} .

\rightarrow For detailed explanation of the instruction, refer to the Data Communication Edition manual.

2. Send/recive data type

The table below shows valid send data 1 and 2 and receive data 1 and 2 specified by the send/receive data type specified in <u>s</u>.

Send/receive data type	Send (Write conten	l data its to Inverter)	Recive data (Read contents from Inverter)			
specified in (S2)	Data 1 (💷)	Data 2 (🛐 +1)	Data 1 (d)	Data 2 (+1)		
H0000		Set frequency (RAM)		Output frequency (speed)		
H0001	Run command	Set frequency (IVAM)	Inverter status monitor	Special monitor		
H0010	(expansion)	Set frequency	(expansion)	Output frequency (speed)		
H0011		(RAM, EEPROM)		Special monitor		

3. Related devices

ightarrow For the instruction execution complete flag use method, refer to Section 1.3.4.

Nun	nber	Description	Nun	nber	Description	
ch1	ch2	Description	ch1	ch2	Description	
M8029		Instruction execution complete	D8063	D8438	Error code of serial communication error ^{*1}	
M8063	M8438	Serial communication error*1	D8150	D8155	Response wait time in inverter communication ^{*1}	
M8151	M8156	Inverter communicating	D8151	D8156	Step number in inverter communication*3	
M8152	M8157	Inverter communication error*2	D8152	D8157	Error code of inverter communication error ^{*2}	
M8153	M8158	Inverter communication error latch ^{*2}	D8153	D8158	Latch of inverter communication error occurrence $step^{+2^{+3}}$	
M8154	M8159	IVBWR inverter instruction error ^{*2}	D8154	D8159	IVBWR instruction error parameter number ^{*2*3}	

*1. Cleared when PLC power supply is turned from OFF to ON.

*2. Cleared when the PLC mode switches from STOP to RUN.

*3. Initial value: -1

21

(Real Clock

plied Instructions eal Time ock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

Data

26

Applied Instructio (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applie (Data

uctions

tions

Cautions

- 1) The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.70 or later. The instruction is provided in the FX3G PLC Ver. 1.40 or later.
- 2) It is not permitted to use an "IVCK, IVDR, IVRD, IVWR, IVBWR*1 or IVMC" instruction and a following instruction for the same port:
 - "RS or RS2" instruction
 - "ADPRW" instruction
 - "FLCRT^{*1}, FLDEL^{*1}, FLWR^{*1}, FLRD^{*1}, FLCMD^{*1} or FLSTRD^{*1}" instruction.
- 3) Two or more inverter communication instructions (IVCK, IVDR, IVRD, IVWR, IVBWR^{*1} and IVMC) can be driven for the same port at the same time.
- 4) Two devices are occupied respectively from the devices specified in (s3) and (d). Make sure not to use such devices as to be used for other controls.
- 5) If a device number outside the allowable range due to indexing, etc. is specified in d, the receive data from the inverter is not stored in devices specified in (d). However, values set in (s) and (s) +1 may be written to the inverter.
- 6) If any unspecified value is set in (s2), unexpected data may be written to or read from the inverter, and values stored in \bigcirc and \bigcirc +1 may be updated.
- 7) IVMC instruction reads the inverter status at the time of communication with the inverter, and stores the read status to the device specified in d. Accordingly, the status written by IVMC instruction can be read by a next or later read instruction (IVCK or IVMC).
- 8) Some restrictions to applicable devices ▲1: The FX3G, FX3GC, FX3U and FX3UC PLCs only are applicable. ▲2: The FX₃U and FX₃UC PLCs only are applicable.
 - The instruction is not provided in the FX3S, FX3G and FX3GC PLCs. *1.

Applicable inverters

This instruction is applicable to the following inverters:

- FREQROL-E700 (February 2009 and later)
- FREQROL-D700 (Applicable in all)

30.7 ADPRW / MODBUS Read/Write

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)
Δ	Δ	0	×	×	×	×	×	×

Outline

This instruction allows the MODBUS Master to communicate (read/write data) with its associated Slaves.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language						
name	operation	form	Structured ladder/FBD	ST					
ADPRW	16 bits	Continuous	ADPRW EN ENO s s1 s2 s3 s4	ADPRW (EN, s, s1, s2, s3, s4)					

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
	S	Slave Node Address (K0 to K32)	ANY16
Input	<u>(s1</u>)	Command Code (See Subsection 30.7.1)	ANY16
variable	<u>(s2</u>)	Command Parameter depending on the Command Code (See Subsection 30.7.1)	ANY16
	<u>(s3)</u>	Command Parameter depending on the Command Code (See Subsection 30.7.1)	ANY16
	<u>(s4</u>)	Command Parameter depending on the Command Code (See Subsection 30.7.1)	ANY_SIMPLE
Output variable	ENO	Execution state	Bit

3. Applicable devices

			Bit	De	evic	es			Word Devices							Others								
Operand type			Sys	ter	n u	se	r	Dig	it spe	ecifica	tion	S	yst	em ı	iser	Special unit		I	ndex	Co ta	ons Int	Real Number	Character String	Poin ter
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
s														▲1	▲2				•	•	•			
<u>(s1)</u>														▲1	▲2				•	•	•			
<u>s2</u>														▲1	▲2				•	•	•			
<u>(s3)</u>														▲1	▲2				•	•	•			
<u>(s4</u>)	•	•	▲1			•								▲1	▲2				•	•	•			

▲ : Refer to "Cautions".

Function and operation explanation

1. 16-bit operation

Command Code (s1) is operated on Slave Node (s) according to Parameters (s2), (s3) and (s4). Use 0 as the Slave Node Address for Broadcast commands.

21

Applied Instructions (Real Time Clock Control)

22

Applied Instructions (External Device)

23

Applied Instru (Extension Function)

uctions

24

Applied Instructions (Others)

25

Instructions (Data ation)

26

Applied Instructions (Character String Control)

27

Applied Instructions (Data Operation 3)

28

Applied Instructions (Data Comparison)

29

ictions

30

Applied Instructions (External Device Communication)

Cautions

- 1) The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.40 or later. The instruction is provided in the FX3G PLC Ver. 1.30 or later.
- 2) It is not permitted to use an "ADPRW" instruction and a following instruction for the same port:
 "RS or RS2" instruction
 - "IVCK, IVDR, IVRD, IVWR, IVBWR*1, IVMC" instruction
 - "FLCRT*1, FLDEL*1, FLWR*1, FLRD*1, FLCMD*1 or FLSTRD*1" instruction
- 3) Some restrictions to applicable devices
 ▲1: Excluding special auxiliary relays (M) and Special data register (D).
 ▲2: The FX₃U and FX₃UC PLCs only are applicable.
- *1. The instruction is not provided in the FX3S, FX3G and FX3GC PLCs.

30.7.1 Command Code and Parameters

<u>s1</u>	<u>s2</u>	<u></u>		<u></u>		
411			PLC Destination Dev	vice (head address)		
Read Coils	0000H to FFFFH	Device Count: 1 to 2000	Applicable Devices	D, R, M, Y, S		
			Block Length	(<u>s</u> 3)+15) ÷16 ^{*2}		
2H			PLC Destination Dev	vice (head address)		
Read Discrete	MODBUS Address:	Device Count: 1 to 2000	Applicable Devices	D, R, M, Y, S		
Inputs			Block Length	(<u>s</u> 3)+15) ÷16 ^{*2}		
3H			PLC Destination Dev	vice (head address)		
Read Holding	MODBUS Address:	Device Count: 1 to 125	Applicable Devices	D, R		
Register			Block Length	<u>(s3)</u>		
4H			PLC Destination Dev	vice (head address)		
Read Input	MODBUS Address:	Device Count: 1 to 125	Applicable Devices	D, R		
Register			Block Length	<u>\$3</u>		
5H Write Single Coil			PLC Sourse Device	(head address)		
	MODBUS Address: 0000H to FFFFH	0 (fixed)	Applicable Devices	D, R, K, H, X, Y, M, S (D, R, X, Y, M, S can be indexed.)		
			Block Length	1 Point		
64			PLC Source Device	(head address)		
Write Single Register	MODBUS Address: 0000H to FFFFH	0 (fixed)	Applicable Devices	D, R, K, H (D, R can be indexed.)		
			Block Length	1 Point		
7H			PLC Destination Device (head address)			
Read Exception State (Available only in	0 (fixed)	0 (fixed)	Applicable Devices	D, R		
FX3U and FX3UC PLCs)			Block Length	1 Point		
			Loop-back Test Data	1		
	Sub-function: 0H	Sub-function Data	(Slave response: ech	no of $(\underline{s3})$		
	Loop-back Test	(loop-back data): 0 to 65535	Applicable Devices	D, R		
8H			Block Length	1 Point		
Diagnosis	Sub-function: 1H	Sub-function Data:	(Slave response: ech	no of <u>s</u>)		
(Available only in FX3U	Restart	Event Log	Applicable Devices	D, R		
	Communication	0xFF00: Reset Event Log	Block Length	1 Point		
	Sub-function: 2H		PLC Destination Dev	vice (head address)		
	Return	0 (fixed)	Applicable Devices	D, R		
	Diagnostic Register		Block Length	1 Point		

The following table shows the required command parameters for each command code

*2. This calculation formula is applicable when the applicable device is D or R.

<u>(s1)</u>	(s2)	<u>(\$3)</u>		<u>(s4)</u>
	Sub-function: 3H	Sub-function Data (ASCII	(Slave response: ec	ho of (s3)
	Change ASCII Input	Mode End of Message	Applicable Devices	D. R
	Delimiter	Character): 00H to FFH	Block Length	1 Point
			0 (fixed)	
	Sub-function: 4H	0 (fixed)	Applicable Devices	D, R
	Force Listen Only Mode		Block Length	0
	Sub-function: AH		(Slave response: ec	ho of (s3)
	Clear Counter and	0 (fixed)	Applicable Devices	D, R
	Diagnostic Register		Block Length	1 Point
	Sub function: BH		PLC Destination Dev	l vice (head address)
	Return Bus Message	0 (fixed)	Applicable Devices	D, R
	Counter		Block Length	1 Point
	Sub-function: CH		PLC Destination De	vice (head address)
	Return Bus	0 (fixed)	Applicable Devices	D, R
	Communication Error Counter	- (Block Length	1 Point
8H Diagnosis	Sub-function: DH		PLC Destination Dev	l vice (head address)
(Available only in FX3U	Return Bus Exception	0 (fixed)	Applicable Devices	D, R
and FX3UC PLCs)	Error Counter		Block Length	1 Point
	Sub-function: EH		PLC Destination Dev	vice (head address)
	Return Slave	0 (fixed)	Applicable Devices	D, R
	Message Counter		Block Length	1 Point
	Sub-function: FH		PLC Destination Dev	vice (head address)
	Return Slave No	0 (fixed)	Applicable Devices	D, R
	Response Counter		Block Length	1 Point
			PLC Destination Dev	vice (head address)
	Sub-tunction: 10H	0 (fixed)	Applicable Devices	D, R
	Retain Will Counter		Block Length	1 Point
	Sub-function: 11H		PLC Destination Dev	vice (head address)
	Return Slave Busy	0 (fixed)	Applicable Devices	D, R
	Counter		Block Length	1 Point
	Sub-function: 12H		PLC Destination Dev	vice (head address)
	Return Character	0 (fixed)	Applicable Devices	D, R
	Overrun Counter		Block Length	1 Point
BH			PLC Destination Dev	vice (head address)
Get Comm.			• <u>s4</u> : Programm	ing State
Event Counter	0 (fixed)	0 (fixed)	• (s4) +1: Event C	Counter
(Available only in FX3U and FX3UC PLCs)			Applicable Devices	D, R
			Block Length	2 Point
			PLC Destination De	vice (head address)
			• (s4): Programm	ning State
CH Get Comm			• (<u>s4</u>)+1: Event (Counter
Event Log	0 (fixed)	0 (fixed)	• (s4) +2: Bus Me	ssage Counter
(Available only in FX3U			• (s4) +3: Log Ler	ngth
and FX3UC PLCs)			• <u>\$4</u> +4 to 35: U	p to 64 Bytes Event Log
			Applicable Devices	D, R
				(head address)
			FLC Source Device	
FH Write Multiple Coils	MODBUS Address: 0000H to FFFFH	Device Count: 1 to 1968	Applicable Devices	(D, R, M, X, Y, S (D, R, M, X, Y, S can be indexed.)
			Block Length	(<u>s</u> 3)+15) ÷16 ^{*1}

*1. This calculation formula is applicable when the applicable device is D or R.

<u>(s1</u>)	<u>(s2</u>)	<u>(s3</u>)		<u>(s4)</u>		
1011			PLC Source Device	(head address)	dinstru Cont	
Write Multiple Registers	0000H to FFFFH	Device Count: 1 to 123	Applicable Devices	(D, R can be indexed.)	rol)	
			Block Length	<u>(s3)</u>	22	
			PLC Destination Dev	vice (head address)		
11H Depart Clave ID			• <u>s4</u> : Slave ID		Eppli	
(Available only in FX3U	0 (fixed)	0 (fixed)	• (s4) +1: RUN/S	TOP State	edIn	
and FX3UC PLCs)			Applicable Devices	D, R	Dev	
			Block Length	2 Point	tions (ice)	
16H			OR Mask: 0000H to	FFFFH	22	
Mask Write Register	MODBUS Address:	AND Mask:	Applicable Devices	D, R, K, H	23	
(Available only in FX3U	0000H to FFFFH	0000H to FFFFH		(D, R can be indexed.)	Fun Xt	
and FX3UC PLCS)			Block Length	1 Point	iedIn	
			PLC Source Device / Destination Device (head			
			address)		tions	
			• <u>S4</u> Write Data	t I	24	
		Dovice Count:	• <u>s4</u> + 1. While D	ald Z	24	
17H Road/Write Multiple	Write Address	Count	• (s4) +(write Cot	and Data 1	(QPp	
Registers	0000H to FFFFH	1 to 121	• <u>s4</u> + <u>s5</u> . Rea	au Data 1	ners	
(Available only in FX3U	(s2)+1: Read Address	(s3)+1: Read Count	• $(34) + (33) + 1. F$)	
and FX3UC PLCs)	0000H to FFFFH	1 to 125	$-\frac{34}{34} + \frac{35}{35} + (Re$	au Count (35) + 1)-1.	tions	
			Applicable Daviese			
			Applicable Devices		25	
			Block Length	Write Count (s3)+	Applied (Block Operat	
			-	Read Count (s3)+1		

21

28

Applied Instructions (Data Comparison)

Applied Instructions (External Device Communication)

31. Applied Instructions (Data Transfer 3)

This chapter introduces the instructions for executing more complicated processing for fundamental applied instructions and for special processing.

Instruction name	Function	Reference
RBFM	Divided BFM Read	Section 31.1
WBFM	Divided BFM Write	Section 31.2

31.1 RBFM / Divided BFM Read

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
\triangle	×	×	×	×	×	×	×	×

Outline

This instruction reads data from continuous buffer memories (BFM) in a special function block and unit over several operation cycles by the time division method. This instruction is convenient for reading received data, etc. stored in buffer memories in a special function block and unit for communication by the time division method. FROM instruction is also available to read the buffer memory (BFM) data.

 \rightarrow For FROM instruction, refer to Section 14.8.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in (each language
name	Operation	form	Structured ladder/FBD	ST
RBFM	16 bits	Continuous	RBFM – EN ENO – – m1 d – – m2 – n1 – n2	BFM(EN,m1,m2,n1,n2,d);

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
Input variable	(m1)	Unit number [0 to 7]	ANY16
	(m2)	Head buffer memory (BFM) number	ANY16
	(n1)	Number of all buffer memories (BFM) to be read [1 to 32767]	ANY16
	<u>(n2)</u>	Number of points transferred in one operation cycle [1 to 32767]	ANY16
Output	ENO	Execution state	Bit
variable	d	Head device storing data to be read from buffer memory (BFM)	ANY16

3. Applicable devices

	Bit Devices											W	ord	Dev	vic	es				Others				
Operand type		1	System user Digit specification System user Unit		Index			Index Col		Real Number	Character String	Pointer												
	Х	Y	М	Т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	K	н	E	"0"	Р
(m1)														٠	•					•	•			
(m2)														٠	•					•	•			
(n1)														•	•					•	•			
<u>(n2)</u>														٠	•					•	•			
D														▲ 1	•				•					

▲: Refer to "Cautions".

Interrupt F and Pulse Function

File

34

Function and operation explanation

1. 16-bit operation (RBFM)

"n1" buffer memory (BFM) units at location No. "m2" in special function block/unit No. "m1" are transferred (read) to the device specified by \bigcirc in the PLC. While transferring, "n1" is divided by "n2" so n1/n2 buffer memories (rounded up when there is a remainder) are transferred per scan time.

- When the instruction is finished normally, the instruction execution complete flag M8029 turns ON. When the instruction is finished abnormally, the instruction execution abnormally complete flag M8329 turns ON.
- 2) When RBFM or WBFM instruction in another step is executed for the same unit number, the instruction non-execution flag M8328 is set to ON, and execution of such an instruction is paused. When execution of the other target instruction is complete, the paused instruction resumes.

Related devices

Device	Name Description						
M8029	Instruction execution complete	Turns ON when an instruction is finished normally.					
M8328	Instruction non-execution	Turns ON when RBFM or WBFM instruction in another step is executed for the same unit number.					
M8329	Instruction execution abnor- mally complete	Turns ON when an instruction is finished abnormally.					

Related instructions

Instruction	Description
FROM	Read from a special function block
ТО	Write to a special function block
WBFM	Divided BFM write

Cautions

- 1) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.
- Some restrictions to applicable devices
 ▲1: Except special data register D

Error

An operation error is caused in the following case. The error flag M8067 turns ON, and the error code is stored in D8067.

1) When the unit number "m1" does not exist. (Error code: K6708)

31.1.1 Common items between RBFM instruction and WBFM instruction

Specification of unit number of special function block and unit and buffer memory → For the connection method of special extension units and blocks, number of connectable units and blocks, and handling of I/O numbers, refer to the manual of the PLC used and special function block and unit.

1. Unit number "m1" of a special extension unit and block

Use the unit number to specify to which equipment the RBFM and/or WBFM instruction works. Setting range: K0 to K7

Unit No.0 Built-in CC-Link/LT		Unit No.1	Unit No.2		Unit No.3
FX₃∪c-32MT-LT(-2) Main unit	I/O extension block	Special extension block	Special extension block	I/O extension block	Special extension block

A unit number is automatically assigned to each special extension unit and block connected to the PLC. The unit number is assigned in the way "No. $0 \rightarrow No. 1 \rightarrow No. 2 \dots$ " starting from the equipment nearest to the main unit.

Since the FX_{3UC}-32MT-LT(-2) PLC has a built-in CC-Link/LT master, the unit number is given "No. 1 \rightarrow No. 2 \rightarrow No. 3 ..." from the equipment nearest to the main unit.

2. Buffer memory (BFM) number "m2"

Up to 32767 16-bit RAM memories are built in a special extension unit and block, and they are called buffer memories (BFM).

The buffer memory number is from "0" to "32766", and the contents are determined according to each special function unit and block.

Setting range: K0 to K32766

 \rightarrow For the contents of buffer memories, refer to the manual of the special function block and unit used.

Applied Instruction List

31

Applied Instructions (Data Transfer 3)

32

nstr

uctions

33

731

Cautions

- A watchdog timer error may occur when many numbers of points are transferred in one operation cycle. In such a case, take either of the following countermeasures.
 - a) Change the watchdog timer time
 - By overwriting the contents of D8000 (watchdog timer time), the watchdog timer detection time is changed (initial value: K200).

When the program shown below is input, the sequence program will be monitored with the new watchdog timer time.

- b) Change the number of transferred points "n2" in each operation cycle. Change the number of transferred points "n2" in each operation cycle to a smaller value.
- 2) Do not stop the driving of the instruction while it is being executed. If driving is stopped, the buffer memory (BFM) reading/writing processing is suspended, but the data acquired in the middle of reading/ writing processing is stored in the device specified by d and later and buffer memories (BFM).

- 3) When indexing is executed, the contents of index registers at the beginning of execution are used. Even if the contents of index registers are changed after the instruction is executed, such changes do not affect the process of the instruction.
- 4) The contents of "n1" devices starting from the device specified by d change while RBFM instruction is executed. After execution of the instruction is completed, execute another instruction for "n1" devices starting from the device specified by d.
- 5) Do not update (change) the contents of "n1" devices starting from the device specified by s while WBFM instruction is executed. If the contents are updated, the intended data may not be written to the buffer memories (BFM).
- 6) Do not update (change) the contents of "n1" buffer memories (BFM) starting from the buffer memory NO. "m2" while RBFM instruction is executed. If the contents are updated, the intended data may not be read.
- 7) RBFM instruction is provided in the FX3UC PLC Ver. 2.20 or later.

Program example

In the program example shown below, data is read from and written to the buffer memories (BFM) in the unit No. 2 as follows:

 When X000 is set to ON, data stored in D100 to D179 (80 points) are written to the buffer memories (BFM) #1001 to #1080 in the special function block and unit whose unit number is No. 2 by 16 points in each operation cycle.

31

2) When X001 is set to ON, the buffer memories (BFM) #2001 to #2080 (80 points) in the special function block and unit whose unit number is No. 2 are written to D200 to D279 by 16 points in each operation cycle.

31.2 WBFM / Divided BFM Write

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
\bigtriangleup	×	×	×	×	×	×	×	×

Outline

This instruction writes data to continuous buffer memories (BFM) in a special function block and unit over several operation cycles by the time division method. This instruction is convenient for writing send data, etc. to buffer memories in a special function block and unit for communication by the time division method. TO instruction is also available for writing data to the buffer memory (BFM).

 \rightarrow For TO instruction, refer to Section 14.9.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language								
name	Operation	form	Structured ladder/FBD	ST							
WBFM	16 bits	Continuous	WBFM – EN ENO – m1 – m2 – s – n1 – n2	WBFM(EN,m1,m2,s,n1,n2);							

2. Set data

Va	ariable	Description	Data type			
	EN	Execution condition	Bit			
	(m1)	Unit number	ANY16			
Input	(m2)	Head buffer memory (BFM) number	ANY16			
variable	S	Head device storing data to be written to buffer memory (BFM)	ANY16			
	(n1)	Number of all buffer memories (BFM) to be written	ANY16			
	<u>(n2)</u>	Number of points transferred in one operation cycle	ANY16			
Output variable	ENO	Execution state	ANY16			

3. Applicable devices

Bit Devices									W	ord	l De	vic	es				Others							
Operand type			Sy	ste	m	use	ər	Dig	it spe	ecifica	tion		Sys u	sten ser	n	Special unit		I	ndex	Co ta	ons Int	Real Number	Character String	Pointer
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	Κ	н	Е	"□"	Р
(m1)														•	•					•	•			
(m2)														•	•					•	•			
S														▲1	•				•					
<u>(n1)</u>														•	•					•	•			
(n2)														•	•					•	•			

▲: Refer to "Cautions".

35

and Fun

Catch

lationships tween devices d addresses

В

Applied Instruction List

Function and operation explanation

1. 16-bit operation (WBFM)

"n1" word units from the device specified by s in the PLC are transferred (written) to buffer memory (BFM) location No. "m2" in special function unit and block No. "m1". While transferring, "n1" is divided by "n2" so n1/ n2 words (rounded up when there is a remainder) are transferred per scan time.

\rightarrow For the unit number, buffer memory (BFM) number, cautions and program example, refer to Section 31.1.1.

- When the instruction is finished normally, the instruction execution complete flag M8029 turns ON. When the instruction is finished abnormally, the instruction execution abnormally complete flag M8329 turns ON.
- 2) When RBFM or WBFM instruction in another step is executed for the same unit number, the instruction non-execution flag M8328 is set to ON, and execution of such an instruction is paused. When execution of the other target instruction is complete, the paused instruction resumes.

Related devices

Device	Name	Description
M8029	Instruction execution complete	Turns ON when an instruction is finished normally.
M8328	Instruction non-execution	Turns ON when RBFM or WBFM instruction in another step is executed for the same unit number.
M8329	Instruction execution abnor- mally complete	Turns ON when an instruction is finished abnormally.

Related instructions

Instruction	Error							
FROM Read from a special function block								
TO	Write to a special function block							
RBFM	Divided BFM write							

Cautions

- 1) The instruction is provided in the FX3UC PLC Ver. 2.20 or later.
- 2) Some restrictions to applicable devices
 - ▲1: Except special data register D

Error

An operation error is caused in the following case. The error flag M8067 turns ON, and the error code is stored in D8067.

1) When the unit number "m1" does not exist. (Error code: K6708)

32. Applied Instructions (High Speed Processing 2)

Instruction name	Function	Reference
DHSCT	High Speed Counter Compare With Data Table	Section 32.1

32.1 DHSCT / High Speed Counter Compare With Data Table

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction compares the current value of a high speed counter with a data table of comparison points, and then sets or resets up to 16 output devices.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language						
name	operation	form	Structured ladder/FBD	ST					
DHSCT	32 bits	Continuous	DHSCT EN ENO s1 d m s2 n	DHSCT(EN,s1,m,s2,n,d);					

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
	<u>(s1)</u>	Head device storing the data table	ANY32
Input variable	m	Number of comparison points in data table $(1 \le m \le 128)$	ANY32
	<u>(s2</u>)	High speed counter (C235 to C255)	ANY32
	n	Number of devices to which the operation status is output	ANY32
Output	ENO	Execution state	Bit
variable	d	Head device to which the operation status is output	Bit

3. Applicable devices

	Bit Devices Word Devices					es		Others																
Operand type		System user			Digit specification			System user		Special unit	Index		Cons tant		Real Number	Character String	Pointer							
	х	Y	М	Т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	×	z	Modifier	κ	н	E	"0"	Р
<u>(s1</u>)														•	•				•					
m																				•	•			
<u>(s2</u>)													▲ 1						•					
n																				•	•			
d		•	•			•													•					

▲: Refer to "Cautions".

Function and operation explanation

1. 32-bit operation (DHSCT)

The current value of a high speed counter specified in (s_2) is compared with the data table shown below which has "m" points stored in the device specified by (s_1) and later, and the operation output set value (ON or OFF) specified in the data table is output to the devices specified by (d).

Data table used for comparison

Comparison point number	Comparison data	Operation output set value (SET [1] or RESET [0])	Operation output destination
0	<u>(s1)</u> +1, (s1)	<u>(s1)</u> +2	
1	<u>(s1)</u> +4, <u>(s1)</u> +3	<u>(s1)</u> +5	
2	<u>(s1)</u> +7, <u>(s1)</u> +6	<u>(s1)</u> +8	(\mathbf{d}) to (\mathbf{d}) +n-1
:	:	:	
m-2	<u>s1</u> +3m-5, <u>s1</u> +3m-6	<u>(s1)</u> +3m-4	
m-1	<u>(s1)</u> +3m-2, <u>(s1)</u> +3m-3	<u>(s1)</u> +3m-1	

Operation output set value (SET [1] or RESET [0]) [Up to 16 points]

- 1) When this instruction is executed, the uppermost data table of the data tables is set as the comparison target.
- 2) When the current value of the high speed counter, specified in <u>s</u>, becomes equivalent to the comparison value in the data table, the corresponding operation output specified in the data table is output to the device specified by <u>d</u>.

If an output (Y) is specified in \bigcirc , the output processing is executed immediately without waiting for the output refresh executed by the END instruction.

When specifying and output (Y), make sure that the least significant digit of the device number is "0". Examples: Y000, Y010 and Y020

- 3) Immediately after step 2), "1" is added to the current table counter value D8138.
- 4) The next comparison point is set as the comparison target data.
- 5) Steps 2) and 3) are repeated until the current value of the table counter D8138 becomes "m". When the current value becomes "m", the instruction execution complete flag M8138 turns ON, and the execution returns to step 1). At this time, the table counter D8138 is reset to "0".
- 6) When the command contact is set to OFF, execution of the instruction is stopped and the table counter D8138 is reset to "0".

В

Applied Instruction L

List

31

Operation example

Comparison	Comparis	on data	SET/RES	ET pattern		
point number	Device	Comparison value	Device	Operation output set value	Table counter (D8138)	
0	D201, D200	K321	D202	H0001	0↓	
1	D204, D203	K432	D205	H0007	1↓	
2	D207, D206	K543	D208	H0002	2↓	
3	D210, D209	K764	D211	H0000	3↓	
4	D213, D212	K800	D214	H0003	$4\downarrow$ (repeated from "0")	

Current value of C235

*1. If this instruction is not executed, no processing is executed for outputs. In the operation example shown above, the command contact is "OFF".

2. Related devices

Device	Name	Description
M8138	DHSCT Instruction execution complete flag	Turns ON when the operation for the final table No. "m-1" is completed.
D8138	DHSCT Table counter	Stores the comparison point number handled as the comparison target.

Cautions

- This instruction can be executed only once in a program. If this instruction is programmed two or more times, an operation error is caused by the second instruction and later, and the instruction will not be executed.
- 2) This instruction constructs the data table at the END instruction after the first execution of the instruction. Accordingly, the operation output works after the second scan and later.
- 3) With regard to DHSCT, DHSCS, DHSCR and DHSZ instructions, up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33rd instruction and later, and the instruction will not be executed.
- 4) If an output (Y) is specified in d, the output processing is executed immediately without waiting for the output refresh executed by END instruction.
 When specifying an output (Y), make sure that the least significant digit of the device number is "0".
 Examples: Y000, Y010 and Y020
- 5) When a high speed counter specified in <u>s</u> is indexed with index, all high speed counters are handled as software counters.
- 6) For this instruction, only one comparison point (one line) is handled as the comparison target at one time. Processing will not move to the next comparison point until the current counter value becomes equivalent to the comparison point currently selected as the comparison target. If the current value of a high speed counter executes up counting using the comparison data table shown in the operation example on the previous page, be sure to execute the instruction while the current value of the high speed counter is smaller than the comparison value in comparison point No. 1.
- 7) When this instruction operates in the FX3U and FX3UC PLCs, the hardware counters (C235, C236, C237, C238, C239, C240, C244(OP), C245(OP), C246, C248(OP), C251 and C253) switches automatically to software counters, and the maximum frequency and total frequency are affected.
- 8) Some restrictions to applicable devices
 ▲1: Only high speed counters C235 to C255 are available for use.

Error

An operation error occurs in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- When any devices other than high speed counters C235 to C255 are specified in <u>s2</u>. (Error code: K6706)
- 2) When the "3m-1"th device from a device specified in <a>(s1) exceeds the last number of the device. (Error code: K6706)
- 3) When the "n"th device from a device specified in d exceeds the last number of the device. (Error code: K6706)
- 4) When this instruction is used two or more times in a program. (Error code: K6705)
- 5) With regard to DHSCT, DHSCS, DHSCR and DHSZ instructions, up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33rd instruction and later, and the instruction will not be executed. (Error code: K6705)

Program example

In the program example shown below, the current value of C235 (counting X000) is compared with the comparison data table set in R0 and later, and a specified pattern is output to Y010 to Y013.

[ST]

C235 is used as an up counter. M8000 M8235:=NOT M8000; (M8235 <u> </u>и́ OUT_C(M8000,CC235,K0); MOVP(M8000,H0008,K1Y10); M8000 OUT_C ENO DHSCR(M8000,K400,CN235,CC235); ΕN ⊣⊢ CCoil CC235 DHSCT(M8000,R0,K5,CN235,K4,Y010); K0 CValue MOVP ENO FN Initial output H0008 d s -K1Y10 DHSCR ΕN ENO Ring length: 0 to 400 K400 s1 d CC235 s2 CN235-DHSCT ΕN ENO s1 R0 d - Y010 K5 m

Operation example

CN235 -

K4 ____n

s2

Comparison	Comparis	on data	SET/RES	ET pattern		
point number	Device	Comparison value	Device	Operation output set value	Table counter (D8138)	
0	R1, R0	K100	R2	H0007	0↓	
1	R4, R3	K150	R5	H0004	1↓	
2	R7, R6	K200	R8	H0003	2↓	
3	R10, R9	K250	R11	H0006	3↓	
4	R13, R12	K300	R14	H0008	4 \downarrow (repeated from "0")	

33. Applied Instructions (Extension File Register Control)

Instruction name	Function	Reference	
LOADR	Load From EP	Section 33.1	
LOADRP		Section 55.1	
SAVER	Save to ER	Section 33.2	
INITR	Initialize R and ER	Section 33.3	
INITRP		000001 00.0	
LOGR	Logging R and ER	Section 33.4	
LOGRP		0001011 00.4	
RWER	Rewrite to FR	Section 33.5	
RWERP			
INITER	Initialize FR	Section 33.6	
INITERP		000001100.0	

31

Α

34

Applied Instructions (FX3U-CF-ADP)

33.1 LOADR / Load From ER

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	0	×	×	×	×	×	×	×

Outline

This instruction reads the current values of extension file registers (ER) stored in a memory cassette (flash memory and EEPROM) or the file registers (ER) in the PLC's built-in EEPROM, and transfers them to extension registers (R) stored in the PLC's built-in RAM.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language						
name	operation	form	Structured ladder/FBD	ST					
LOADR	16 bits	Continuous	LOADR — EN ENO— — s — n	LOADR(EN,s,n);					
LOADRP	16 bits	Pulse	LOADRP — EN ENO — s — n	LOADRP(EN,s,n);					

2. Set data

Va	riable	Description	Data type		
	EN	Execution condition	Bit		
Input variable	S	Device of extension register (transfer destination) to which data is to be transferred. (The extension file register having the same number is handled as the transfer source.)	ANY16		
	n	Number of points to be read (transferred) (FX3G/FX3GC: $1 \le n \le 24000$, FX3U/FX3UC: $0 \le n \le 32767$)	ANY16		
Output variable	ENO	Execution state	Bit		

3. Applicable devices

Î			Bit Devices					s		Word Devices										Others					
Operand type		System user					ər	Dig	igit specification			System user			Special unit	unit Index		Co ta	ons nt	Real Number	Character String	Pointer			
		х	Y	М	Т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	Е	"□"	Р
-	S															•				•					
	n														•						•	•			

Function and operation explanation

1. 16-bit operation (LOADR/LOADRP)

1) For the FX3U and FX3UC PLCs

The contents (current values) of extension file registers (ER) stored in a memory cassette (flash memory) having the same numbers with the extension registers specified by \underline{s} to \underline{s} +n-1 are read, and transferred to the extension registers (R) specified by \underline{s} to \underline{s} +n-1 stored in the PLC's built-in RAM.

- Reading and transfer are executed in units of device. Up to 32768 devices can be read and transferred.

- Different from SAVER, INITR and LOGR instructions, it is not necessary to execute this instruction in units of sector.

- If "n" is set to "0", it is handled as "32768" when the instruction is executed.

2) For the FX3G and FX3GC PLCs

a) When connecting to a memory cassette (A memory cassette cannot be connected to FX3GC PLC.) The contents (current values) of extension file registers (ER) stored in a memory cassette (EEPROM) having the same numbers with the extension registers (R) specified by (s) to (s)+n-1 are read, and transferred to the extension registers specified by (s) to (s)+n-1 stored in the PLC's built-in RAM.

- Reading and transfer are executed in units of device. Up to 24000 devices can be read and transferred.

31

В

Applied Instruction List

35

Interrupt F and Pulse Function

b) When not connecting to a memory cassette

The contents (current values) of extension file registers (ER) stored in PLC's built-in EEPROM having the same numbers with the extension registers specified by \underline{s} to \underline{s} +n-1 are read, and transferred to the extension registers (R) specified by \underline{s} to \underline{s} +n-1 stored in the PLC's built-in RAM.

Ex ins	tension file registers (EF ide PLC's built-in EEPR	R) OM	Extension registers (R) inside built-in RAM
	Es		S
	E <u>s</u> +1	$ \longrightarrow $	<u>s</u> +1
	E <u>s</u> +2	\longrightarrow	<u>s</u> +2
	E <u>s</u> +3	<i>───</i> →	<u>s</u> +3
	2	2	2
	E 💿 +n-2	<i>───</i> →	<u>s</u> +n-2
	E <u>s</u> +n-1	$ \longrightarrow$	<u>s</u> +n-1

- Reading and transfer are executed in units of device. Up to 24000 devices can be read and transferred.

Cautions

1. About the allowable number of times of writing operations in memory

Note the following when accessing the extension file registers:

• For the FX3U and FX3UC PLCs

The memory cassette (flash memory) allows up to 10,000 times of writing operations. The number of times of writing operations counts up each time the INITR, RWER or INITER instruction is executed. Do not exceed the allowable number of times of writing operations. When a continuous operation type instruction is executed, writing operation to the memory occurs for each operation cycle of the PLC. To avoid this, be sure to use pulse operation type instructions. The number of times of writing operations does not count up when the LOADR, SAVER or LOGR

instruction is executed. However, the SAVER and LOGR instructions require the target write sectors to be initialized before executing the instructions. Note that, when initializing by using the INITR or INITER instruction, the number of times of writing operations in the memory counts up every time the NITR or INITER instruction is executed.

• For the FX3G and FX3GC PLCs

The memory cassette (EEPROM) and PLC's built-in memory (EEPROM) allow up to 10,000 times and 20,000 times of writing operations, respectively.

The number of times of writing operations counts up each time the RWER instruction is executed. Do not exceed the allowable number of times of writing operations.

When a continuous operation type instruction is executed, writing operation to the memory occurs for each operation cycle of the PLC. To avoid this, be sure to use pulse operation type instructions.

The number of times of writing operations does not count up when the LOADR instruction is executed.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- 1) When the last device number to be transferred exceeds "32767" (error code: K6706). At this time, devices up to the last one (R32767) are read and transferred.
- 2) When a memory cassette is not connected. (Error code: K6771)^{*1}
- *1. This does not cause an error with the FX_{3G} PLCs because the PLCs read the contents of the extension file registers stored in the PLC's built-in EEPROM when a memory cassette is not connected.

Program example

In the program example shown below, the contents (current values) of 4000 extension file registers ER1 to ER4000 inside the memory cassette are read, and transferred to 4000 extension registers R1 to R4000 inside the built-in RAM.

[ST]

LOADR(LDP(TRUE,M0),R1,K4000);

E: in	xtension file reg side memory ca	isters (EF assette	२)	Extension regi inside built-in F	sters (R) RAM
	Device number	Current value	Pood (transfor)	Device number	Current value
	ER1	K100		R1	K100
	ER2	K50	\longrightarrow	R2	K50
	ER3	H0003	\longrightarrow	R3	H0003
	ER4	H0101	\longrightarrow	R4	H0101
	2	2	2	2	2
	ER3999	K55	\longrightarrow	R3999	K55
	ER4000	K59	\longrightarrow	R4000	K59

В

Applied Instruction List

31

Applied Instructions (Data Transfer 3)

32

Applied Instructions (High Speed Processing 2)

33

747

33.2 SAVER / Save to ER

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction writes the current values of extension registers (R) stored in the PLC's built-in RAM to extension file registers (ER) stored in a memory cassette (flash memory) in units of sector (2048 points). RWER instruction provided in FX3UC PLCs Ver. 1.30 or later and FX3U PLCs writes (transfers) only arbitrary number of points. It is not necessary to execute INITR or INITER instruction every time when RWER instruction is used.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language							
name	Operation	form	Structured ladder/FBD	ST						
SAVER	16 bits	Continuous	SAVER EN ENO s d n	SAVER(EN,s,n,d);						

2. Set data

Va	riable	Description	Data type		
	EN	Execution condition	Bit		
Input variable	S	Device of extension register to which data is to be written (Only the head device of a sector of extension registers can be specified.)	ANY16		
	n	Number of points written (transferred) in one operation cycle.	ANY16		
Output	ENO	Execution state	Bit		
variable	d	Device storing the number of already written points	ANY16		

3. Applicable devices

		Bit Devices					s		Word Devices										Others					
Operand type	System user				Dig	git specification			System user		Special unit	Index		Cons tant		Real Number	Character String	Pointer						
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
s															•				•					
n																				•	•			
d														•					•					

31

Applied Instructions (Data Transfer 3)

32

Speed Instr

33

(D) 문 plied Instru xtension I gister Co

34

Applied Instructions (FX3U-CF-ADP)

35

and

-unction Catch

Α

Rel: and elationships tween device d addresses

devices

B

Applied Instruction List

 Control I File

ructions

Function and operation explanation 1. 16-bit operation (SAVER) The contents (current values) of 2,048 extension registers (R) starting from the device specified by s are written (transferred) to extension file registers (ER) inside a memory cassette (flash memory) having the same device numbers in "2048/n" operation cycles ("2048/n +1" cycles if there is the remainder). When the instruction is being executed, the number of already written points is stored in **(**. SAVER Command input EN 41 ENC Device of extension register to s d Device storing the number which data is to be transferred of already written points Number of points written ln in one operation cycle Operation execution complete flag M8029 ́мО(-11 SAVER instruction operation complete flag Extension registers (R) Extension file registers (ER) inside built-in RAM inside memory cassette Write (transfer) S ES <u>s</u> +1 E (s) +1 (s) +2 E (s) +2 2 <u>s</u> +2047 E s +2047 *1. "n" points are written (transferred) in each operation cycle. (Number of points specified by ___)

1) Extension file registers are written in units of sector (2048 points). The table below shows the head device number in each sector.

Sector number	Head device number	Written device range	Sector number	Head device number	Written device range
Sector 0	R0	ER0 to ER2047	Sector 8	R16384	ER16384 to ER18431
Sector 1	R2048	ER2048 to ER4095	Sector 9	R18432	ER18432 to ER20479
Sector 2	R4096	ER4096 to ER6143	Sector 10	R20480	ER20480 to ER22527
Sector 3	R6144	ER6144 to ER8191	Sector 11	R22528	ER22528 to ER24575
Sector 4	R8192	ER8192 to ER10239	Sector 12	R24576	ER24576 to ER26623
Sector 5	R10240	ER10240 to ER12287	Sector 13	R26624	ER26624 to ER28671
Sector 6	R12288	ER12288 to ER14335	Sector 14	R28672	ER28672 to ER30719
Sector 7	R14336	ER14336 to ER16383	Sector 15	R30720	ER30720 to ER32767

- 2) If "n" is set to "0", it is handled as "2048" when the instruction is executed.
- 3) When writing (transfer) of 2048 points is finished, execution of the instruction is completed and the instruction execution complete flag M8029 turns ON.
- 4) The number of already written points is stored in the device specified by d.

2. Related devices

Device number	Name	Description
M8029	Instruction execution complete	When execution of the target instruction is completed, the instruction execution complete flag M8028 turns ON. In a program, however, there may be two or more instructions which can use the flag M8029. To avoid confusion, be sure to use the NO (normally open) contact of this flag immediately under SAVER instruction so that this flag works only for SAVER instruction

Cautions

1. Cautions on writing data to a memory cassette

Memory cassettes adopt flash memory. Note the following contents when writing data to extension file registers in a memory cassettes with the SAVER instruction.

- It takes about 340 ms to write all points (2048 points). If "n" is set to K0 or K2048, the operation cycle for executing this instruction becomes about 340 ms longer than normal. If the operation cycle is severely affected, write data in two or more operation cycles. When writing data in two or more operation cycles, set "n" in the range from K1 to K1024.
- 2) Do not abort execution of this instruction in the middle of operation. If execution is aborted, unexpected data may be written to extension file registers.
 If execution of this instruction is aborted by turning OEE the power, execute the instruction again using

If execution of this instruction is aborted by turning OFF the power, execute the instruction again using step [2] described on the next page after turning ON the power again.

 Execute INITER or INITR instruction to target extension file registers (ER) before executing SAVER instruction. If SAVER instruction is driven before INITER or INITR instruction is executed, an operation error (error code: K6770) may be caused.

To avoid such an operation error, make a program for executing SAVER instruction in the following sequence

When the FX3U and FX3UC PLCs are Ver. 1.30 or later

- [1] When storing data of 2048 extension registers (R) in one sector to extension file register (ER).
 - a) Execute INITER instruction to extension file registers (ER) specified as targets in SAVER instruction.b) Execute SAVER instruction.
- [2] When storing the contents of an arbitrary number of extension registers (R) to extension file registers (ER)

Use RWER instruction.

 \rightarrow For RWER instruction, refer to Section 33.5.

When the FX3UC PLCs are former than Ver. 1.30.

[1] When storing data of 2048 extension registers (R) in one sector to extension file registers (ER)

If the extension registers (R) have data to be stored in extension file registers (ER), use the procedure [2].

- a) Execute INITR instruction to extension registers (R) and extension file registers (ER) specified as targets in SAVER instruction.
- b) Store data to extension registers (R) specified as targets.
- c) Execute SAVER instruction.

[2] When storing data of 2048 extension registers (R) in one sector to extension file registers (ER)

- a) Temporarily withdraw the data of extension registers (R) specified as targets in SAVER instruction to data registers or unused 2048 extension registers (R) by using BMOV instruction.
- b) Execute INITR instruction to extension registers (R) and extension file registers (ER) specified as targets in SAVER instruction.
- c) Return the data of 2048 points temporarily withdrawn in step a) to extension registers (R) specified as targets by using BMOV instruction.
- d) Execute SAVER instruction.

2. About the allowable number of times of writing operations in memory

Note the following when accessing the extension file registers:

 The memory cassette (flash memory) allows up to 10,000 times of writing operations. The number of times of writing operations counts up each time the INITR, RWER or INITER instruction is executed. Do not let the number of times of writing operations exceed the allowable number of times of writing operations.

When a continuous operation type instruction is executed, writing operation to the memory occurs for each operation cycle of the PLC. To avoid this, be sure to use pulse operation type instructions.

The number of times of writing operations does not count up when the LOADR, SAVER or LOGR
instruction is executed. However, the SAVER and LOGR instructions require the target write sectors to be
initialized before executing the instructions. Note that, when initializing by using the INITR or INITER
instruction, the number of times of writing operations in the memory counts up every time the NITR or
INITER instruction is executed.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

1) When any device number other than the head device number of a sector of extension file registers is set to <u>s</u>.

(Error code: K6706)

- 2) When a memory cassette is not connected. (Error code: K6771)
- 3) When the protect switch of the memory cassette is set to ON. (Error code: K6770)
- 4) When the collation result after data writing is "mismatch" due to omission of initialization or for another reason. (Error code: K6770)

В

Applied Instruction L

List

Program example

 In the case of FX3UC PLCs Ver. 1.30 or later and FX3U PLCs Ver. 2.20 or later In the program example shown below, the changed contents of extension registers R10 to R19 (sector 0) used for setting data are reflected on the extension file registers (ER) when X000 is set to ON. (128 points are written in one operation cycle.)

Program

[Structured ladder/FBD]

[ST]

SET(X000,M0); INITERP(M0,R0,K1); WDT(M0); SAVER(M0,R0,K128,D0); RST(M8029,M0);

Operation example

		Setting d	ata	Setting backu	ıp data		Setting backu	ıp data	
		Extension regi	sters (R)	Extension file reg	isters (ER)		Extension file regi	isters (ER)	
		Device number	Current value	Device number	Current value		Device number	Current value	
		R0	K100	ER0	K100		ER0	HFFFF	
		R1	K105	ER1	K105		ER1	HFFFF	
		:	:	:	:		:	• •	
(\forall)	Γ	R10	K200	ER10	K300		ER10	HFFFF	
data	lata	R11	K215	ER11	K330	1)	ER11	HFFFF	2)
tting	ged o	R12	K400	ER12	K350		ER12	HFFFF	\rightarrow
Set	Chang	:	:	:		INITER instruction	:	•	SAVER instruction
		R19	K350	ER19	K400	modidotion	ER19	HFFFF	motio
		:	:	:	:		:	•	
		R99	K1000	ER99	K1000		ER99	HFFFF	
	٦	R100	HFFFF	ER100	HFFFF		ER100	HFFFF	
	nuse	:	:	:	:		:	•	
	Ū	R2047	HFFFF	ER2047	HFFFF		ER2047	HFFFF	

To the next page

				Setting da	ata	_		Setting	backup dat	a
				Extension regi	sters (R)			Extension file reg	isters (ER)	Number of already
				Device number	Current value			Device number	Current value	written points (D0)
			- [R0	K100			ER0	K100	
				R1	K105			ER1	K105	
				•				•	•	
	æ	ta	- [R10	K200			ER10	K200	
	data	d da		R11	K215		1st	ER11	K215	
2)	tting	ange		R12	K400		operation cvcle	ER12	K400	
	Se	Che		•••	•		\rightarrow	•	•••	
SAVER			_ [R19	K350			ER19	K350	
				•	:			•	•	
				R99	K1000			ER99	K1000	
		Γ	- [R100	HFFFF			ER100	HFFFF	
				•	•				•••	K128
				R127	HFFFF		2nd	ER127	HFFFF	
				R128	HFFFF		operation cvcle	ER128	HFFFF	
				•••	•			•	•••	
		-		R255	HFFFF		3rd to 15th	ER255	HFFFF	K256
		nsec		R256	HFFFF		operation	ER256	HFFFF	
		٦		• •	••••			•	•••	
				R1919	HFFFF		16th	ER1919	HFFFF	K1920
				R1920	HFFFF		operation cvcle	ER1920	HFFFF	
					•			•		
			_ [R2047	HFFFF			ER2047	HFFFF	K2048

31

Applied Instructions (Data Transfer 3) 2) In the case of FX3UC PLCs former than Ver. 1.30

In the program example shown below, the changed contents of the extension registers R10 to R19 (sector 0) used for setting data are reflected on extension file registers (ER) when X000 is set to ON. (128 points are written in one operation cycle.)

Program

[Structured ladder/FBD]

Operation example

		Setting d	ata	Setting backu	p data	
		Extension regi	sters (R)	Extension file regi	sters (ER)	
		Device number	Current value	Device number	Current value]
		R0	K100	ER0	K100	
		R1	K105	ER1	K105	
		•	:	•	•••]
Æ	_	R10	K200	ER10	K300	
lata (data	R11	K215	ER11	K330	
ing c	lged	R12	K400	ER12	K350	
Sett	Char	•	•	••••	••••	B in
		R19	K350	ER19	K400	
		•	•		•••	
		R99	K1000	ER99	K1000	
	σ	R100	HFFFF	ER100	HFFFF	
	asnu	•	:	:	:	
	٦	R2047	HFFFF	ER2047	HFFFF	

Т	emporarily withd	lrawn data	a ^{*1}	
	Unused extension			
	Device number	Current value		
	R30720	K100		
	R30721	K105		
	•	:		
	R30730	K200		
1)	R30731	K215	2)	
\Longrightarrow	R30732	K400	$ \longrightarrow $	
MOV struction	•	:	INITR instruction	
	R30739	K350		
	•	:		
	R30819	K1000		
*1	. Use unused de	evices as		

an area to which data is temporarily withdrawn.

To the next page

31

Applied Instructions (Data Transfer 3)

32

Applied Instructions (High Speed Processing 2)

33

Applied Instructions (Extension File Register Control)

34

Applied Instructions (FX3U-CF-ADP)

35

Interrupt Function and Pulse Catch Function

Α

Relationships between devices and addresses

В

Applied Instruction List

	Setting of	lata	Setting backu	up data		Setting d	ata	
	Extension regi	sters (R)	Extension file reg	isters (ER)		Unused extensio	n registers	
	Device number	Current value	Device number	Current value		Device number	Current value	
	R0	HFFFF	ER0	HFFFF		R0	K100	
	R1	HFFFF	ER1	HFFFF		R1	K105	
	•	:	:	•	(T	:	:	1
	R10	HFFFF	ER10	HFFFF	ıta (∕	R10	K200	
2)	R11	HFFFF	ER11	HFFFF	3) D	R11	K215	4)
	R12	HFFFF	ER12			R12	K400	
INITR instruction	•	:	:	•••	BMOV of instruction	: :		SAVER instruction
	R19	HFFFF	ER19	HFFFF		R19	K350	motraotion
	•	:	:	•		:	:	
	R99	HFFFF	ER99	HFFFF		R99	K1000	
	R100	HFFFF	ER100	HFFFF		R100	HFFFF	
	•					:	:	
	R2047	HFFFF	ER2047	HFFFF		R2047	HFFFF	

31 Applied II (Data T dInstructions Transfer 3) 32 dInstructions gh Speed rocessing 2) 33 Applied Instructions (Extension File Register Control)

Α

Relationships between devices and addresses

В

Applied Instruction List

INITR / Ini	tialize F	R and E	R

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	Х	×	×	×	×	×	×

Outline

33.3

This instruction initializes (to "HFFFF <K-1>") extension registers (R) in the RAM built in a PLC and extension file registers in a memory cassette (flash memory) before data logging by LOGR instruction.

In FX3UC PLCs former than Ver. 1.30, use this instruction to initialize extension file registers (ER) before writing data to them using SAVER instruction.

In FX3UC PLCs Ver. 1.30 or later, INITER instruction is also provided to initialize (to "HFFFF" <K-1>) only extension file registers (ER) in a memory cassette (flash memory) in units of sector.

 \rightarrow For SAVER instruction, refer to Section 33.2.

 \rightarrow For LOGR instruction, refer to Section 33.4.

 \rightarrow For INITER instruction, refer to Section 33.6.

1. Format and operation, execution form

Instruction	Operation Execution		Expression in each language					
name	Operation	form	Structured ladder/FBD	ST				
INITR	16 bits	Continuous	INITR I EN ENO I s I n	INITR(EN,s,n);				
INITRP	16 bits	Pulse	INITRP – EN ENO – s – n	INITRP(EN,s,n);				

2. Set data

Va	riable	Description	Data type		
	EN	Execution condition	Bit		
Input variable	S	Device of extension register and extension file register to be initialized It is possible to specify only the head device in a sector of extension registers.	ANY16		
	n	Number of sectors of extension registers and extension file registers to be initialized.	ANY16		
Output variable	ENO	Execution state	Bit		

3. Applicable devices

	Bit Devices											W	ord	Dev	/ice	s						0	thers		
Operand type			Sy	ste	m	use	er	Dig	it spe	cifica	tion		Syst us	er	1	Special unit		I	ndex	Co ta	ns nt	Real Number	Character String	Pointer	
	х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р	
S															•				•						
n																				•	•				

1. 16-bit operation (INITR/INITRP)

"n" sectors of extension registers in the PLC's built-in RAM starting from the one specified by s and "n" sectors of extension file registers in a memory cassette (flash memory) having the same device numbers are initialized (initial value "HFFFF" <K-1> is written.).

Initialization is executed in units of sector.

The table below shows the head device number in each sector.

Sector number	Head device number	Initialized device range
Sector 0	R0	R0 to R2047, ER0 to ER2047
Sector 1	R2048	R2048 to R4095, ER2048 to ER4095
Sector 2	R4096	R4096 to R6143, ER4096 to ER6143
Sector 3	R6144	R6144 to R8191, ER6144 to ER8191
Sector 4	R8192	R8192 to R10239, ER8192 to ER10239
Sector 5	R10240	R10240 to R12287, ER10240 to ER12287
Sector 6	R12288	R12288 to R14335, ER12288 to ER14335
Sector 7	R14336	R14336 to R16383, ER14336 to ER16383

Sector number	Head device number	Initialized device range
Sector 8	R16384	R16384 to R18431, ER16384 to ER18431
Sector 9	R18432	R18432 to R20479, ER18432 to ER20479
Sector 10	R20480	R20480 to R22527, ER20480 to ER22527
Sector 11	R22528	R22528 to R24575, ER22528 to ER24575
Sector 12	R24576	R24576 to R26623, ER24576 to ER26623
Sector 13	R26624	R26624 to R28671, ER26624 to ER28671
Sector 14	R28672	R28672 to R30719, ER28672 to ER30719
Sector 15	R30720	R30720 to R32767, ER30720 to ER32767

Operation (when a memory cassette is used)

1) Extension registers (R) [inside the built-in RAM memory]

	Curren	t value
Device number	Before execution	After execution
S	H0010	HFFFF
s+1	H0020	HFFFF
<u>s</u> +2	H0011	HFFFF
÷	:	:
<u>s</u> +(2048×n)-1	HABCD	HFFFF

Extension file registers (ER) [inside the memory cassette]

, ,								
	Current value							
Device number	Before execution	After execution						
S	H1234	HFFFF						
<u>s</u> +1	H5678	HFFFF						
<u>s</u> +2	H90AB	HFFFF						
÷	÷	:						
s+(2048×n)-1	HCDEF	HFFFF						

Cautions

1. Initializing two or more sectors

When a memory cassette is attached, 18 ms is required to initialize one sector. (When a memory cassette is not attached, only 1 ms is required to initialize one sector.) When initializing two or more sectors, take either measures shown below.

1) Set a large value to the watchdog timer D8000 using the following program.

Guideline of the watchdog timer set value

A value acquired by the following procedure can be regarded as the guideline of the watchdog timer set value. If an acquired value is 200 ms or less, however, it is not necessary to change the watchdog timer set value.

- a) Write a program to be executed from GX Works2 to the PLC.
- [Online] \rightarrow [Write to PLC ...]
- b) Set the current value of D8000 (unit: ms) to "1000" using the modify value function in GX Works2.
 Select [Online] → [Monitor] → [Monitor Mode] to switch the [PRG] MAIN screen.
 [Debug] → [Modify Value]
- c) Set the PLC mode to RUN, and execute the program. (Execute this instruction also.)
- d) Monitor the maximum scan time D8012 (unit: 0.1 ms) using the device/buffer Memory Batch function in GX Works2.

 $[Online] \rightarrow [Device/Buffer Memory Batch]$

- e) Set the watchdog timer to the maximum scan time (D8012) or more. D8012 stores the maximum scan time in increments of 0.1 ms. Rough guide to the watchdog timer set value D8000 (unit: ms) is the "value stored in D8012 divided by 10" added by 50 to 100.
- 2) Setting WDT instruction just before and after INITR instruction as shown below.

If the processing time of the INITR instruction exceeds 200 ms, set the value of D8000 (unit: ms) to the processing time or more.

2. About the allowable number of times of writing operations in memory

Note the following when accessing the extension file registers:

 The memory cassette (flash memory) allows up to 10,000 times of writing operations. The number of times of writing operations counts up each time the INITR, RWER or INITER instruction is executed. Do not let the number of times of writing operations exceed the allowable number of times of writing operations.

When a continuous operation type instruction is executed, writing operation to the memory occurs for each operation cycle of the PLC. To avoid this, be sure to use pulse operation type instructions.

The number of times of writing operations does not count up when the LOADR, SAVER or LOGR
instruction is executed. However, the SAVER and LOGR instructions require the target write sectors to be
initialized before executing the instructions. Note that, when initializing by using the INITR or INITER
instruction, the number of times of writing operations in the memory counts up every time the NITR or
INITER instruction is executed.

31

AppliedInstructions (Data Transfer 3)

32

Speed

33

Applied Instructions (Extension File Register Control)

34

uctions

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

1) When any device number other than the head device number of a sector of extension file registers is set to (s).

(Error code: K6706)

- When a device number to be initialized exceeds "32767". In this case, devices up to R32767 (ER32767) are initialized. (Error code: K6706)
- 3) When the protect switch of the memory cassette is set to ON. (Error code: K6770)

Program example

In the program example shown below, the extension registers R0 to R2047 in the sector 0 are initialized. Note that the extension file registers ER0 to ER2047 are also initialized if a memory cassette is attached.

[Structured ladder/FBD]

[ST]

WDT(LDP(TRUE,X000)); INITR(LDP(TRUE,X000),R0,K1); WDT(LDP(TRUE,X000));

1) Extension registers (R) [inside the built-in RAM memory]

	Curren	t value
Device number	Before execution	After execution
RO	H1234	HFFFF
R1	H5678	HFFFF
R2	H90AB	HFFFF
:	:	:
R2047	HCDEF	HFFFF

33.4 LOGR / Logging R and ER

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
0	×	×	×	×	×	×	×	×

Outline

This instruction logs specified devices, and stores the logged data to extension registers (R) and extension file registers (ER) in a memory cassette.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
LOGR	16 bits	Continuous	LOGR — EN ENO — — s d1 — — m d2 — — n	LOGR(EN,s,m,n,d1,d2);
LOGRP	16 bits	Pulse	LOGRP — EN ENO — — s d1 — — m d2 — _ n	LOGRP(EN,s,m,n,d1,d2);

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
Input	S	Head device to be logged	ANY16
variable	m	Number of devices to be logged ($1 \le m \le 8000$)	ANY16
	n	Number of sectors of devices used in logging (1 \leq n \leq 16)	ANY16
	ENO	Execution state	Bit
Output variable	<u>(d1)</u>	Head device used in logging	ANY16
	<u>d</u> 2	Number of pieces of logged data	ANY16

3. Applicable devices

		Bit Devices								W	ord	Dev	vic	es				Others						
Operand type		;	Sys	ste	m	use	ər	Dig	Digit specification				igit specification System user			Special unit	Index		Index		ons Int	Real Number	Character String	Pointer
	х	Y	М	Т	С	S	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	E	"0"	Р
s												•	•	•					•					
m														•						•	•			
n																				•	•			
<u>d1</u>)															•									
<u>d2</u>)														•					•					

35

Interrupt F and Pulse Function

-unction Catch

A and Rel

elationships tween devices nd addresses

В

Applied Instruction List

1. 16-bit operation (LOGR/LOGRP)

While the instruction is driven, "m" devices starting from the device specified by \bigcirc are logged until "n" sectors of extension registers (R) starting from the device specified by \bigcirc and extension file registers (ER) in a memory cassette are filled.

The number of pieces of logged data is stored to the device specified by <u>d</u>2. If a memory cassette is not used, data is not written to extension file registers (ER).

Logging data format

		Number of		
(<u>d1</u>)	Destination storing 1st logging data $s \sim s$ +m-1	stored data → (d1) = m		
(<u>d1</u>) +m (<u>d1</u>) +2m-1	Destination storing 2nd logging data $(s) \sim (s) + m-1$	\rightarrow (<u>d1</u>) = 2m		
(d1) +2m	Destination storing 3rd logging data	\rightarrow (<u>d1</u>) = 3m	Data writing area 1926 × n	
				Logging data storage area 2048 × n
(d1) +(1926 × n)-1	Writing position control area (Every time one word is used in the data writing area, bits are set to OFF (0) from ON (1) in turn from bit 0 of $[(1 + (1926 \times n) - 1]]$. After bit 15 of $[(1 + (1926 \times n) - 1]]$ is set to OFF (0), bit 0 of the next device $[(1 + (1926 \times n)]]$ is set to OFF (0) in the next logging.)		Data writing position control area 122 × n	

The table below shows the head device number in each sector.

Sector number	Head device number	Written device range	Sector number	Head device number	Written device range
Sector 0	R0	R0 to R2047, ER0 to ER2047	Sector 8	R16384	R16384 to R18431, ER16384 to ER18431
Sector 1	R2048	R2048 to R4095, ER2048 to ER4095	Sector 9	R18432	R18432 to R20479, ER18432 to ER20479
Sector 2	R4096	R4096 to R6143, ER4096 to ER6143	Sector 10	R20480	R20480 to R22527, ER20480 to ER22527
Sector 3	R6144	R6144 to R8191, ER6144 to ER8191	Sector 11	R22528	R22528 to R24575, ER22528 to ER24575
Sector 4	R8192	R8192 to R10239, ER8192 to ER10239	Sector 12	R24576	R24576 to R26623, ER24576 to ER26623
Sector 5	R10240	R10240 to R12287, ER10240 to ER12287	Sector 13	R26624	R26624 to R28671, ER26624 to ER28671
Sector 6	R12288	R12288 to R14335, ER12288 to ER14335	Sector 14	R28672	R28672 to R30719, ER28672 to ER30719
Sector 7	R14336	R14336 to R16383, ER14336 to ER16383	Sector 15	R30720	R30720 to R32767, ER30720 to ER32767

31

Applied Instructions (Data Transfer 3)

32

Applied Instructions (High Speed Processing 2)

33

Applied Instru (Extension F Register Co

34

Applied Instructions (FX3U-CF-ADP)

35

Interrupt F and Pulse Function

-unction Catch

Α

Relationships between devices and addresses

B

Applied Instruction List

Contro

Cautions

1. About LOGR instruction

LOGR instruction executes logging in each operation in the continuous operation type. When logging should be executed only once by one input, use the pulse operation type.

2. Cautions on using a memory cassette

Flash memory is adopted in a memory cassette. Be sure to initialize the data storage area in units of sector before starting logging.

If this instruction is executed without initialization, an operation error (error code: K6770) may be caused.

Number of sectors of registers to be initialized^{*2}—n

- *1. Specify the same device as <u>d1</u> in LOGR instruction.
- *2. Specify the same number as (n) in LOGR instruction.

3. About the allowable number of times of writing operations in memory

· Note the following when accessing the extension file registers:

The memory cassette (flash memory) allows up to 10,000 times of writing operations.

The number of times of writing operations counts up each time the INITR, RWER or INITER instruction is executed. Do not let the number of times of writing operations exceed the allowable number of times of writing operations.

When a continuous operation type instruction is executed, writing operation to the memory occurs for each operation cycle of the PLC. To avoid this, be sure to use pulse operation type instructions.

The number of times of writing operations does not count up when the LOADR, SAVER or LOGR
instruction is executed. However, the SAVER and LOGR instructions require the target write sectors to be
initialized before executing the instructions. Note that, when initializing by using the INITR or INITER
instruction, the number of times of writing operations in the memory counts up every time the NITR or
INITER instruction is executed.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- When any number other than the head device number of a sector of extension file registers is set to the device specified by <u>s</u>. (Error code: K6706)
- While data is written, the remaining area and the data quantity to be written are compared with each other. If the remaining storage area is insufficient, only a limited amount of data is written. (Error code: K6706)
- 3) When the protect switch of the memory cassette is set to ON. (Error code: K6770)
- 4) When the collation result after data writing is "mismatch" due to omission of initialization or for another reason. (Error code: K6770)

Program example

In the program example shown below, D1 and D2 are logged to the area from R2048 to R6143 every time X001 turns ON.

33.5 RWER / Rewrite to ER

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
\bigtriangleup	0	×	×	×	×	×	×	×

Outline

This instruction writes the current values of an arbitrary number of extension registers (R) in the PLC's built-in RAM to extension file registers (ER) in a memory cassette (flash memory or EEPROM) or to the extension file registers (ER) in the PLC's built-in EEPROM.

Because RWER instruction is not provided in the FX3UC PLC earlier than Ver. 1.30, use SAVER instruction instead.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	Operation	form	Structured ladder/FBD	ST
RWER	16 bits	Continuous	RWER EN ENO s n	RWER(EN,s,n);
RWERP	16 bits	Pulse	RWERP — EN ENO — s — n	RWERP(EN,s,n);

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
Input	S	Device of extension register storing data	ANY16
variable	n	Number of written (transferred) devices [FX3G/FX3GC: $1 \le n \le 24000$, FX3U/FX3UC: $0 \le n \le 32767$]	ANY16
Output variable	ENO	Execution state	Bit

3. Applicable devices

			Bit	De	evi	ces	6							Dev	vice	es				Others				
Operand type		ę	Sys	ste	mι	use	er	Digit specification System Special user unit			Index			Co ta	ns nt	Real Number	Character String	Pointer						
	X	Y	Μ	Т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Ζ	Modifier	κ	н	E	"0"	Р
S															•				•					
n														•						•	•			

Applied Instruction List

31

Applied Instructions (Data Transfer 3)

1. 16-bit operation (RWER)

1) For the FX3U and FX3UC PLCs

The contents (current values) of "n" extension registers (R) starting from s are written (transferred) to extension file registers having the same device numbers in a memory cassette (flash memory).

Extension registers (R) inside built-in RAM	E: in	xtension file registers (ER side memory cassette
S	while (transfer)	ES
<u>s</u> +1	>	E <u>s</u> +1
<u>s</u> +2	>	E <u>s</u> +2
2	>	2
<u>s</u> + <u>n</u> -1	>	E <u>s</u> + <u>n</u> -1

*1. All points specified by the instruction are written (transferred).

- When "n" is set to "0", it is handled as "32768" when the instruction is executed.

2) For the FX3G and FX3GC PLCs

a) When connecting a memory cassette (A memory cassette cannot be connected to FX3GC PLC.) The contents (current values) of the "n" points of extension registers (R) starting from s are written (transferred) to the extension file registers (ER) having the same numbers as the extension registers (R) in the memory cassette (EEPROM).

Extension registers (R) inside built-in RAM	E in	xtension file registers (ER iside memory cassette
S	write (transfer)	ES
<u>s</u> +1	>	E (s) +1
<u>s</u> +2	\longrightarrow	E (\$) +2
2	>	2
<u>s</u> + <u>n</u> -1	\longrightarrow	E <u>s</u> + <u>n</u> -1

*1. All points specified by the instruction are written (transferred).

b) When not connecting a memory cassette

The contents (current values) of the "n" points of extension registers (R) starting from \bigcirc are written (transferred) to the extension file registers (ER) having the same numbers as the extension registers (R) in the PLC's built-in EEPROM.

Extension registers (R) inside built-in RAM	Ex ins	tension file registers (ER) side PLC's built-in EEPROM
S		ES
<u>s</u> +1	\longrightarrow	E (s) +1
<u>s</u> +2	\longrightarrow	E (s) +2
2	\longrightarrow	2
<u>s</u> + <u>n</u> -1	\longrightarrow	E <u>s</u> + <u>n</u> -1

*1. All points specified by the instruction are written (transferred).

31

Applied Instructions (Data Transfer 3)

32

Applied Instructions (High Speed Processing 2)

33

Applied Instructions (Extension File Register Control)

I File

34

Applied Instructions (FX3U-CF-ADP)

35

and Fund Pulse

-unction Catch

Α

Relationships between device and addresses

devices

В

Applied Instruction List

Cautions

1. Cautions on writing data to the memory cassette (flash memory) for the FX3U and FX3UC **PLCs**

Memory cassettes adopt flash memory. Note the following contents when writing data to extension file registers in a memory cassette with the RWER instruction.

Though extension file registers to be written can be specified arbitrarily, writing is executed in units of 1) sector.

It takes about 47 ms to write one sector. If the extension file registers to be written are located in two sectors, the instruction execution time will be about 94 ms.

Be sure to change the set value of the watchdog timer D8000 before executing this instruction.

The table below shows the device range in each sector.

Sector number	Device range	Sector number	Device range
Sector 0	ER0 to ER2047	Sector 8	ER16384 to ER18431
Sector 1	ER2048 to ER4095	Sector 9	ER18432 to ER20479
Sector 2	ER4096 to ER6143	Sector 10	ER20480 to ER22527
Sector 3	ER6144 to ER8191	Sector 11	ER22528 to ER24575
Sector 4	ER8192 to ER10239	Sector 12	ER24576 to ER26623
Sector 5	ER10240 to ER12287	Sector 13	ER26624 to ER28671
Sector 6	ER12288 to ER14335	Sector 14	ER28672 to ER30719
Sector 7	ER14336 to ER16383	Sector 15	ER30720 to ER32767

2) Do not turn OFF the power while this instruction is being executed. If the power is turned OFF, execution of this instruction may be aborted. If execution is aborted, the data may be lost. Be sure to back up the data before executing this instruction.

 \rightarrow For the backup method, refer to the next page.

3) RWER instruction is provided in the FX3UC PLC Ver. 1.30 or later.

2. Cautions on writing data to the memory cassette (EEPROM) for the FX3G PLCs

Memory cassettes adopt EEPROM. Note the following contents when writing data to extension file registers in a memory cassette with the RWER instruction.

 Do not turn OFF the power while this instruction is being executed. If the power is turned OFF, execution of this instruction may be aborted. If execution is aborted, the data may be lost.
 Be sure to back up the data before executing this instruction.

3. About the allowable number of times of writing operations in memory

Note the following when accessing the extension file registers:

• For the FX3U and FX3UC PLCs

The memory cassette (flash memory) allows up to 10,000 times of writing operations. The number of times of writing operations counts up each time the INITR, RWER or INITER instruction is executed. Do not let the number of times of writing operations exceed the allowable number of times of writing operations. When a continuous operation type instruction is executed, writing operation to the memory occurs for each operation cycle of the PLC. To avoid this, be sure to use pulse operation type instructions.

The number of times of writing operations does not count up when the LOADR, SAVER or LOGR instruction is executed. However, the SAVER and LOGR instructions require the target write sectors to be initialized before executing the instructions. Note that, when initializing by using the INITR or INITER instruction, the number of times of writing operations in the memory counts up every time the NITR or INITER instruction is executed.

• For the FX3G and FX3GC PLCs

The memory cassette (EEPROM) and PLC's built-in memory (EEPROM) allow up to 10,000 times and 20,000 times of writing operations, respectively. The number of times of writing operations counts up each time the RWER instruction is executed. Do not let the number of times of writing operations exceed the allowable number of times of writing operations.

When a continuous operation type instruction is executed, writing operation to the memory occurs for each operation cycle of the PLC.

To avoid this, be sure to use pulse operation type instructions.

The number of times of writing operations does not count up when the LOADR instruction is executed.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

- When the last device number to be transferred exceeds "32767" (Error code: K6706). At this time, the data up to the last device number of "R32767"^{*1} is read (transferred).
- 2) When a memory cassette is not connected. (Error code: K6771)^{*2}
- 3) When the protect switch of the memory cassette is set to ON. (Error code: K6770)
- *1. For the FX3G and FX3GC PLCs, the last device number is "23999".
- *2. This does not cause an error with the FX3G PLCs because the PLCs read the contents of the extension file registers stored in the PLC's built-in EEPROM even if a memory cassette is not connected.

31

Applied Instructions (Data Transfer 3)

32

Applied Instructions (High Speed Processing 2)

33

Applied Instructions (Extension File Register Control)

34

Applied Instructions (FX3U-CF-ADP)

35

and Pulse Catch Function

Α

Relationships between devices and addresses

B

Applied Instruction List

Program example

In the program example shown below, the changed contents of extension registers R10 to R19 (sector 0) used for setting data are reflected on extension file registers (ER) when X000 turns ON.

d

d

RWER

MOV ΕN

WDT

ENO

ENC

ENO

d

D8000

ΕN

s

ΕN

s n K10 -

R10

D200

M0

D200

D8000

Program

[Structured ladder/FBD] PLS X000 ΕN ENO ᆊᆔ MOV M0 ENO ΕN -11 D8000 s ADD_E . ENO ΕN _IN D8000 IN K47^{*1} WDT ΕN ENO

[ST]

PLS(X000,M0); MOV(M0,D8000,D200); ADD_E(M0,D8000,K47,D8000); WDT(M0); RWER(M0,R10,K10); MOV(M0,D200,D8000); WDT(M0);

Operation example

		Setting da	ata		Setting backu	ıp data
		Extension regis	sters (R)		Extension file reg	isters (ER)
		Device number	Current value		Device number	Current value
		R0	K100		ER0	K100
		R1	K105		ER1	K105
		:	•		•	•
data (A)		R10	K200		ER10	K200
	data	R11	K215		ER11	K215
tting	ged	R12	K400	Write (when X000	ER12	K400
Se	Chan	:	:		•	:
		R19	K350	turns ON.)	ER19	K350
		•	•		•	:
		R99	K1000		ER99	K1000
	٦	R100	HFFFF		ER100	HFFFF
	unse	•	:		•	•
	٦L	R2047	HFFFF		ER2047	HFFFF

769

33.6 INITER / Initialize ER

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
\bigtriangleup	×	×	×	×	×	×	×	×

Outline

This instruction initializes extension file registers (ER) to "HFFFF" (<K-1>) in a memory cassette (flash memory) before executing the SAVER instruction.

Because INITER instruction is not provided in the FX3UC PLC earlier than Ver. 1.30, use INITR instruction instead.

→ For SAVER instruction, refer to Section 33.2. → For INITR instruction, refer to Section 33.3.

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
INITER	16 bits	Continuous	INITER EN ENO s n	INITER(EN,s,n);
INITERP	16 bits	Pulse	INITERP – EN ENO – – s – n	INITERP(EN,s,n);

1. Format and operation, execution form

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
Input variable	S	Device number of extension register sector with the same device number as the extension file register to be initialized. It is possible to specify only the head device in a sector of extension registers.	ANY16
	n	Number of sectors of extension registers and extension file registers to be initialized.	ANY16
Output variable	ENO	Execution state	Bit

3. Applicable devices

			Bit	t D	evi	ce	s					W	ord	Dev	vice	s						0	thers	
Operand type	System user		Dig	it specification Syst			System Special user unit		Index		Index		ns nt	Real Number	Character String	Pointer								
	X	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р
S															•				•					
n																				•	•			

1. 16-bit operation (INITER/INITERP)

"n" sectors of extension file registers (ER) in a memory cassette (flash memory) with the same device number as the device specified by s are initialized (initial value "HFFFF" (<K-1>) is writen.). Initialization is executed in sectors.

Sector number	Head device number	Initialized device range	Sector number	Head device number	Initialized device range
Sector 0	R0	ER0 to ER2047	Sector 8	R16384	ER16384 to ER18431
Sector 1	R2048	ER2048 to ER4095	Sector 9	R18432	ER18432 to ER20479
Sector 2	R4096	ER4096 to ER6143	Sector 10	R20480	ER20480 to ER22527
Sector 3	R6144	ER6144 to ER8191	Sector 11	R22528	ER22528 to ER24575
Sector 4	R8192	ER8192 to ER10239	Sector 12	R24576	ER24576 to ER26623
Sector 5	R10240	ER10240 to ER12287	Sector 13	R26624	ER26624 to ER28671
Sector 6	R12288	ER12288 to ER14335	Sector 14	R28672	ER28672 to ER30719
Sector 7	R14336	ER14336 to ER16383	Sector 15	R30720	ER30720 to ER32767

The table below shows the head device number in each sector.

Operation example

1) Extension file registers (ER) [inside the memory cassette]

	Curren	t value
Device number	Before execution	After execution
S	H1234	HFFFF
s+1	H5678	HFFFF
<u>s</u> +2	H90AB	HFFFF
:	÷	:
s+(2048×n)-1	HCDEF	HFFFF

B

Applied Instruction List

31

Applied Instructions (Data Transfer 3)

32

(High Proce

n Speed

Cautions

1. About 25 ms is required to initialize one sector.

When initializing two or more sectors, take either measure shown below.

1) Set a large value to the watchdog timer D8000 using the following program.

A value acquired by the following procedure can be regarded as the guideline of the watchdog timer set value. If an acquired value is 200 ms or less, however, it is not necessary to change the watchdog timer set value.

- a) Write a program to be executed from GX Works2 to the PLC.
 [Online] → [Write to PLC ...]
- b) Set the current value of D8000 (unit: ms) to "1000" using the modify value function in GX Works2. Select [Online] → [Monitor] → [Monitor Mode] to switch the [PRG] MAIN screen.
 [Debug] → [Modify Value]
- c) Set the PLC mode to RUN, and execute the program. (Execute this instruction also.)
- d) Monitor the maximum scan time D8012 (unit: 0.1 ms) using the device/buffer Memory Batch function in GX Works2.

[Online] \rightarrow [Device/Buffer Memory Batch]

- e) Set the watchdog timer to the maximum scan time (D8012) or more. D8012 stores the maximum scan time in increments of 0.1 ms. Rough guide to the watchdog timer set value D8000 (unit: ms) is the "value stored in D8012 divided by 10" added by 50 to 100.
- 2) Setting WDT instruction just before and after INITER instruction as shown below:

If the processing time of the INITR instruction exceeds 200 ms, set the value of D8000 (unit: ms) to the processing time or more.

2. About the allowable number of times of writing operations in memory

Note the following when accessing the extension file registers:

- The memory cassette (flash memory) allows up to 10,000 times of writing operations. The number of times of writing operations counts up each time the INITR, RWER or INITER instruction is executed. Do not let the number of times of writing operations exceed the allowable number of times of writing operations. When a continuous operation type instruction is executed, writing operation to the memory occurs for each operation cycle of the PLC. To avoid this, be sure to use pulse operation type instructions.
- The number of times of writing operations does not count up when the LOADR, SAVER or LOGR
 instruction is executed. However, the SAVER and LOGR instructions require the target write sectors to be
 initialized before executing the instructions. Note that, when initializing by using the INITR or INITER
 instruction, the number of times of writing operations in the memory counts up every time the NITR or
 INITER instruction is executed.
- 3. RWER instruction is provided in the FX3UC PLC Ver. 1.30 or later.

Error

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.

 When any device number other than the head device number of a sector of extension file registers (ER) is set to <u>s</u>.

(Error code: K6706)

- 2) When a device number to be initialized exceeds "32767".In this case, devices up to ER32767 are initialized. (Error code: K6706)
- 3) When the protect switch of the memory cassette is set to ON. (Error code: K6770)
- 4) When a memory cassette is not connected. (Error code: K6771)

Program example

In the program example shown below, the extension file registers ER0 to ER2047 in sector 0 are initialized. [Structured ladder/FBD]

The watchdog timer

is reset.

[ST]

WDT(LDP(TRUE,X000)); INITER(LDP(TRUE,X000),R0,K1); WDT(LDP(TRUE,X000));

1) Extension file registers (ER) [inside the memory cassette]

	Curren	t value
Device number	Before execution	After execution
ERO	H1234	HFFFF
ER1	H5678	HFFFF
ER2	H90AB	HFFFF
÷	:	
ER2047	HCDEF	HFFFF

34. Applied Instructions (FX3U-CF-ADP)

Instruction name	Function	Reference
FLCRT	File create • check	Section 34.1
FLDEL	File delete • CF card format	Section 34.2
FLWR	Data write	Section 34.3
FLRD	Data read	Section 34.4
FLCMD	FX3U-CF-ADP command	Section 34.5
FLSTRD	FX3U-CF-ADP status read	Section 34.6

FLCRT / File create • check 34.1

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
\triangle	×	×	×	×	×	×	×	×

Outline

The FLCRT instruction creates a file inside the CompactFlashTM card mounted in the FX3U-CF-ADP. When executed after creation of a new file, the FLCRT instruction checks the association with the file ID, and evaluates it.

\rightarrow As for explanation of the instruction, see the FX3U-CF-ADP User's Manual.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in	each language
name	operation	form	Structured ladder/FBD	ST
FLCRT	16 bits	Continuous	FLCRT 	FLCRT(EN,s1,s2,s3,n);

2. Set data

Va	riable	Description	Data type
	EN	Execution condition	Bit
Input variable	<u>(s1)</u>	File ID (Refer to Detailed explanation of setting data)	ANY16
	<u>(s2</u>)	File name (Refer to Detailed explanation of setting data)	String
Tanabio	<u>(s3)</u>	File creation parameter (Refer to Detailed explanation of setting data)	ARRAY [03] OF ANY16
	n	Used channel number [contents of setting : K1 = ch1, K2 = ch2]	ANY16
Output variable	ENO	Execution state	Bit

3. Applicable devices

			Bit	t De	evi	ce	S					W	ord	Dev	/ice	es				Others					
Operand type		;	Sys	ste	m	use	er	Dig	it spe	cifica	tion		Syst us	tem er	ľ	Special unit		h	ndex	Co ta	ns nt	Real Number	Character String	Pointer	
	х	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	Κ	н	E	"□"	Р	
<u>(s1</u>)														•	•				•	•	•				
<u>(s2</u>)														٠	•				•				٠		
<u>(s3)</u>														٠	•				•						
n																				•	•				

B

Applied Instruction List

Control

1. 16-bit operation (FLCRT)

1) When the file ID is "K0"

When (s1) is "K0", the FLCRT instruction creates a FIFO file.

When the PLC creates two or more files for FIFO file, and executes FIFO (first in, first out) in units of files. The PLC keeps the latest file, and deletes older files so that the total capacity of FIFO files and other files does not exceed the specified capacity.

2) When the file ID is "K1" to "K63"

When s1 is "K1" to "K63", the FLCRT instruction creates a file having the specified file name. Sequence programs use the file ID for specifying a file. Accordingly, each file name saved in the

CompactFlashTM card is associated with the file ID, and controlled by the file ID table.

If a file having the specified file name already exists and is registered in the file ID table, the PLC finishes the FLCRT instruction without executing any processing.

If a file having the specified name already exists but is not registered in the file ID table, the PLC only registers the existing file to the file ID table.

31

Detailed explanation of setting data

5	Setting items	Description	Data Type	Insfe
	(<u>s1</u>)	File ID This ID number is associated with the file name. The FLCRT instruction creates a file, and associates the file name with the file ID at the same time. The user should use the file ID for specifying a file after that. Allowable setting range : K0 to K63 ("K0" indicates "FIFO file".)	ANY16	ar 3) 32 High Proc
	(\$2)	File name When <u>s1</u> is "K0 (FIFO file)" Not used (ignored) Use an unused device. (D or R) When <u>s1</u> is "K1" to "K63" Specify the file name in up to 8 characters until "null" or "null + null".	String	essing 2)
		Half-width alphanumeric characters and half-width symbols permitted in the MS-DOS are available. Half-width symbols : !, #, \$, %, &, ', (,), +, -, @, ^, _, ', ~ The extension is fixed to "CSV"		Extension File
	(53)	Time stamp setting Set whether or not the time stamp is added to the file. Specify the format when adding the time stamp. K0 : None (NULL) K1 : yyyy/mm/dd hh:mm:ss K2 : yy/mm/dd hh:mm:ss K3 : dd/mm/yyy hh:mm:ss K4 : dd/mm/yy hh:mm:ss K5 : mm/dd/yyyy hh:mm:ss K6 : mm/dd/yyy hh:mm:ss		34 (FX3U-CF-ADP) 35
eter		K7 : hh:mm:ss Data type Set the data type to be saved. K0 : No data type specification (mixed type) K1 : Bit type K2 : Decimal type (16-bit)		and Pulse Catch Function
rile creation param	(53)+1	 K3 : Decimal type (32-bit) K4 : Hexadecimal type (16-bit) K5 : Hexadecimal type (32-bit) K6 : Real numbers(Floating point data) Exponent expression type (32-bit) K7 : Character string Maximum number of lines 	ARRAY [03] OF ANY16	A Relationships between devi and addresse
	<u>s</u> 3)+2	Set the maximum number of lines. Allowable setting range : K1 to K32767 ^{*1}		es es
		When <u>s1</u> is "K0 (FIFO file)" Set the CompactFlash TM card use ratio. Specify the ratio (%) out of the whole CompactFlash TM card capacity to be used. Allowable setting range : 10 to 90 (%)		B Applied Instruction Li
	<u>(s3)</u> +3	When s1 is "K1" to "K63" File processing to be executed when the specified maximum number of lines is		IST
		 reached. Set the file processing method to be executed when the number of lines reaches the specified maximum value. K0 : Stops execution. (The line position remains the specified maximum line position.) K1 : Returns to the head (ring buffer file). 		
	n	Channel number used by the CF-ADP K1 : ch1 K2 : ch2	ANY16	

*1. Adjust the maximum number of lines to specify the file size available in the used application software used.

For the file size calculation formula, refer to FX3U-CF-ADP User's Manual

Cautions

- 1) When the file ID is "K0"
 - a) The CF-ADP can create up to 1000 files (within the CompactFlashTM card capacity).
 - b) The file name is set to "FILE0000.CSV" to "FILE0999.CSV".
- 2) When the file ID is "K1" to "K63"
 - a) The user can create up to 63 files (within the CompactFlashTM card capacity).
 - b) The FLCRT instruction is completed abnormally if different file names are specified for the same file ID or if the same file name is specified for different file IDs.
- 3) It is not permitted to use an "FLCRT, FLDEL, FLWR, FLRD, FLCMD or FLSTRD" instruction and a following instruction for the same port:
 - "RS or RS2" instruction
 - "ADPRW" instruction
 - "IVCK, IVDR, IVRD, IVWR, IVBWR or IVMC" instruction
- 4) The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.61 or later.

FLDEL / File delete • CF card format 34.2

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
Δ	×	×	×	×	×	×	×	×

Outline

The FLDEL instruction deletes files stored in the CompactFlashTM card, or formats the CompactFlashTM card.

\rightarrow As for explanation of the instruction, see the FX3U-CF-ADP User's Manual.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language								
name	Operation	form	Structured ladder/FBD	ST							
FLDEL	16 bits	Continuous	FLDEL — EN ENO — s1 — s2 — n	FLDEL(EN,s1,s2,n);							

2. Set data

Va	riable	Description	Data type		
	EN	Execution condition	Bit		
Input	<u>(s1)</u>	File ID (Refer to Detailed explanation of setting data)	ANY16		
variable	<u>(s2</u>)	File delete method (Refer to Detailed explanation of setting data)	ANY16		
	n	Used channel number [contents of setting : K1 = ch1, K2 = ch2]	ANY16		
Output variable	ENO	Execution state	Bit		

3. Applicable devices

			Bit	t D	evi	ce	S				Word Devices						Others							
Operand type			Sys	ste	m	use	er	Dig	it spe	cifica	tion		Syst us	tem er	1	Special unit		h	ndex	Co ta	ns nt	Real Number	Character String	Pointer
	X	Y	М	Т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	E	"0"	Р
<u>(s1</u>)														•	•				•	•	•			
<u>(s2</u>)														•	•				•	•	•			
n																				•	۲			

31

Applied II (Data T

1. 16-bit operation (FLDEL)

The FLDEL instruction deletes files stored in the CompactFlashTM card, or formats the CompactFlashTM card in the following method.

- 1) Specify file deletion or file formatting using s1.
 - a) When s1 is "K-1 (H0FFFF)", the FLDEL instruction deletes all files whose ID is 0 to 63.
 - b) When s1 is "K0" to "K63", the FLDEL instruction deletes the file associated with the specified file ID.
 - c) When (s1) is "K512 (H200)", the FLDEL instruction formats the CompactFlashTM card.
- 2) Specify the file deletion method or format type using <u>S</u>.
 - a) When s1 is "K-1 (H0FFFF)" or "K0" to "K63", specify the deletion method
 - K0: The FLDEL instruction deletes the specified file.
 - K1: The FLDEL instruction deletes the association between the file name and the file ID (, but does not delete the file itself).

However, when the file ID specified in (s1) is "0", the FLDEL instruction deletes the file without regard to the setting of (s2).

b) When s1 is "K512 (H200)", specify the format type.

k256(H100) : The FLDEL instruction formats the CompactFlash[™] card in FAT16 format.

For details, refer to Detailed explanation of setting data.

Detailed explanation of setting data

Details of the setting data in the FLDEL instruction are as shown below.

Setting items	Description	Data Type
<u>(s1</u>)	File ID K-1(H0FFFF) : The FLDEL instruction deletes all files. K0 to K63 : The FLDEL instruction deletes a file associated with the specified file ID. K512(H200) : The FLDEL instruction formats the CompactFlash TM card.	ANY16
<u>(s2</u>)	 When s1 is "K-1 (H0FFFF)" or "K0" to "K63" Specify the deletion method. K0 : The FLDEL instruction deletes the specified file. K1 : The FLDEL instruction deletes the association between the file name and the file ID (but does not delete the file itself). However, when the file ID specified in s1 is "0", the FLDEL instruction deletes the file itself without regard to the setting of s2. 	ANY16
	When s1 is "K512 (H200)" Specify the format type. K256(H100) : The FLDEL instruction formats the CompactFlash TM card in the FAT16 format.	
n	Channel number used by the CF-ADP K1 : ch1 K2 : ch2	ANY16

Cautions

- 1) When the file ID "K0 (FIFO file)" or "K-1 (all files)" is specified, it may take approximately 1 minute to delete the files depending on the number of stored files.
- 2) The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.61 or later.
- It is not permitted to use an "FLCRT, FLDEL, FLWR, FLRD, FLCMD or FLSTRD" instruction and a following instruction for the same port:
 - "RS or RS2" instruction
 - "ADPRW" instruction
 - "IVCK, IVDR, IVRD, IVWR, IVBWR or IVMC" instruction

FLWR / Data write 34.3

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
Δ	×	×	×	×	×	×	×	×

Outline

The FLWR instruction writes data to the CompactFlash[™] card or to the buffer inside the FX₃∪-CF-ADP. \rightarrow As for explanation of the instruction, see the FX3U-CF-ADP User's Manual.

1. Format and operation, execution form

-

Instruction	Operation	Execution	Expression in each language									
name	Operation	form	Structured ladder/FBD	ST								
FLWR	16 bits	Continuous	FLWR EN ENO s1 d s2 s3 n	FLWR(EN,s1,s2,s3,n,d);								

2. Set data

Va	riable	Description	Data type				
	EN	Execution condition	Bit				
	<u>(s1)</u>	File ID (Refer to Detailed explanation of setting data)	ANY16				
Input variable	<u>(s2</u>)	Head of devices which store data to be written (Refer to Detailed explanation of setting data)	ANY_SIMPLE				
	<u>(\$3)</u>	Data write parameter (Refer to Detailed explanation of setting data)	ARRAY [04] OF ANY16				
	n	Used channel number [contents of setting : K1 = ch1, K2 = ch2]	ANY16				
Output	ENO	Execution state	Bit				
variable	d	Position after data writing (Refer to Detailed explanation of setting data)	ARRAY [01] OF ANY16				

3. Applicable devices

			Bi	t D	evi	ce	s					W	ord	Dev	vic	es				Others					
Operand type System user			ər	Digit specification					System user			Special unit	Index		Cons tant		Real Number	Character String	Pointer						
	Х	Y	М	Т	C	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	Z	Modifier	Κ	н	ш	- -	Р	
<u>(s1</u>)														•	•				•	•	•				
<u>(s2</u>)	•	•	•			•						•	٠	•	•				•						
<u>(s3</u>)														•	•				•						
n																				•	•				
d														•	•				•						

1. 16-bit operation (FLWR)

The FLWR instruction writes data specified by the device (s_2) to a file stored in the CompactFlashTM card specified by the file ID or to the buffer inside the CF-ADP. The FLWR instruction can overwrite data in the line position specified by the device $(s_3)+1$, and can write additional data (K-1). When the writing destination is the buffer inside the CF-ADP, the FLWR instruction can only execute additional writing. When writing is completed, the line position and column position after writing are as follows.

- · When data in 1 line is written additionally
 - Line position after writing : Written line position + K1
 - Column position after writing : K1
- · When a line having existing data is overwritten
 - Line position after writing :

Written line position if data is not written to the final column position of the specified the line position Line position next to the written line position if data is written to the final column position of the line

Column position after writing:
 Column position next to the final written data point K1 if data is written to the final data point in the line
 "K1" if data is written to the final data point in the line

Both additional writing and overwriting are executed to the maximum number of lines specified during file creation. If data is written up to the final column position, the line position after writing varies depending on the file type and setting.

- When the processing is stopped by the maximum line position in a normal file Line position after writing = Maximum line position + K1 K-32768 when the maximum line position is "K32767"
- In the case of a normal file in which processing returns to the head of the file from the end of the file (ring buffer file)

Line position after writing = K1

 In the case of FIFO file Line position after writing = K1

In either case, the column position after writing is "K1".

Detailed explanation of setting data

Details of the setting data in the FLWR instruction are as shown below.

;	Setting items	Description	Data Type		
	<u>(s1)</u>	File ID K0 to K63	ANY16		
	<u>(s2</u>)	Head of devices which store data to be written. Specify the head of devices which store the data to be written to the CompactFlash TM card.	ANY_SIMPLE		
arameter	<u>(53)</u>	Specify the data writing type K0 : Mixed type K1 : Bit type K2 : Decimal type (16-bit) K3 : Decimal type (32-bit) K4 : Hexadecimal type (16-bit) K5 : Hexadecimal type (32-bit) K6 : Real numbers(Floating point data) Exponent expression type (32-bit) K7 : Character string (512 half-width/full-width characters maximum) K8 : Data name : Character string consisting of up to 32 half-width/full-width characters. Index, DATE TIME are added automatically.			
ita write p	<u>(s3)</u> +1	Specify the line position of the writing destination, or specify additional writing. Line position of the writing destination : K1 to specified maximum number of lines Additional writing : K-1	OF ANY16		
Da	<u>(s3)</u> +2	Specify the data column position in the writing destination. Column position : K1 to K254 Additional writing : K-1			
	<u>(s3)</u> +3	Number of written data points K1 to K254			
	<u>(s3)</u> +4	Writing destination K0 : CompactFlash TM card K1 : Buffer inside the CF-ADP			
	n	Channel number used by the CF-ADP K1 : ch1 K2 : ch2	ANY16		
	d	Line position after writing K1 to specified maximum number of lines	ARRAY [01]		
	d)+1	Column position after writing K1 to K254	OF ANY16		

31

Applied Instructions (Data Transfer 3)

32

AppliedInstructions (High Speed Processing 2)

33

Applied Instructions (Extension File Register Control)

34

Applied Instructions (FX3U-CF-ADP)

Cautions

- 1) The FLWR instruction is completed abnormally if a CompactFlashTM card is not mounted.
- 2) The user should pay close attention to the number of times data is written when the writing destination is set to the CompactFlashTM card because data is written every time the FLWR instruction is executed. For example, if data is written to the CompactFlashTM card every one minute, data is written 100,000 times in approximately 2 months.
- 3) Even if the writing destination is set to the buffer inside the CF-ADP, data is written to the CompactFlashTM card in the case of overwriting.
- 4) The FLWR instruction writes data to the CompactFlashTM card after the internal buffer inside the CF-ADP becomes full when the writing destination is set to the buffer. Data stored in the internal buffer inside the CF-ADP is erased when a (instantaneous or long) power interruption occurs.
- 5) When the data type is a data name (K8), the user can specify only the head line position before writing other data. Index and DATE TIME are added automatically.
- 6) The FLWR instruction may require several scans to acquire data. Take proper measures such as saving acquired data in another device if data consistency is required.
- 7) It is necessary to set the device number in multiples of 16 when a bit device is specified in <u>s</u> and the data type is set to anything other than bit type. When a word device is specified in <u>s</u> and the data type is set to bit, the FLWR instruction acquires data to be written from the least significant bit of the specified device.
- 8) When <u>s</u> is "K7" or "K8", 00H, which indicates the end of the string, must be added to the end of the character string.
- 9) It is not permitted to use an "FLCRT, FLDEL, FLWR, FLRD, FLCMD or FLSTRD" instruction and a following instruction for the same port:
 - "RS or RS2" instruction
 - "ADPRW" instruction
 - "IVCK, IVDR, IVRD, IVWR, IVBWR or IVMC" instruction
- 10) The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.61 or later.

34.4 FLRD / Data read

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)
\triangle	×	×	×	×	×	×	×	×

Outline

The FLRD instruction reads data from the CompactFlashTM card. \rightarrow As for explanation of the instruction, see the FX₃U-CF-ADP User's Manual.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in a	each language
name	operation	form	Structured ladder/FBD	ST
FLRD	16 bits	Continuous	FLRD 	FLRD(EN,s1,s2,n,d1,d2);

2. Set data

Va	riable	Description	Data type		
	EN	Execution condition	Bit		
Input	(s1)	File ID (Refer to Detailed explanation of setting data)	ANY16		
variable	<u>(s2)</u>	Data read parameter (Refer to Detailed explanation of setting data)	ARRAY [03] OF ANY16		
	n	Used channel number [contents of setting : K1 = ch1, K2 = ch2]	ANY16		
	ENO	Execution state	Bit		
Output variable	<u>d1</u>)	Device which stores the read data (Refer to Detailed explanation of setting data)	ANY_SIMPLE		
	(d2)	Number of data points existing in the specified line	ANY16		

3. Applicable devices

			Bit	t D	evi	ce	s					W	ord	Dev	/ice	es				Others					
Operand type		;	Sys	ste	m	use	er	Digit specification					System user			Special unit	Index		Cons tant		Real Number	Character String	Pointer		
	X	Y	М	т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	۷	z	Modifier	κ	н	E	"0"	Р	
<u>(s1</u>)														•	•				•	•	•				
<u>s2</u>														•	•				•						
n																				•	•				
(d1)		•	٠			•								•	•				•						
(d2)														•	•				•						

Function and operation explanation

1. 16-bit operation (FLRD)

The FLRD instruction reads corresponding number of data from the position determined by the line position and column position in the file specified by the file ID, and stores the read data to a device specified in (d1).

When reading data from a file in which only the same type of data exists in one line, refer to FX_{3U}-CF-ADP User's Manual.

When reading data from a file in which different types of data exist in one line, refer to FX_{3U}-CF-ADP User's Manual.

31

Detailed explanation of setting data

Details of the setting data in the FLRD instruction are as shown below.

5	Setting items	Description	Data Type		
	(s1)	File ID K0 to K63	ANY16		
ad parameter	(52)	Specify the data reading type K0 : Mixed type K1 : Bit type K2 : Decimal type (16-bit) K3 : Decimal type (32-bit) K4 : Hexadecimal type (16-bit) K5 : Hexadecimal type (32-bit) K6 : Real numbers(Floating point data) Exponent expression type K7 : Character string (512 half-width/full-width characters maximum)	ARRAY [03] OF ANY16		
Data re	(s2)+1	Specify the line position from which data is read. Line position : K1 to specified maximum number of lines			
	<u>(s2</u>)+2	Specify the column position from which data is read. Column position : K1 to K254			
	<u>(s2</u>)+3	Read points K1 to K254			
	n	Channel number used by the CF-ADP K1 : ch1 K2 : ch2	ANY16		
	<u>(d1</u>)	Device which stores the read data Specify the head of devices which store the data read from the CompactFlash TM card.	ANY_SIMPLE		
	(d2)	Number of data points existing in the specified line K1 to K254 K0 : No data	ANY16		

Cautions

- 1) The FLRD instruction is completed abnormally if a CompactFlashTM card is not mounted.
- The FLRD instruction may require several scans to acquire data. Use the acquired data only after confirming completion of the FLRD instruction if data consistency is required.
- 3) It is necessary to set the device number in a multiple of 16 when a bit device is specified in d1 and the read data type is anything other than bit. When a word device is specified in d1 and the read data type is bit, the FLRD instruction stores data read from the least significant bit of the specified word device.
- 4) When the data type is anything other than character string and the number of devices which store the read data is insufficient, the FLRD instruction does not read data from the CF-ADP. An error occurs.
- 5) When the data type is a character string, the character string length is unknown. The PLC stores as much read data as possible. When reading is not completed even after the final device is reached, an error occurs.
- 6) It is not permitted to use an "FLCRT, FLDEL, FLWR, FLRD, FLCMD or FLSTRD" instruction and a following instruction for the same port:
 - "RS or RS2" instruction
 - "ADPRW" instruction
 - "IVCK, IVDR, IVRD, IVWR, IVBWR or IVMC" instruction
- 7) The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.61 or later.

34.5 FLCMD / FX3U-CF-ADP command

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FXON	FX0(S)
\triangle	×	×	×	×	×	×	×	×

Outline

The FLCMD instruction gives instruction for operation to the FX_{3U}-CF-ADP. \rightarrow As for explanation of the instruction, see the FX_{3U}-CF-ADP User's Manual.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language										
name	Operation	form	Structured ladder/FBD	ST									
FLCMD	16 bits	Continuous	FLCMD EN ENO s n	FLCMD(EN,s,n);									

2. Set data

Va	riable	Description	Data type		
	EN	Execution condition	Bit		
Input variable	S	Instruction for operation (Refer to Detailed explanation of setting data)	ANY16		
	n	Used channel number [contents of setting : K1 = ch1, K2 = ch2]	ANY16		
Output variable	ENO	Execution state	Bit		

3. Applicable devices

			Bi	t D	evi	ce	S					W	ord	Others										
Operand type			Sy	ste	m	use	ər	Digit specification					System user			Special unit	Index		Cons tant		Real Number	Character String	Pointer	
	Х	Y	М	т	С	s	D□.b	KnX	KnY	KnM	KnS	Т	С	D	R	U□\G□	۷	Z	Modifier	κ	н	Е	"0"	Р
s														•	•				•	•	•			
n																				•	•			

Function and operation explanation

1. 16-bit operation (FLCMD)

Command input	FL	CMD	
	EN	ENO	
Instruction for operation —	s		
Used channel number —	n		

The FLCMD instruction gives instruction for operation to the CF-ADP. The contents of instruction are as follows.

- 1) When s is "K-1", the FLCMD instruction forcibly writes all buffered data (stored in the buffer inside the CF-ADP) to the CompactFlashTM card.
- 2) When s is "K0" to "K63", the FLCMD instruction forcibly writes the buffered data of the specified file ID (stored in the buffer inside the CF-ADP) to the CompactFlashTM card.
- 3) When <u>S</u> is "K256 (H100)", the FLCMD instruction sets the CompactFlash[™] card to the mounted status if it is in the unmounted status.
- 4) When s is "K512 (H200)", the FLCMD instruction sets the CompactFlashTM card to the unmounted status if it is in the mounted status.
- 5) When s is "K1280 (H500)", the FLCMD instruction clears error codes stored in the CF-ADP.

For details, refer to Detailed explanation of setting data.

31

Transfer 3)

32

Speed

33

34

nstructions

Detailed explanation of setting data

Details of the setting data in the FLCMD instruction are as shown below.

Setting items	Description	Data Type
đ	Contents of instruction for operation K-1 : Forcibly writes all buffered data to the CompactFlash TM card. K0 to K63 : Forcibly writes the buffered data of the specified file ID to the CompactFlash TM card. K256(H100) : Sets the CompactFlash TM card to the mounted status ^{*1} . K512(H200) : Sets the CompactFlash TM card to the unmounted status ^{*2} . K1280(H500) : Clears error codes stored in the CF-ADP.	ANY16
	Channel number used by the CF-ADP K1 : ch1 K2 : ch2	ANY16

- *1. The CompactFlashTM card is available in the "mounted" status.
- *2. The CompactFlashTM card is unavailable in the "unmounted" status.

Caution

- 1) It is not permitted to use an "FLCRT, FLDEL, FLWR, FLRD, FLCMD or FLSTRD" instruction and a following instruction for the same port:
 - "RS or RS2" instruction
 - "ADPRW" instruction
 - "IVCK, IVDR, IVRD, IVWR, IVBWR or IVMC" instruction
- 2) The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.61 or later.

34.6 FLSTRD / FX3U-CF-ADP status read

FX3U(C)	FX3G(C)	FX3S	FX2N(C)	FX1N(C)	FX1S	FXU/FX2C	FX0N	FX0(S)
Δ	×	×	×	×	×	×	×	×

Outline

The FLSTRD instruction reads the status (including the error information and file information) of the FX₃U-CFADP.

\rightarrow As for explanation of the instruction, see the FX_{3U}-CF-ADP User's Manual.

1. Format and operation, execution form

Instruction	Operation	Execution	Expression in each language							
name	operation	form	Structured ladder/FBD	ST						
FLSTRD	16 bits	Continuous	FLSTRD 	FLSTRD(EN,s,n,d);						

2. Set data

Va	riable	Description	Data type		
	EN	Execution condition	Bit		
Input variable	S	Contents of status to be read (Refer to Detailed explanation of setting data)	ANY16		
	n	Used channel number [contents of setting : K1 = ch1, K2 = ch2]	ANY16		
Output	ENO	Execution state	Bit		
variable	d	Head device to which the read status is written (Refer to Detailed explanation of setting data)	ANY16		

3. Applicable devices

	Bit Devices						5	Word Devices									Others							
Operand type		System user				er	Digit specification				System user			Special unit	Index		Cons tant		Real Number	Character String	Pointer			
	X	Y	М	т	С	S	D□.b	KnX	KnY	KnM	KnS	т	С	D	R	U□\G□	v	Z	Modifier	κ	н	E	"0"	Р
s														•	•				•	•	•			
n																				•	•			
d														•					•					

Function and operation explanation

1. 16-bit operation (FLSTRD)

 Command input
 FLSTRD

 II
 EN
 ENO

 Contents of status to be read
 s
 d

 Used channel number
 n
 read status is written

The FLSTRD instruction reads the status information of the CF-ADP. The following contents can be read. The number of data stored in <u>d</u> varies depending on the contents of the read status.

- 1) When s is "K0" to "K63" the FLSTRD instruction reads the final line number and final column position of each file.
- 2) When \bigcirc is "K256 (H100)" the FLSTRD instruction reads file IDs stored in the CompactFlashTM card.
- 3) When s is "K512 (H200)" the FLSTRD instruction reads the data capacity.
- 4) When s is "K768 (H300)" the FLSTRD instruction reads the version information of the CF-ADP.
- 5) When s is "K1024 (H400)" the FLSTRD instruction reads the error information (error flag) for errors having occurred in the CF-ADP.
- 6) When <u>s</u> is "K1280 (H500)" the FLSTRD instruction reads error codes and error code details. Up to 5 of the latest error codes and error code details can be stored.

For details, refer to Detailed explanation of setting data.

31

Iranster

edInstructions n Speed essing 2)

33

ister

≋ني 32

Detailed explanation of setting data

Details of the setting data in the FLSTRD instruction are as shown below.

Setting items	Description	Data Type
S	Contents of status to be read K0 to K63 : Final line position of each file K256(H100) : File IDs stored in the CompactFlash TM card K512(H200) : Capacity of the CompactFlash TM card K768(H300) : Version of the CF-ADP K1024(H400) : Error information (error flag) K1280(H500) : Error codes	ANY16
n	Channel number used by the CF-ADP K1 : ch1 K2 : ch2	ANY16
d	Head device to which the read status is written The number of data points stored in d varies depending on the contents of the read status.	ANY16

• When (s) is "K0" to "K63"

The FLSTRD instruction reads the final line position and final column position of each file.

Setting items	Description
d	Final line position K1 to the specified maximum line position
(d)+1	Final column position

• When (s) is "K256 (H100)"

The FLSTRD instruction reads file IDs stored in the CompactFlashTM card. For a file ID corresponding to the read data, refer to the file ID correspondence table shown below. When a file exists, a bit corresponding to the file ID turns ON.

Description

Setting items	
d	
(d)+1	Stores the existence of file IDs
(d)+2	
(d)+3	

File ID correspondence table

Setting items	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
d	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
+1	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
d +2	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
+3	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48

• When (s) is "K512 (H200)"

The FLSTRD instruction reads the data capacity, used space and free space of the CompactFlashTM card to the following devices respectively.

Setting items	Description
(d)+1, (d)	Data capacity of the CompactFlash TM card (kB) Units, If the data capacity is less than 1 kB, "1" is stored.
(d)+3, (d)+2	Used space of the CompactFlash TM card (kB) Units, If the data size is less than 1 kB, "1" is stored.
(d)+5, (d)+4	Free space of the CompactFlash [™] card (kB) Units, If the data size is less than 1 kB, "1" is stored.

When 💿 is "K768 (H300)"

The FLSTRD instruction reads the version information of the CF-ADP.

Setting items	Description
d	Stores the version of CF-ADP. (Example) K100 = Ver.1.00
• When 💿 is "K1024 (H400)"

The FLSTRD instruction reads the error information (error flag).

Setting items	Description
	Error detection signal
	b0 : The CompactFlash TM card is not mounted.
	b1 : The CompactFlash TM card is full.
d	b2 : An error has occurred in the CF-ADP.
	b3 : CF-ADP H/W error
	b4 : CompactFlash TM card error
	b5 to b15 : Not used

• When s is "K1280 (H500)"

The FLSTRD instruction reads the error code and error code details for errors having occurred in the CF-ADP. Up to 5 of the latest error codes and error code details can be stored.

Setting items	Description
d	Error code 1
d +1	Error code details 1
+2	Error code 2
(d)+3	Error code details 2
d +4	Error code 3
(d)+5	Error code details 3
d+6	Error code 4
(d)+7	Error code details 4
d +8	Error code 5
+9	Error code details 5

Caution

- 1) It is not permitted to use an "FLCRT, FLDEL, FLWR, FLRD, FLCMD or FLSTRD" instruction and a following instruction for the same port:
 - "RS or RS2" instruction
 - "ADPRW" instruction
 - "IVCK, IVDR, IVRD, IVWR, IVBWR or IVMC" instruction
- 2) The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.61 or later.

Function e Catch

Α

31

Applied Instructions (Data Transfer 3)

32

Instructions

33

Applied Instru (Extension F Register Co

34

on File Control)

35. Interrupt Function and Pulse Catch Function

This chapter explains the built-in interrupt function and pulse catch function in FX PLCs. The input, special devices and timers in the explanations relate to the FX₃U and FX₃UC PLCs. Note that these differ from one model of PLC to another.

\rightarrow FX Structured Programming Manual [Device & Common]

35.1 Outline

This section explains the function to immediately execute an interrupt program (interrupt routine) without being affected by the operation cycle of the sequence program (main) while using an interrupt function as a trigger.

The delay by operation cycle and machine operation affected by uneven time intervals in normal sequence program process can be improved.

1. Input interrupt function (interrupt of external signal input (X))

By the input signal from an input (X000 to X005), the normal sequence program is paused, and an interrupt routine program is executed with priority.

The input interrupt execution timing can be specified on the rising edge or falling edge of the signal by the pointer number.

 \rightarrow For details, refer to Section 35.3.

2. Input interrupt delay function (interrupt of external signal input (X))

By the input signal from an input (X000 to X005), the normal sequence program is paused, and an interrupt routine program is executed with priority after the delay time (set in units of 1 ms). The input interrupt execution timing can be specified on the rising edge or falling edge of the signal by the pointer number.

 \rightarrow For details, refer to Section 35.4.

3. Timer interrupt function (timer interrupt activated in a constant cycle)

The normal sequence program is paused in a constant cycle of 10 to 99 ms, and an interrupt routine program is executed with priority.

 \rightarrow For details, refer to Section 35.5.

4. High speed counter interrupt function (interrupt function given at counting up)

When the current value of a high speed counter reaches a specified value, the normal sequence program is paused and an interrupt routine program is executed with priority.

\rightarrow For details, refer to Section 35.6.

5. Pulse catch function

When the input signal from an input (X000 to X007) turns ON from OFF, a special auxiliary relay ;M8170 to M8177 is set in the interrupt processing. By a relay M8170 to M8177 in a normal sequence program, a signal that remains ON longer than the receivable range with regular input processing can be easily received. When processing such a signal that turns ON and OFF several times in one operation cycle, however, use the input interrupt function.

 \rightarrow For details, refer to Section 35.7.

6. Pulse width/Pulse period measurement function

When the input signal from an input (X000, X001, X003 or X004) turns from OFF to ON, the value of the 1/6 μ s ring counter at the input signal rising edge is stored in special data registers.

When the input signal turns OFF from ON, the value of the 1/6 μ s ring counter at the input signal falling edge is stored in special data registers. At the same time, the difference in the counter value between the rising edge and the falling edge is divided by "60", and the pulse width in units of 10 μ s is stored in special data registers.

In the pulse period measurement mode, when the input signal turns from OFF to ON, the difference between the previous rising of the input signal and the current rising of the input signal is divided by "60", and then the pulse period in units of 10 μ s is stored in special data registers.

 \rightarrow For details, refer to Section 35.8.

35.2 Common items

35.2.1 Interrupt function

Three types of interrupt, namely, input interrupt, timer interrupt and counter interrupt, are available. Observe the following in creating an interrupt program.

- 1) Create a task for interrupt and main program.
- 2) Set an interrupt pointer in the event box for the interrupt program.

Property		×	
Details Comm	ent		
Attributes -		- 1	
Event	I101	 ←−−−	Set an interrupt pointer
Interval	0		
Priority	31 *		
Data Name	Task_01		
Title	Interrupt program		
Last Channe			
Last Change	4/20/2012 9:50:55 AM		
	ОК	Cancel	

For the interrupt pointers set in the event box, refer to their respective explanations.

3) The IRET instruction does not need to be programmed because, at the time of compilation, it is automatically added to the end of the program registered for the interrupt program task.

Applied Instruction List

31

Applied Instructions (Data Transfer 3)

32

(High Proce

edInstructions n Speed essing 2)

33 ₽͡͡͡͡⊉

35.2.2 How to disable interrupt function and pulse catch function

This section describes how to disable the interrupt function and pulse catch function.

1. Limiting the program interrupt range [interrupt function and pulse catch function]

1) Programming method

Program the DI instruction to set the interrupt disabled zone. Even if an interrupt is generated between the DI instruction and EI instruction (interrupt disabled zone), the interrupt is executed after the EI instruction.

2) Program example

[Main program]

- 3) Cautions
 - a) The interrupt inputs with special auxiliary relay for interrupt disable (M8050 to M8059) turned ON are excluded.

This special auxiliary relay is not available for pulse catch function.

b) When the disabled zone is long, interrupts are accepted, but the interrupt processing is started after considerable time.

When the interrupt disabling setting is not required, program only EI instruction. It is not always necessary to program DI instruction.

31

Applied Instructions (Data Transfer 3)

32

Speed nstr uctions

33

Applied Instructions (Extension File Register Control)

I File

34

Applied Instructions (FX3U-CF-ADP)

35 Fund

Α

В

Applied Instruction L

List

Rela and elationships etween device nd addresses devices

2. Disabling interrupt pointers (for each interrupt routine) [interrupt function]

1) Programming method

The special auxiliary relays M8050 to M8059 for disabling interrupt are provided. While an interrupt disable flag (M8050 to M8059) is ON, a corresponding interrupt program is not executed even if the interrupt disable flag is set to OFF after a corresponding interrupt is generated.

Input interrupt	The input interrupts X000 to X005 correspond to M8050 to M8055 ^{*1} respectively. When a relay M8050 to M8055 turns ON, a corresponding input interrupt is disabled.
Timer interrupt	The timer interrupts $16\square$ to $18\square$ correspond to M8056 to M8058 ^{*1} respectively. When a relay M8056 to M8058 turns ON, a corresponding timer interrupt is disabled.
High speed counter interrupt	When M8059 ^{*1} turns ON, all of the high speed counter interrupts 1010 to 1060 are disabled.

*1. Cleared when the PLC mode is changed from RUN to STOP.

Program example

In the program example shown below, when M8053 is set to ON by M20, the interrupt input I301 triggered by X003 is disabled.

[Main program]

35.2.3 Related items

1. Using the I/O refresh function (REF instruction)

When controlling an input relay or output relay in an interrupt program, the I/O refresh instruction REF can be used to acquire the latest input information and immediately output the operation result. As a result, high speed control is achieved without being affected by the operation cycle of the PLC.

2. Interrupt operation while FROM/TO instruction is executed. The interrupt operation is executed as follows depending on the ON/OFF status of the special auxiliary relay M8028.

1) While M8028 is OFF

While FROM/TO instructions are being executed, interrupts are automatically disabled. Input interrupts and timer interrupts are not executed.

Interrupts generated during this period are immediately executed when the execution of FROM/TO instructions are completed.

FROM/TO instruction can be used in an interrupt program when M8028 is OFF.

2) While M8028 is ON

When an interrupt is generated while FROM/TO instruction is being executed, execution of the FROM/TO instruction is paused and the interrupt program is executed.

FROM/TO instructions cannot be used in an interrupt routine program when M8028 is ON.

35.2.4 Cautions on use (common)

This section explains common cautions on using the interrupt function or pulse catch function. Specific cautions on each interrupt function are explained in the description of each interrupt function.

1. Processing when many interrupts are generated

When many interrupts are generated in turn, priority is given to the first one. When many interrupts are generated at the same time, priority is given to the one having the smallest pointer number. While an interrupt routine is being executed, other interrupts are disabled.

2. When double interrupt (interrupt during another interrupt) is required [interrupt function]

Usually, interrupts are disabled in an interrupt routine (program). When EI and DI instructions are programmed in an interrupt routine, up to two interrupts can be accepted. The FX1s, FX1N, FX1NC, FX3s, FX3G or FX3GC PLC does not support this function.

3. Operation when a timer is used [interrupt function]

Note that counting using a general timer is disabled, even a 1 ms retentive type timer.

In an interrupt routine, use timers for routine program T192 to T199^{*1}.

*1. The FX0S, FX0, FX0N, FX1S, FX1N, FX1NC, FX3S or FX3G PLC does not support the timers for routine programs.

4. Non-overlap of input [input interrupt (with or without delay function) and pulse catch function]

The inputs X000 to X007 can be used for high speed counters, input interrupts, pulse catch, SPD, ZRN, DSZR and DVIT instructions and for general purpose inputs. Make sure that input terminals do not overlap with each other.

5. Operation of devices latched in the ON status [interrupt function]

Devices which were set to ON in an interrupt routine are held in the ON status even after the interrupt routine is finished. When RST instruction for a timer or counter is executed, the reset status of the timer or counter is also held.

To turn OFF a device held in the ON status or for canceling such a timer or counter held in the reset status, reset such a device or deactivate RST instruction respectively inside or outside routine.

Example in which outputs are latched

In the program example shown below, the counter C0 is provided to count X001. When X000 turns ON from OFF, the interrupt program I001 is executed only in one scan, and then the counter C0 is reset and Y007 is output.

1) Program example

[Main program]

[Interrupt program] (Event: 1001)

2) Timing chart

Example in which latched outputs are reset (countermeasures)

1) Program example [Main program] ΕI ΕN ENO OUT C X001 ΕN -11-ENO CC0 CCoil K10 CValue -----RST X002 Program to reset Y007 at an arbitrary time. ΕN ENO d - Y007 [Interrupt program] (Event: 1001) RST M8000 ΕN ENO (A)H۲ d CC0 B RST M8001 ΕN ENO Program to deactivate the preceding C0 RUN monitor d CC0 RST instruction inside the subroutine. (normally OFF) Y007 2) Timing chart Execution of interrupt Interrupt program program I001 triggered by X000 X001 3 Current value 2 of C0 1 Counter is reset. (part (A) in above Counter reset instruction is deactivated RST C0 (part (B) in above program). program) Y007 Y007 is reset X002

31

35.3 Input Interrupt (Interrupt Triggered by External Signal) [Without Delay Function]

35.3.1 Input Interrupt (Interrupt Triggered by External Signal) [Without Delay Function]

1. Outline

An interrupt routine is executed by the input signal from an input X000 to X005.

2. Application

Because the external input signal can be processed without being affected by the operation cycle of the PLC, this interrupt is suitable to high speed control and receiving of short pulses.

3. Basic program (programming procedure)

[Main program]

4. Number and operation of (six) interrupt pointers

Interrupt routine 2)

(Interrupt program)

0:Interrupt at falling edge 1:Interrupt at rising edge to 5 according to the inputs X000 to X005

Input number*1	Pointer	Interrupt disable command	
input number	Interrupt at rising edge	Interrupt at falling edge	
X000	1001	1000	M8050 ^{*2}
X001	l101	I100	M8051 ^{*2}
X002	I201	1200	M8052 ^{*2}
X003	I301	1300	M8053 ^{*2}
X004	I401	1400	M8054 ^{*2}
X005	I501	1500	M8055 ^{*2}

and the interrupt routine 2) is executed.

after executing routine 2).

The program execution returns to the main program

*1. The input numbers differ from one type of PLC to another. FX0, FX0s and FX0N PLCs: supports X000 to X003 only.

*2. Cleared when the PLC mode is changed from RUN to STOP.

5. How to disable each interrupt input

When either one among M8050 to M8055 is set to ON in a program, interrupts from the corresponding input number are disabled.

(Refer to the previous page for the correspondence.)

6. Cautions

- Do not use an input two or more times. Make sure that an input relay number used as an interrupt pointer is not used in high speed counters, pulse catch functions and pulse density instructions which use the same input range.
- 2) Automatic adjustment of the input filter

When an input interrupt pointer $I \Box 0 \Box$ is specified, the input filter of the input relay is automatically changed to the input filter for high speed receiving.

Accordingly, it is not necessary to change the filter value using REFF instruction or special data register D8020 (input filter adjustment).

The input filter of an input relay not being used as an input interrupt pointer operates at 10 ms (initial value).

3) Pulse width of input interrupt

For executing input interrupt by an external signal, it is necessary to input the ON or OFF signal having the duration shown in the table below or more.

PLC	Input number	Input filter value when "0" is set
FX3U, FX3UC	X000 to X005	5μs ^{*1}
FX3G, FX3GC	X000, X001, X003, X004	10µs
	X002, X005	50µs
EVac	X000, X001	10µs
FX35	X002, X003, X004, X005	50µs

For the FX3S, FX3G, FX3GC, FX3U and FX3UC PLCs

- *1. When using the input filter at the filter value of 5 μs or when receiving a pulse whose response frequency is 50 k to 100 kHz using a high speed counter, perform the following.
 - Make sure that the wiring length is 5 m or less.
 - Connect a bleeder resistor of 1.5 Ω (1 W or more) to an input terminal, and make sure that the load current of the open collector transistor output in the counterpart equipment is 20 mA or more including the input current in the main unit.

For the FX1s, FX1N, FX1NC, FX2N and FX2NC PLCs

PLC	Input number	Pulse width
EX18 EX1N EX1NC	X000, X001	10µs
FAIS, FAIN, FAING	X002 to X005	50µs
EX2N EX2NC	X000, X001	20µs
T AZIN, T AZING	X002 to X005	50µs

For the FXos, FXo, FXon, FXu and FX2C PLCs

PLC	Input number	Pulse width
FX0S, FX0, FX0N	X000 to X003	100µs
FXU, FX2C	X000 to X005	200µs

4) Using a pointer number two or more times

It is not possible to program an interrupt at the rising edge and an interrupt at the falling edge for an input such as I001 or I000.

В

Applied nstruction List

31

Applied Instructions (Data Transfer 3)

32

Applied Instructions (High Speed Processing 2)

33

7. Program example

 When using both an external input interrupt at the rising edge and the output refresh (REF instruction) In the program example shown below, the output Y000 immediately turns ON when the rising edge of the external input X000 is detected.

- *1. Be sure to specify a multiple of "8" for the number of inputs/outputs to be refreshed by REF instruction. If any value other than a multiple of "8" is specified, an operation error occurs and REF instruction is not executed.
- When using both an input interrupt and the input refresh (REF instruction) In the program example shown below, an interrupt is executed using the latest input information.

Interrupts are enabled by EI instruction. The main program is described.

When an interrupt routine is executed by turning X001 to ON, the input refresh is executed unconditionally, and the ON/OFF information of X010 to X017 at the current time is received.

Y001 is set to ON or OFF according to the ON/OFF status of X010.

*1. Be sure to specify a multiple of "8" for the number of inputs/outputs to be refreshed by REF instruction. If any value other than a multiple of "8" is specified, an operation error occurs and REF instruction is not executed.

When counting the number of times of input generation (in the same way as single phase high speed counter)
 In the program example shown below, external inputs are counted.

[Main program]

31

Applied Instructions (Data Transfer 3)

32

Applied Instructions (High Speed Processing 2)

33

35.3.2 Examples of practical programs (programs to measure short pulse width)

By using a 1 ms retentive type timer or the special data register D8099 (high speed ring counter), the short pulse width can be measured in 1 ms or 0.1 ms units.

1. Example of measuring short pulse width with retentive 1 ms timer

The sequence diagram below takes the FX3U PLC (sink input) as an example.

31

Applied Instructions (Data Transfer 3)

32

edInstructions Speed Sing 2)

33

Applied Instru (Extension F Register Co

34

Applied Instructions (FX3U-CF-ADP)

35

Interrupt Fu and Pulse Function

Function e Catch

Α

Relationships between devices and addresses

В

Applied Instruction List

- Control

2. Example of program to measure the short pulse width using a high speed ring counter (For FX3U and FX3UC PLCs only)

35.4 Input Interrupt (Interrupt by External Signal) [With Delay function]

1. Outline

An input interrupt has the function to delay execution of an interrupt routine in units of 1 ms.

The delay time can be specified using the pattern program shown below.

By using the delay function, the mounting position of a sensor used for input interrupts can be adjusted electrically without changing the actual position.

The FX0S, FX0, FX0N, FX1S, FX1N, FX1NC, FXU, FX2C, FX2N, FX2NC, FX3S, FX3G or FX3GC PLC does not support this function.

2. Programming procedure

3. Timing chart

35.5 Timer Interrupt (Interrupt in Constant Cycle)

35.5.1 Timer Interrupt (Interrupt in Constant Cycle)

1. Outline

An interrupt routine is executed at every 10 to 99 ms without being affected by the operation cycle of a PLC. The FX0s, FX0, FX0N, FX1s, FX1N or FX1NC PLC does not support the timer interrupt function.

2. Application

This type of interrupt is suitable when a certain program should be executed at high speed while the main program operation time is long or when a program should be executed at a constant time interval in sequence operations.

3. Basic program (programming procedure)

[Main program]

4. Number and operation of (three) timer interrupt pointers

__ ___ ↑ _ ↑ Timer time 10 to 99 (ms)

Timer interrupt pointer 6,7,8

An interrupt program is executed at every specified interrupt cycle time (10 to 99 ms). Use this type of interrupt in control requiring cyclic interrupt processing regardless of the operation cycle of a PLC.

Input number	Interrupt cycle (ms)	Interrupt disable flag
I6□□		M8056 ^{*1}
17□□	An integer in the range from 10 to 99 is put in "□□" in the pointer name. Example: "I610" indicates a timer interrupt at every 10 ms.	M8057 ^{*1}
18□□		M8058 ^{*1}

*1. Cleared when the PLC mode is changed from RUN to STOP.

Caution

If the timer interrupt time is set to 9 ms or less, the timer interrupt processing may not be executed in an accurate cycle in the following cases. Therefore, using a time that is over 10 ms is recommended.

- · When the interrupt program processing time is long.
- When the main program contains an applied instruction whose processing time is long.

5. Cautions

- Each pointer number (I6, I7 or I8) can be used only once.
- When M8056 to M8058 is set to ON in a program, a corresponding timer interrupt is disabled.

31

Applied Instructions (Data Transfer 3)

32

Applied Instructions (High Speed Processing 2)

33

Applied Instructions (Extension File Register Control)

34

6. Program example

In the program example shown below, data is added and addition result is compared with the set value at every 10 ms.

35.5.2 Example of practical program (timer interrupt program using instruction)

RAMP, HKY, SEGL, ARWS and PR instructions execute a series of operations in synchronization with the scan time.

Because the total time may be too long or time fluctuation may cause a problem in these instructions, it is recommended to execute these instructions at a constant time interval using the timer interrupt function. When not using the timer interrupt function, use the constant scan mode.

1. Timer interrupt processing of HKY instruction

Interrupts are enabled by EI instruction. The main program is described.

[Interrupt program] (Event: I620)

2. Timer interrupt processing of RAMP instruction

The ramp signal output circuit shown below is programmed using the timer interrupt function executed every 10 ms.

1) Ramp output pattern

D4 is occupied as a register for counting the number of times of execution.

2) Program

[Main program]

Interrupts are enabled by EI instruction. The main program is described.

With M8026 turned ON, when the value of (D3) reaches the final value (D2), the value of Y is latched.

As soon as the start command is given, the initial value (D1) and target value (D2) are transferred.

While the instruction is executed 1000 times (in 10 seconds), the contents of D3 are changed from the value of D1 to the value of D2.

When the instruction execution complete flag M8029 turns ON, RAMP instruction drive input is set to OFF.

If RAMP instruction is continuously executed while M8026 is OFF, the value of D3 returns to the initial value (D1) immediately after it reaches the final value (D2), and then the same operation is repeated.

This program is not necessary when M8026 is ON.

31

AppliedInstructions (Data Transfer 3)

32

dInstructions Speed

33

lied Instru tension gister Cc

34

Contro

3. Cautions

1) When the HKY, SEGL or PR instruction is used in an interrupt program, the instruction turns ON M8029 in the interrupt program.

When M8029 is referred to in the main program as shown below, M8029 may be changed by an interrupt program depending on the interrupt timing, even if M8029 is referred to immediately after an instruction. As a result, whether the instruction is executed completely cannot be determined properly.

Program examples

[Main program]

IVCK: Instruction to use M8029

When an interrupt occurs at this timing, whether the instruction is executed completely cannot be determined properly.

[Interrupt program]

 $(\text{Event: I620}) \leftarrow \text{When interrupt is given at every 20 ms.}$

2) Countermeasures

Disable interrupts using the DI instruction in the section from the instruction which uses M8029 in the main program to the point after M8029 is referred to.

Countermeasures program example

[Interrupt program]

(Event: 1620) \leftarrow When interrupt is given at every 20 ms.

31

35.6 Counter Interrupt - Interrupt Triggered by Counting Up of High Speed Counter

1. Outline

This type of interrupt utilizes the current value of a high speed counter.

The FX0S, FX0, FX0N, FX1S, FX1N, FX1NC, FX3S, FX3G or FX3GC PLC does not support the counter interrupt function.

The FXU PLC of V 3.07 or later supports the counter interrupt function.

2. Application

This type of interrupt is used together with the DHSCS_I instruction (high speed counter interrupt) to execute an interrupt routine when the current value of a high speed counter reaches the specified value.

3. Basic program (programming procedure)

*1. When the comparison value specified by a data register, etc. is changed, the current value is actually changed to the specified value when END instruction is executed.

4. Number and operation of (six) counter interrupt pointers

I0<u>∏</u>0

Counter interrupt pointer (1 to 6)

Pointer No.	Interrupt disable flag
1010	
1020	
1030	M2050*1
1040	M8059
1050	
1060	

*1. Cleared when the PLC mode is changed from RUN to STOP.

5. When setting an interrupt output (Y or M) to ON or OFF using a high speed counter When only controlling the ON/OFF status of an output relay (Y) or auxiliary relay (M) according to the current value of a high speed counter, a required program can be easily created using DHSCS, DHSCR or DHSZ instruction.

6. Cautions

- Pointer number Pointer numbers cannot overlap with each other.
- 2) Disabling interrupts When the special auxiliary relay M8059 is set to ON in a program, all counter interrupts are disabled.

35.7 Pulse Catch Function[M8170 to M8177]

When the input relay X000 to X007 turns ON from OFF after the EI instruction is executed, the special auxiliary relay M8170 to M8177 is set for interrupt processing.

The FX0s, FX0, FX0N, FX1s, FX1N, FX1NC, FX3s, FX3G or FX3GC PLC does not require the EI instruction.

1. Assignment of input numbers and special auxiliary relays

Pulse catch input ^{*1}	Pulse catch relay
X000	M8170*2 (M8065 ^{*2} in the FX0S, FX0 and FX0N PLCs)
X001	M8171 ^{*2} (M8057 ^{*2} in the FX0S, FX0 and FX0N PLCs)
X002	M8172*2 (M8058 ^{*2} in the FX0S, FX0 and FX0N PLCs)
X003	M8173 ^{*2} (M8059 ^{*2} in the FX0S, FX0 and FX0N PLCs)
X004	M8174*2
X005	M8175*2
X006	M8176*2
X007	M8177*2

*1. Differs from one PLC to another.

FX1S, FX1N, FX1NC, FXU, FX2C, FX2N, FX2NC, FX3S, FX3G, FX3GC: Supports X000 to X005 only.FX0S, FX0, FX0N: Supports X000 to X003 only.

*2. Cleared when the PLC mode is changed from STOP to RUN.

2. Program example

	X002, X005	50 μs or more
	X000, X001	10 μs or more
	X002, X005	50 μs or more
FX2, FX2C	X000 to X005	50 μs or more
FX0S, FX0, FX0N	X000 to X003	50 μs or more
*1. When using the puls	se catch function at 5µs or	when receiving a pulse who

*1. When using the pulse catch function at 5μs or when receiving a pulse whose response frequency is 50 kHz to 100 kHz using a high speed counter, perform the following:

- Make sure that the wiring length is 5 m or less.
- Connect a bleeder resistor of 1.5 Ω (1 W or more) to an input terminal, and make sure that the load current of the open collector transistor output in the counterpart equipment is 20 mA or more including the input current in the main unit.

3. Cautions on use

- 1) When receiving an input again, it is necessary to reset the device which was once set using a program. Accordingly, until a device is reset, a new input cannot be received.
- 2) When it is necessary to receive continuous short pulses (input signals), use the external input interrupt function or high speed counter function.
- 3) A filter adjustment program is not required.
- 4) The pulse catch function is executed regardless of the operations of the special auxiliary relays M8050 to M8055 for respectively disabling interrupts.

35.8 Pulse width/Pulse period measurement function [M8075 to M8083, D8074 to D8097]

This function is supported only in FX3G PLC (Ver.1.10 or later) and FX3GC.

The pulse width/pulse period measurement function stores the values of 1/6 µs ring counters at the input signal rising edge and falling edge to special data registers. This function also divides by "60" the difference in the counter value (pulse width) between the rising edge and the falling edge or the difference in the counter value (pulse period) between the previous rising edge and the current rising edge, and stores the obtained pulse width or pulse period in units of 10 µs to special data registers.

The pulse width/pulse period measurement function becomes valid when a program is described using M8075 as a contact. Specify the pulse width measurement flag in the subsequent OUT instruction, and set an input terminal to be used.

When the pulse width/pulse period measurement function is valid, it always operates while the PLC mode is RUN.

Pulse input	Pulse width/ Pulse period measurement flag	Pulse period measurement mode	Ring counter value for rising edge ^{*1} [Unit: 1/6 μs]	Ring counter value for falling edge ^{*1} [Unit: 1/6 μs]	Pulse width /Pulse period ^{*1*2} [Unit: 10 μs]
X000	M8076	M8080	D8075, D8074	D8077, D8076	D8079, D8078
X001	M8077	M8081	D8081, D8080	D8083, D8082	D8085, D8084
X003	M8078	M8082	D8087, D8086	D8089, D8088	D8091, D8090
X004	M8079	M8083	D8093, D8092	D8095, D8094	D8097, D8096

Assignment of special auxiliary relays and special data registers

*1 Cleared when the PLC mode switches from STOP to RUN.

*2. The measurable pulse width is 10 μ s minimum and 100 s maximum. The measurable pulse period is 20 μ s minimum and 100 s maximum.

1. Program example

1) Pulse width measurement

The pulse width of the input signal from X000 is measured.

X000 is used for the pulse width/pulse period measurement function.

When the interrupt routine is executed at the falling edge of the input signal from X000, the pulse width of input signal from X000 stored in D8078 and D8079 is transferred to D1 and D0.

*1. VAR_01 is a global label and is defined as D8078. *2. VAR_02 is a global label and is defined as D0.

31

Applied Instructions (Data Transfer 3)

32

AppliedInstructions (High Speed Processing 2)

33

Applied Instructions (Extension File Register Control)

I File

34

Applied Instructions (FX3U-CF-ADP)

35

Interrupt and Puls Function

Pulse

Α

and Rela elationships etween device nd addresses

devices

Applied nstruction

List

2) Pulse period measurement

The pulse period of the input signal from X000 is measured.

- *2. VAR_02 is a global label and is defined as D0.
- Timing chart

The pulse period is not measured when the input signal rises for the first time after the PLC mode is changed from STOP to RUN, or when the input signal rises for the first time after the pulse period measurement mode (M8080) is set to ON from OFF. (Accordingly, D8078 and D8079 are not updated.) The pulse period is measured when the input signal rises at the next time. (As a result, D8078 and D8079 are updated.)

Make the pulse width/pulse period measurement setting flag (M8080) remain OFF for 1 operation cycle or more when discontinuing the pulse input.

If M8080 does not remain OFF for 1 operation cycle or more, the "a" period shown below is stored as the pulse period.

3) Signal delay time measurement

The delay time from the rising edge of the input signal from X000 to the rising edge of the input signal from X001 is measured.

[Main program]

X000 is used for the pulse width/pulse period measurement function.

X001 is used for the pulse width/pulse period measurement function.

31

Applied Instructions (Data Transfer 3)

32

Applied Instructions (High Speed Processing 2)

33

Applied Instructions (Extension File Register Control)

34

Applied Instructions (FX3U-CF-ADP)

*1. The ring counter offers 32-bit data including the most significant bit. The DSUB instruction does not give a correct value because it handles the most significant bit as the sign bit. To obtain a correct value, add the processing inside the dotted frame.

2. Cautions on use

- The pulse width/pulse period measurement function and input interrupts can be used at the same time in a same input terminal.
- When a same input terminal is used by the pulse width/pulse period measurement function and the SPD, DSZR or ZRN instruction, an operation error occurs when the instruction is executed.
- · The input terminal used for the pulse width/pulse period measurement function cannot be used for the pulse catch function.
- When a same input terminal is used by the pulse width/pulse period measurement function and a high ٠ speed counter, a grammatical error occurs.
- Make sure that the total frequency of four input channels is 50 kHz or less when using the pulse width/ ٠ pulse period measurement function.
- When the pulse width/pulse period measurement function and a high speed counter are used together, the overall frequency of the high speed counter is affected.

→ FX Structured Programming Manual [Device & Common]

31

В

Applied Instruction List

Appendix A: Relationships between devices and addresses

Device		Device and address		Example of cor	Example of corresponding device and address	
		Device	Address	Device	Address	
	Input relay	Х	Xn	%IXn	X367	%IX247
	Output relay	Y	Yn	%QXn	Y367	%QX247
	Auxiliary relay	М	Mn	%MX0.n	M499	%MX0.499
	Contact	TS	Tn	%MX3.n	TS191	%MX3.191
ner	Coil	TC	Tn	%MX5.n	TC191	%MX5.191
Τi	Current value	TN	Tn	%MW3.n %MD3.n	TN191 T190	%MW3.191 %MD3.190
	Contact	CS	Cn	%MX4.n	CS99	%MX4.99
nter	Coil	CC	Cn	%MX6.n	CC99	%MX6.99
Cou	Current value	CN	Cn	%MW4.n %MD4.n	CN99 C98	%MW4.99 %MD4.98
	Data register	D	Dn	%MW0.n %MD0.n	D199 D198	%MW0.199 %MD0.198
In	telligent function unit device	G	Ux\Gn	%MW14.x.n %MD14.x.n	U0\G09	%MW14.0.10 %MD14.0.9
	Extension register	R	Rn	%MW2.n %MD2.n	R32767 R32766	%MW2.32767 %MD2.32766
E	xtension file register	ER	ERn	Not corresponding	-	-
	Pointer	Р	Pn	" "(blank)	P4095	Not corresponding
Interrupt pointer		I	In	Not corresponding	-	-
Nesting N		N	Nn	Not corresponding	-	-
Index register		Z	Zn	%MW7.n %MD7.n	Z7 Z6	%MW7.7 %MD7.6
		V	Vn	%MV6.n	V7	%MW6.7
	State	S	Sn	%MX2.n	S4095	%MX2.4095

The table below shows the relationships between devices and addresses.

MEMO

31

Appendix B: Applied Instruction List [by Instruction Type / in Alphabetic Order]

Appendix B-1 Applied instructions [by instruction type]

Applied instructions are classified into the following twenty-one types:

1	Data transfer instructions	11	Program flow control instructions
2	Data conversion instructions	12	I/O refresh instructions
3	Comparison instructions	13	Real time clock control instructions
4	Arithmetic operation instructions	14	Pulse output / positioning control instructions
5	Logical operation instructions	15	Serial communication instructions
6	Special function instructions	16	Special block / unit control instructions
7	Rotation instructions	17	Extension register / extension file register control instructions
8	Shift instructions	18	FX3U-CF-ADP instructions
9	Data operation instructions	19	Other handy instructions
10	Character string operation instructions	20	External Device
	·	21	Extension Function

1. Data move instructions

Mnemonic	Function	Ref. Page
MOV		
MOVP	Move	130
DMOV	WOVE	155
DMOVP		
SMOV	Shift Movo	142
SMOVP	Shint Move	145
CML		
CMLP	Complement	146
DCML	Complement	140
DCMLP		
BMOV	Plack Maya	140
BMOVP	BIOCK MOVE	149
FMOV		
FMOVP		151
DFMOV	Fill NIOVE	154
DFMOVP		
PRUN		
PRUNP	Parallel Rup (Octal Mode)	202
DPRUN		393
DPRUNP		
XCH		
XCHP	Evelopee	157
DXCH	Exchange	157
DXCHP		
SWAP		
SWAPP	Puto Swap	510
DSWAP	Dyle Swap	510
DSWAPP		

Mnemonic	Function	Ref. Page
DEMOV	Floating Point Move	445
DEMOVP		440
DHCMOV	High Speed Counter Move	596

2. Data conversion instructions

Mnemonic	Function	Ref. Page
BCD		
BCDP	Conversion to Pinony Coded Desimal	150
DBCD	Conversion to binary Coded Decimar	155
DBCDP		
BIN		
BINP	Conversion to Pinany	162
DBIN		103
DBINP		
GRY		567
GRYP	Desimal to Cray Code Conversion	
DGRY	Decimar to Gray Code Conversion	
DGRYP		
GBIN		500
GBINP	Crow Code to Desimal Conversion	
DGBIN	Gray Code to Decimal Conversion	509
DGBINP		
FLT		
FLTP	Conversion to Electing Point	250
DFLT		200
DFLTP		

1Applied Instructions
(Data Transfer 3)**2**Applied Instructions
(High Speed
Processing 2)**3**Applied Instructions
(Extension File
Register Control)**4**Applied Instructions
(FX3U-CF-ADP)

Function A Relationships and Pulse Catch between devices and addresses

35

Applied Instruction List

2.	Data	conversion	instructions

Mnemonic	Function	Ref. Page
INT		
INTP	Floating Point to Integer Conversion	490
DINT	r loating r oint to integer conversion	400
DINTP		
DEBCD	Floating Point to Scientific Notation	459
DEBCDP	Conversion	400
DEBIN	Scientific Notation to Floating Point	461
DEBINP	Conversion	401
DRAD	Floating Point Degree to Radian	402
DRADP	Conversion	452
DDEG	Floating Point Radian to Degree	494
DDEGP	Conversion	

3. Comparison instructions

Mnemonic	Function	Ref. Page
LD=	Load Compare $(s1) = (s2)$	
LD>	Load Compare s1 > s2	
LD<	Load Compare <u>s1</u> < <u>s2</u>	
LD<>	Load Compare <u>s1</u> ≠ <u>s2</u>)	
LD<=	Load Compare <u>s1</u> ≤ <u>s2</u>	
LD>=	Load Compare (s1) ≥ (s2)	660
LDD=	Load Compare $(s1) = (s2)$	009
LDD>	Load Compare s1 > s2	
LDD<	Load Compare s1 < s2	
LDD<>	Load Compare (s1) ≠ (s2)	
LDD<=	Load Compare (s1) ≤ (s2)	
LDD>=	Load Compare (s1) ≥ (s2)	
AND=	AND Compare $(s1) = (s2)$	
AND>	AND Compare s1 > s2	
AND<	AND Compare s1 < s2	
AND<>	AND Compare <u>s1</u> ≠ <u>s2</u>)	
AND<=	AND Compare (s1) ≤ (s2)	
AND>=	AND Compare <u>s1</u> ≥ <u>s2</u>)	672
ANDD=	AND Compare $(s1) = (s2)$	072
ANDD>	AND Compare s1 > s2	
ANDD<	AND Compare s1 < s2	
ANDD<>	AND Compare (s1) ≠ (s2)	
ANDD<=	AND Compare (s1)≤(s2)	
ANDD>=	AND Compare <u>s1</u> ≥ <u>s2</u>)	
OR=	OR Compare $(s1) = (s2)$	
OR>	OR Compare <u>s1</u> > <u>s2</u>	
OR<	OR Compare <u>s1</u> < <u>s2</u>	
OR<>	OR Compare <u>s1</u> ≠ <u>s2</u>	675
OR<=	OR Compare <u>s1</u> ≤ <u>s2</u>	0/5
OR>=	OR Compare <u>s1</u> ≥ <u>s2</u>	
ORD=	OR Compare $(s1) = (s2)$	
ORD>	OR Compare <u>s1</u> > <u>s2</u>	

Mnemonic	Function	Ref. Page
ORD<	OR Compare <u>s1</u> < <u>s2</u>	
ORD<>	OR Compare $(s1) \neq (s2)$	~
ORD<=	OR Compare (s1)≤(s2)	675
ORD>=	OR Compare (s1) > (s2)	
CMP		
CMPP		
DCMP	Compare	133
DCMPP		
ZCP		
ZCPP		
DZCP	Zone Compare	136
DZCPP		
DECMP		
DECMPP	Floating Point Compare	441
DEZCP		
DEZCPP	Floating Point Zone Compare	443
DHSCS/	High Speed Counter Set/	267
DHSCS_I	High Speed Interrupt Counter Set	201
DHSCR	High Speed Counter Reset	275
DHSZ	High Speed Counter Zone Compare	279
DHSCT	High Speed Counter Compare With Data Table	738
BKCMP=	Block Data Compare $(s1) = (s2)$	
	Block Data Compare	
BKCMP>	$(\underline{s1}) > (\underline{s2})$	
	Block Data Compare	
RKCINIA<	<u>(s1)<(s2)</u>	
BKCMP<>	Block Data Compare	
	<u>(s1)</u> ≠(<u>s2</u>)	
BKCMP<=	Block Data Compare	
	<u>(s1)≤(s2</u>)	
BKCMP>=	Block Data Compare <u>(s1)</u> ≥(s2)	
	Block Data Compare	
BKCINIP=P	(s1) = (s2)	
	Block Data Compare	600
DICONIC	(s1)>(s2)	009
BKCMP <p< td=""><td>Block Data Compare</td><td></td></p<>	Block Data Compare	
DICONIT ST	<u>(s1)<(s2)</u>	
BKCMP<>P	Block Data Compare	
	<u>(s1)</u> ≠(<u>s2</u>)	
BKCMP<=P	Block Data Compare	
	<u>(s1)≤(s2</u>)	
BKCMP>=P	Block Data Compare	
	<u>(s1)≥(s2</u>)	
DBKCMP=	Block Data Compare	
	(s1)=(s2)	
DBKCMP>	Block Data Compare	
-	(<u>s1</u>)>(<u>s2</u>)	
DBKCMP<	Block Data Compare	
	(SI) (SZ)	

3. Comparison instructions

Mnemonic	Function	Ref. Page
DBKCMP<>	Block Data Compare	
	<u>(s1)</u> ≠(s2)	
	Block Data Compare	
	$(\underline{s1}) \leq \underline{s2}$	
	Block Data Compare	
DBRGIVIE	$(s1) \ge (s2)$	
	Block Data Compare	
DDROWIF -	(s1) = (s2)	
	Block Data Compare	609
	(s1) > (s2)	003
	Block Data Compare	
	<u>(s1)<(s2)</u>	
DBKCMP	Block Data Compare	
<>P	<u>(s1)</u> ≠(s2)	
DBKCMP	Block Data Compare	
<=P	$(\underline{s1}) \leq \underline{s2}$	
DBKCMP	Block Data Compare	
>=P	$(s1) \ge (s2)$	

4. Arithmetic operation instructions

Mnemonic	Function	Ref. Page
ADDP		
DADD	Addition	168
DADDP		
SUBP		
DSUB	Subtraction	171
DSUBP		
MULP		
DMUL	Multiplication	174
DMULP		
DIVP		
DDIV	Division	178
DDIVP		
DEADD	Flacting Daint Addition	460
DEADDP	Floating Point Addition	403
DESUB	Electing Point Subtraction	465
DESUBP		
DEMUL	Electing Point Multiplication	467
DEMULP		407
DEDIV	Electing Doint Division	460
DEDIVP	Floating Foint Division	409
BK+		
BK+P	Plack Data Addition	601
DBK+	BIOCK Data Addition	601
DBK+P		
BK-		
BK-P	Plack Data Subtraction	605
DBK	DIOCK DATA SUBTRACTION	CUO
DBK-P		

Mnemonic	Function	Ref. Page
INC		
INCP	Increment	101
DINC		101
DINCP		
DEC	Decrement	
DECP		183
DDEC		105
DDECP		

5. Logical operation instructions

Mnemonic	Function	Ref. Page
WAND		
WANDP	Logical Word AND	185
DAND		
DANDP		
WOR		
WORP	Logical Word OR	187
DOR		
DORP		
WXOR		
WXORP	Logical Exclusive OR	180
DXOR		109
DXORP		

6. Special function instructions

Mnemonic	Function	Ref. Page
SQR		
SQRP	Square Root	248
DSQR		
DSQRP		
DESQR	Eleating Point Square Root	477
DESQRP		477
DEXP	Eleating Point Exponent	471
DEXPP		
DLOGE	Floating Point Natural Logarithm	473
DLOGEP		470
DLOG10	Floating Point Common Logarithm	475
DLOG10P		
DSIN	Electing Doint Since	482
DSINP		
DCOS	Floating Point Cosine	484
DCOSP	Floating Foint Cosine	
DTAN	Floating Point Tangent	195
DTANP		400
DASIN	Eleating Point Arc Sine	486
DASINP		400

6. Special function instructions

Mnemonic	Function	Ref. Page
DACOS	Floating Point Arc Cosine	488
DACOSP		400
DATAN	Electing Point Arc Tangent	400
DATANP		430
RND	Random Number Generation	587
RNDP		557

7. Rotation instructions

Mnemonic	Function	Ref. Page
ROR		
RORP	Rotation Right	196
DROR	Totalion right	
DRORP		
ROL		
ROLP	Rotation Left	199
DROL		
DROLP		
RCR		
RCRP	Potation Pight with Carny	202
DRCR		
DRCRP		
RCL		
RCLP	Rotation Left with Carry	205
DRCL		
DRCLP		

8. Shift instructions

Mnemonic	Function	Ref. Page
SFTR		208
SFTRP	Bit Shint Right	
SFTL	Bit Shift Left	210
SFTLP		210
SFR	Dit Shift Dight with Comp	664
SFRP	Bit Shint Right with Carry	004
SFL	Bit Shift Left with Carry	666
SFLP		
WSFR	Word Shift Right	213
WSFRP		
WSFL	Word Shift Left	216
WSFLP		
SFWR		210
SFWRP		219
SFRD	Shift Read [FIFO Control]	222
SFRDP		222
POP	Shift Last Data Read IFILO Control	660
POPP		000

9. Data operation instructions

Mnemonic	Function	Ref. Page
ZRST		
ZRSTP	Zone Reset	225
DECO		
DECOP	Decode	229
ENCO		
ENCOP	Encode	233
MEAN		
MEANP		0.40
DMEAN	Mean	242
DMEANP		
WSUM		
WSUMP		407
DWSUM	Sum of Word Data	497
DWSUMP		
SUM		
SUMP	Sum of Active Pite	226
DSUM		236
DSUMP		
BON		
BONP		000
DBON	Check Specified Bit Status	239
DBONP		
NEG		
NEGP	Neretter	400
DNEG	Negation	192
DNEGP		
DENEG		470
DENEGP	Floating Point Negation	479
WTOB		500
WTOBP	WORD to BYTE	500
BTOW		502
BTOWP		503
UNI	4 hit Linking of Mord Data	500
UNIP		000
DIS	4 hit Grouping of Word Data	509
DISP		508
CCD	Chack Code	402
CCDP		403
CRC	Cyclic Rodundanov Chack	502
CRCP		59Z
LIMIT		
LIMITP	Limit Control	670
DLIMIT		0/9
DLIMITP		
BAND		
BANDP	Deed Deed Control	600
DBAND	Deau Bang Control	683
DBANDP		

31

Applied Instructions (Data Transfer 3)

32

AppliedInstructions (High Speed Processing 2)

33

Applied Instructions (Extension File Register Control)

9. Data operation instructions

Mnemonic	Function	Ref. Page
ZONE		
ZONEP	Zana Control	687
DZONE		
DZONEP		
SCL		
SCLP	Scaling (Coordinate by Point Data)	601
DSCL	Scaling (Coordinate by Foint Data)	031
DSCLP		
SCL2		702
SCL2P	Sections 2 (Coordinate by X / X Data)	
DSCL2	Scaling 2 (Coordinate by X / F Data)	
DSCL2P		
SORT	Sort Tabulated Data	349
SORT2	Cast Tabulated Data 2	512
DSORT2	Solt Tabulated Data 2	512
SER		
SERP	Search a Data Stack	323
DSER	Search a Data Stack	
DSERP		
FDEL	Deleting Data from Tables	654
FDELP	Deleting Data from Tables	054
FINS	Inserting Data to Tables	657
FINSP	וווזכרונווש שמומ וט דמטוכה	007

10. Character string operation instructions

Mnemonic	Function	Ref. Page
DESTR	Floating Point to Character String	447
DESTRP	Conversion	/
DEVAL	Character String to Floating Point	454
DEVALP	Conversion	434
STR		
STRP	RIN to Character String Conversion	617
DSTR	Bin to Character String Conversion	
DSTRP		
VAL	Character String to BIN Conversion	622
VALP		
DVAL		
DVALP		
DABIN		
DABINP		605
DDABIN	Decimal ASCII to BIN Conversion	695
DDABINP		
BINDA		
BINDAP	BIN to Decimal ASCII Conversion	609
DBINDA		090
DBINDAP		

Mnemonic	Function	Ref. Page
ASCI	Hevadecimal to ASCII Conversion	305
ASCIP		393
HEX	ASCII to Hexadecimal Conversion	300
HEXP		555
\$MOV	Character String Transfer	650
\$MOVP		000
\$+	Link Character Strings	628
\$+P	Link Gharacter Strings	020
LEN	Character String Length Detection	631
LENP		031
RIGHT	Extracting Character String Data From the Right	634
RIGHTP		
LEFT	Extracting Character String Data from the	637
LEFTP	Left	037
MIDR	Random Selection of Character Strings	640
MIDRP		
MIDW	Random Replacement of Character	643
MIDWP	Strings	045
INSTR	Character string search	647
INSTRP	Character stilling search	0-47
COMRD	Read Device Comment Data	584
COMRDP		004

11. Program flow control instructions

Mnemonic	Function	Ref. Page
CJ	Conditional Jump	104
CJP		104
CALL	Call Subroutine	111
CALLP		
SRET	Subroutine Return	116
IRET	Interrupt Return	117
EI	Enable Interrupt	121
DI	Disable Interrupt	120
FEND	Main Routine Program End	123
FOR	Start a FOR / NEXT Loop	128
NEXT	End a FOR / NEXT Loop	129

12. I/O refresh instructions

Mnemonic	Function	Ref. Page
REF	Refresh	255
REFP	Relican	200
REFF	Refresh and Filter Adjust	259
REFFP		200

31Applied Instructions
(Data Transfer 3)**20**Applied Instructions
(High Speed
Processing 2)**33**Applied Instructions
(Extension File
34)**34**(High Speed
Processing 2)**33**(Extension File
Register Control)**34**

Applied Instructions (FX3U-CF-ADP)

and Pulse Catch Function

Α

13.	Real	time	clock	control	instructions
	i toui		01001	001101	

Mnemonic	Function	Ref. Page
TCMP	PTC Data Compare	541
TCMPP		541
TZCP	PTC Data Zone Compare	544
TZCPP		
TADD	PTC Data Addition	547
TADDP		547
TSUB	RTC Data Subtraction	549
TSUBP		545
TRD	Read RTC data	557
TRDP		557
TWR	Set PTC data	559
TWRP		
HTOS		
HTOSP	Hour to Second Conversion	551
DHTOS		
DHTOSP		
STOH		
STOHP	Second to Hour Conversion	554
DSTOH		554
DSTOHP		

14. Pulse output / positioning control instructions

Mnemonic	Function	Ref. Page
DABS	Absolute Current Value Read	525
DSZR	DOG Search Zero Return	518
ZRN	Zero Return	527
DZRN		527
DTBL	Batch Data Positioning Mode	523
DVIT	Interrupt Desitioning	520
DDVIT	interrupt i Ositioning	
DRVI	Drive to Increment	534
DDRVI	Drive to increment	004
DRVA		537
DDRVA	Drive to Absolute	
PLSV	Variable Speed Pulse Output	531
DPLSV	Variable Speed i dise Output	551
PLSY	Ruleo X Output	206
DPLSY		290
PLSR	Acceleration / Deceleration Setup	306
DPLSR	Acceleration / Deceleration Setup	500

15. Serial communication instructions

Mnemonic	Function	Ref. Page
RS	Serial Communication	390
RS2	Serial Communication 2	411
IVCK	Inverter Status Check	708
IVDR	Inverter Drive	711

Mnemonic	Function	Ref. Page
IVRD	Inverter Parameter Read	714
IVWR	Inverter Parameter Write	716
IVBWR	Inverter Parameter Block Write	719
IVMC	Inverter Multi Command	721
ADPRW	MODBUS Read / Write	724

16.Special block / unit control instructions

Mnemonic	Function	Ref. Page
FROM		
FROMP	Pead from a Special Eurotion Block	381
DFROM	Tread from a Special Function Block	501
DFROMP		
ТО		386
TOP	Write to a Special Eurotion Block	
DTO		
DTOP		
RD3A	Read form Dedicated Analog Block	571
RD3AP	Tread form Dedicated Analog Block	571
WR3A	Write to Dedicated Analog Block	573
WR3AP	While to Dedicated Analog Block	575
RBFM	Divided BFM Read	729
WBFM	Divided BFM Write	735

17. Extension register/extension file register control instructions

Mnemonic	Function	Ref. Page
LOADR	Load from ER	744
LOADRP		7
SAVER	Save to ER	748
RWER	Rewrite to FR	765
RWERP	Newnie to El	700
INITR	Initialize R and FR	757
INITRP		151
INITER	Initializa ER	770
INITERP		110
LOGR	Logging R and FR	761
LOGRP		701

18. FX3U-CF-ADP instructions

Mnemonic	Function	Ref. Page
FLCRT	File create / check	775
FLDEL	File delete / CF card format	779
FLWR	Data write	781
FLRD	Data read	785
FLCMD	FX3U-CF-ADP command	787
FLSTRD	FX3U-CF-ADP status read	789

Appendix B: Applied Instruction List [by Instruction Type / in Alphabetic Order	r]
Appendix B-1 Applied instructions [by instruction type]	1

19. Other handy instructions

Mnemonic	Function	Ref. Page
WDT	Matala a Tina a Dafa al	405
WDTP	watchdog Timer Refresh	125
ALT	Alternate State	240
ALTP	Alternate State	340
ANS	Timed Annunciator Set	244
ANR	Appunciator Depot	246
ANRP	Annunciator Reset	240
HOUR	Llour Motor	500
DHOUR		505
RAMP	Ramp Variable Value	343
SPD	Speed Detection	202
DSPD	Speed Delection	292
PWM	Pulse Width Modulation	303
DUTY	Timing Pulse Generation	589
PID	PID Control Loop	414
ZPUSH	Datab Stara of Index Desister	424
ZPUSHP	Batch Store of Index Register	434
ZPOP	Datab DOD of Index Desister	407
ZPOPP	Batch POP of Index Register	437
TTMR	Teaching Timer	334
STMR	Special Timer	337
ABSD	Absolute Drum Seguencer	207
DABSD	Absolute Drum Sequencer	321
INCD	Incremental Drum Sequencer	331
ROTC	Rotary Table Control	346
IST	Initial State	312
MTR	Input Matrix	263
TKY	Top Koy Ipput	252
DTKY		353
HKY	Hovadooimal Input	257
DHKY		357
DSW	Digital Switch (Thumbwheel Input)	361
SEGD	Savan Sagmant Dagadar	265
SEGDP	Seven Segment Decoder	305
SEGL	Seven Segment With Latch	367
ARWS	Arrow Switch	372
ASC	ASCII code data input	376
PR	Print (ASCII Code)	378
VRRD	Volume Read	406
VRRDP		400
VRSC	Volume Scale	400
VRSCP		409

20. External Device

Mnemonic	Function	Ref. Page
MNET	E-16NP / NT communication	410
MNETP		415
ANRD	Read from E2-64	421
ANRDP		721
ANWR	Write to E2-64	423
ANWRP		420
RMST	F2-32RM start	424
RMWR	Write to E2 22DM	425
RMWRP		
DRMWR		
DRMWRP		
RMRD		427
RMRDP	Pead from F2 32PM	
DRMRD		427
DRMRDP		
RMMN	E2 32PM monitor	420
RMMNP		425
BLK	Specify E2 30GM	430
BLKP		400
MCDE	E2-30GM code	432
MCDEP		402

21. Extension Function

Mnemonic	Function	Ref. Page
EXTR_IN		576
EXTRP_IN		570
EXTR_OUT	External ROM function	
EXTRP OUT		579
Appendix B-2 Applied instructions [in alphabetical order]

Mnemonic	Function	Ref. Page
Mark		
\$+	Link Character Strings	600
\$+P		020
\$MOV	Character String Transfer	650
\$MOVP		000
Α		
ABSD	Absolute Drum Sequencer	327
ADDP	Addition	168
ADPRW	MODBUS Read / Write	724
ALT	Alternate State	340
ALTP		
AND<	AND Compare <u>s1</u> < <u>s2</u>	
AND<>	AND Compare <u>s1</u> ≠ <u>s2</u>	
AND=	AND Compare $(s1) = (s2)$	
AND>	AND Compare <u>s1</u> > <u>s2</u>	
AND<=	AND Compare <u>s1</u> ≤ <u>s2</u>	
AND>=	AND Compare <u>s1</u> ≥ <u>s2</u>	070
ANDD<	AND Compare s1 < s2	672
ANDD<>	AND Compare <u>s1</u> ≠ <u>s2</u>	
ANDD=	AND Compare $(s_1) = (s_2)$	
ANDD>	AND Compare s1 > s2	
ANDD<=	AND Compare <u>s1</u> ≤ <u>s2</u>	
ANDD>=	AND Compare <u>s1</u> ≥ <u>s2</u>)	
ANR	Annunciator Reset	246
ANRD	Dood from E2.6A	401
ANRDP	Read from F2-6A	421
ANRP	Annunciator Reset	246
ANS	Timed Annunciator Set	244
ANWR	Write to F2-6A	423
ANWRP		120
ARWS	Arrow Switch	372
ASC	ASCII code data input	376
ASCI	Hexadecimal to ASCII Conversion	395
ASCIP		
B		
BAND	Dead Band Control	683
BANDP		
BCD	Conversion to Binary Coded Decimal	159
	Conversion to Ringry	163
		105
BINDAP	BIN to Decimal ASCII Conversion	698
BINP	Conversion to Binary	163
BK-	Block Data Subtraction	605
BK+	Block Data Addition	601
BK-P	Block Data Subtraction	605
BK+P	Block Data Addition	601

Mnemonic	Function	Ref. Page
В		
BKCMP<	Block Data Compare	
BROWN	<u>s1 < s2</u>	
BKCMP<=	Block Data Compare	
	<u>(s1)≤(s2)</u>	
BKCMP<>	Block Data Compare	
	<u>(s1)</u> ≠(<u>s2</u>)	
BKCMP=	Block Data Compare	
	$(\underline{s1}) = (\underline{s2})$	
BKCMP>		
BKCMP>=	Col > Col	
	Block Data Compare	609
BKCMP <p< td=""><td>(s1) < (s2)</td><td></td></p<>	(s1) < (s2)	
	Block Data Compare	
BKCMP<=P	(s1) < (s2)	
	Block Data Compare	
BKCMP<>P	(s1)≠(s2)	
	Block Data Compare	
BKCMP=P	(s1) = (s2)	
	Block Data Compare	
BKCMP>P	(s1) > (s2)	
	Block Data Compare	İ
	$(s1) \ge (s2)$	
BLK	Specify E2 30GM	430
BLKP	Specify 1 2-30 Givi	430
BMOV	Black Mova	140
BMOVP	BIOCK MOVE	149
BON	Check Specified Bit Status	220
BONP	Check Specified Bit Status	239
BTOW		502
BTOW		503
С		
CALL		444
CALLP	Call Subroutine	111
CCD		400
CCDP	Check Code	403
CJ		
CJP	Conditional Jump	104
CML	- · ·	
CMLP	Complement	146
CMP		
CMPP	Compare	133
COMRD		-
COMRDP	Read Device Comment Data	584
CRC		-
CRCP	Cyclic Redundancy Check	592

31

Applied Instructions (Data Transfer 3)

32

AppliedInstructions (High Speed Processing 2)

33

Applied Instruction List

Appendix B: Applied Instruction List [by Instruction Type / in Alphabetic Order]
Appendix B-2 Applied instructions [in alphabetical order]

Mnemonic	Function	Ref. Page
D		
DABIN	Decimal ASCII to BIN Conversion	605
DABINP		095
DABS	Absolute Current Value Read	525
DABSD	Absolute Drum Sequencer	327
DACOS	Electing Doint Are Cooine	400
DACOSP	Floating Point AIC Cosine	400
DADD	Addition	169
DADDP	Addition	100
DAND	Lesies Word AND	105
DANDP	Logical Word AND	185
DASIN	Flasting Deint Are Oine	400
DASINP	Floating Point Arc Sine	486
DATAN		100
DATANP	Floating Point Arc Tangent	490
DBAND		
DBANDP	Dead Band Control	683
DBCD		
DBCDP	Conversion to Binary Coded Decimal	159
DBIN	Conversion to Binary	163
DBINDA		
DBINDAP	BIN to Decimal ASCII Conversion	698
DBINP	Conversion to Binary	163
DBK-	Block Data Subtraction	605
DBK+	Block Data Addition	601
DBK-P	Block Data Subtraction	605
DBK+P	Block Data Addition	601
	Block Data Compare	
DBKCMP<	(s1)<(s2)	
	Block Data Compare	
DBKCMP<=	<u>s1</u> ≤ <u>s2</u>	
	Block Data Compare	
DBKCMP<>	<u>(s1)</u> ≠(<u>s2</u>)	
	Block Data Compare	
DBKCIVIP-	(s1) = (s2)	
DBKCMP>	Block Data Compare	
	<u>(s1)>(s2</u>)	
DBKCMP>=	Block Data Compare	
	<u>(s1)≥(s2</u>)	609
DBKCMP <p< td=""><td>Block Data Compare</td><td></td></p<>	Block Data Compare	
	<u>(s1)<(s2)</u>	-
	Block Data Compare	
<=P	(<u>s1</u>)≤(<u>s2</u>)	
	Block Data Compare	
~	$(s_1) \neq (s_2)$	-
DBKCMP=P		
	Block Data Compare	
DBKCMP>P	Cal > Cal	
	Block Data Compare	
>=P	(s1) > (s2)	
-		

Mnemonic	Function	Ref. Page
D		
DBON	Check Specified Bit Status	230
DBONP	Check Specified bit Status	255
DCML	Complement	146
DCMLP	Complement	140
DCMP	Compare	133
DCMPP	Compare	155
DCOS	Electing Point Cosine	181
DCOSP	The cosine	404
DDABIN	Decimal ASCII to BIN Conversion	605
DDABINP		095
DDEC	Decrement	183
DDECP	Decrement	105
DDEG	Electing Point Padian to Degree Conversion	101
DDEGP	The first of the second s	434
DDIV	Division	178
DDIVP		170
DDRVA	Drive to Absolute	537
DDRVI	Drive to Increment	534
DDVIT	Interrupt Positioning	520
DEADD	Electing Boint Addition	462
DEADDP	Floating Foint Addition	403
DEBCD	Floating Point to Scientific Notation	450
DEBCDP	Conversion	459
DEBIN	Scientific Notation to Floating Point	461
DEBINP	Conversion	401
DEC	Decrement	183
DECMP	Electing Point Compare	441
DECMPP	The the termine the termine te	441
DECO	Decode	220
DECOP	Decode	229
DECP	Decrement	183
DEDIV	Electing Point Division	460
DEDIVP		405
DEMOV	Electing Point Move	115
DEMOVP	T loating F on those	440
DEMUL	Electing Point Multiplication	467
DEMULP		407
DENEG	Electing Point Negation	470
DENEGP		517
DESQR	Eleating Point Square Poot	477
DESQRP	rioding Fornt Square Root	-+//
DESTR	Floating Point to Character String	447
DESTRP	Conversion	/
DESUB	Electing Point Subtraction	165
DESUBP	I Wating Form Subtraction	400
DEVAL	Character String to Floating Point	151
DEVALP	Conversion	

Mnemonic	Function	Ref. Page
D		
DEXP	Flasting Deint Fungenent	474
DEXPP	Floating Point Exponent	471
DEZCP		4.40
DEZCPP	Floating Point Zone Compare	443
DFLT		0.50
DFLTP	Conversion to Floating Point	250
DFMOV		
DFMOVP	Fill Move	154
DFROM		
DFROMP	Read from a Special Function Block	381
DGBIN		
DGBINP	Gray Code to Decimal Conversion	569
DGRY		
DGRYP	Decimal to Gray Code Conversion	567
DHCMOV	High Speed Counter Move	596
DHKY	Hexadecimal Input	357
DHOUR	Hour Meter	563
DHSCR	High Speed Counter Reset	275
DHSCS/	High Speed Counter Set/	
DHSCS_I	High Speed Interrupt Counter Set	267
DHSCT	High Speed Counter Compare With Data Table	738
DHSZ	High Speed Counter Zone Compare	279
DHTOS		/
DHTOSP	Hour to Second Conversion	551
DI	Disable Interrupt	120
DINC		404
DINCP	Increment	181
DINT		100
DINTP	Floating Point to Integer Conversion	480
DIS		500
DISP	4-bit Grouping of word Data	508
DIVP	Division	178
DLIMIT	Limit Control	670
DLIMITP		079
DLOGE	Electing Doint Natural Logarithm	470
DLOGEP	Floating Foint Natural Logantinn	475
DLOG10	Electing Point Common Logarithm	475
DLOG10P	Floating Foint Common Logantinn	475
DMEAN	Mean	242
DMEANP		242
DMOV	Move	130
DMOVP	NOVE	159
DMUL	Multiplication	174
DMULP	manphoauon	174
DNEG	Negation	102
DNEGP	regation	192
DOR		197
DORP		107
DPLSR	Acceleration / Deceleration Setup	306
DPLSV	Variable Speed Pulse Output	531
DPLSY	Pulse Y Output	296

Appendix B: Applied Instruction List [by Instruction Type / in Alphabetic Order]	
Appendix B-2 Applied instructions [in alphabetical order]	

31

Mnemonic	Function	Ref. Page	Applied (Data
D		<u>. </u>	Instru
DPRUN	Parallel Rup (Ostal Mada)	202	sfer a
DPRUNP		393	» ت ۵
DRAD	Electing Point Degree to Padian Conversion	402	32
DRADP		492	Pro App
DRCL	Potation Loft with Carry	205	gh S
DRCLP		205	nstruc sing :
DRCR	Potation Right with Carry	202	2)
DRCRP	Rotation Right with Carry	202	22
DRMRD	Read from E2 32PM	427	33
DRMRDP		421	Reg Xtpl
DRMWR	Write to E2 22BM	425	iedIn
DRMWRP		425	on Fruc
DROL	Potation Loft	100	lions litrol)
DROLP		199	24
DROR	Potation Right	106	54
DRORP		190	(FX:
DRVA	Drive to Absolute	537	
DRVI	Drive to Increment	534	F-AL
DSCL	Scaling (Coordinate by Daint Data)	601	DP)
DSCLP	Scaling (Coordinate by Point Data)	691	35
DSCL2		700	35
DSCL2P	Scaling 2 (Coordinate by X / Y Data)	702	and I Fund
DSER	O a such a Data Ota ala	000	upt F
DSERP	Search a Data Stack	323	Cat
DSIN	Floating Doint Sing	400	chin
DSINP	Floating Point Sine	482	Δ
DSORT2	Sort Tabulated Data 2	512	
DSPD	Speed Detection	292	Relat
DSQR	Cruere Deet	240	ions iddre
DSQRP	Square Root	240	nips Ievic
DSTOH	Second to Hour Conversion	EE A	es es
DSTOHP		554	B
DSTR	PIN to Character String Conversion	617	ΞÞ
DSTRP		017	pplie
DSUB	Subtraction	171	d
DSUBP	Subtraction	17.1	List
DSUM	Sum of Active Bite	226	
DSUMP	Sull of Active Bits	230	
DSW	Digital Switch (Thumbwheel Input)	361	
DSWAP	Bute Swee	F10	
DSWAPP	Byte Swap	510	
DSZR	DOG Search Zero Return	518	
DTAN	Electing Doint Tongont	105	
DTANP		400	
DTBL	Batch Data Positioning Mode	523	
DTKY	Ten Key Input	353	
DTO	Write to a Special Eurotian Plack	206	
DTOP		380	
DUTY	Timing Pulse Generation	589	
DVAL	Character String to PIN Conversion	600	
DVALP		022	

Appendix B: Applied Instruction List [by Instruction Type / in Alphabetic Ord	ler]
Appendix B-2 Applied instructions [in alphabetical orde	er]

Mnemonic	Function	Ref. Page
D		I
DVIT	Interrupt Positioning	520
DWSUM	Sum of Word Data	407
DWSUMP	Sum of word Data	497
DXCH	Evolution	157
DXCHP	Exchange	157
DXOR		180
DXORP		109
DZCP	Zone Compare	136
DZCPP		130
DZONE	Zono Control	697
DZONEP		007
DZRN	Zero Return	527
E		•
EI	Enable Interrupt	121
ENCO		
ENCOP	Encode	233
EXTR_IN		576
EXTR_OUT		579
EXTRP_IN	External ROM function	576
EXTRP		F7 0
_OUT		579
F		
FDEL	Deleting Data from Tables	654
FDELP		004
FEND	Main Routine Program End	123
FINS	Inserting Data to Tables	657
FINSP	inserting bata to rubies	001
FLCMD	FX3U-CF-ADP command	787
FLCRT	File create / check	775
FLDEL	File delete / CF card format	779
FLRD	Data read	785
FLSTRD	FX3U-CF-ADP status read	789
FLT	Conversion to Electing Point	250
FLTP		250
FLWR	Data write	781
FMOV		154
FMOVP	Fill Move	154
FOR	Start a FOR / NEXT Loop	128
FROM	Dead from a Creatian Function Diack	201
FROMP	Read from a Special Function Block	381
G		
GBIN		
GBINP	Gray Code to Decimal Conversion	569
GRY		
	Decimal to Grav Code Conversion	567

Mnemonic	Function	Ref. Page
Н		
HEX		
HEXP	ASCII to Hexadecimal Conversion	399
HKY	Hexadecimal Input	357
HOUR	Hour Meter	563
HTOS	Lieur to Second Conversion	554
HTOSP		551
I.		
INC	Increment	101
INCP	Increment	181
INCD	Incremental Drum Sequencer	331
INITER	Initializa ED	770
INITERP		770
INITR	Initializa D and ED	757
INITRP		151
INSTR	Character string search	647
INSTRP	Character string search	047
INT	Electing Doint to Integer Conversion	490
INTP	Floating Point to Integer Conversion	400
IRET	Interrupt Return	117
IST	Initial State	312
IVBWR	Inverter Parameter Block Write	719
IVCK	Inverter Status Check	708
IVDR	Inverter Parameter Write	711
IVMC	Inverter Multi Command	721
IVRD	Inverter Parameter Read	714
IVWR	Inverter Parameter Write	716
L		
LD<	Load Compare s1 < s2	
LD<>	Load Compare $(s1) \neq (s2)$	
LD=	Load Compare (s1) = (s2)	
LD<=	Load Compare (<u>s1</u>)≤(<u>s2</u>)	
LD>=	Load Compare <u>s1</u> ≥ <u>s2</u>	669
LDD<	Load Compare <u>s1</u> < <u>s2</u>	
LDD<>	Load Compare <u>s1</u> ≠ <u>s2</u>	
LDD=	Load Compare $(s1) = (s2)$	
LDD>	Load Compare (s1)>(s2)	
LDD<=		
	Extracting Character String Data from the	637
	Character String Length Detection	631
	Limit Control	679
	Load from ER	744
LUADRE		l i i i i i i i i i i i i i i i i i i i

Appendix B: Applied Instruction List [by Instruction Type / in Alphabetic Order]
Appendix B-2 Applied instructions [in alphabetical order]

31

Applied Instructions (Data Transfer 3)

32

Applied Instructions (High Speed Processing 2)

33

Applied Instructions (Extension File Register Control)

34 Applied Instructions (FX3U-CF-ADP)

35

Interrupt Function and Pulse Catch Function

Α

Relationships
 between devices
 and addresses

В

Applied Instruction List

Mnemonic	Function	Ref. Page
L		
LOGR	Logging D and ED	761
LOGRP		701
М		
MCDE	E2 20CM code	422
MCDEP		432
MEAN	Mean	242
MEANP	i wear	272
MIDR	Random Selection of Character Strings	640
MIDRP		010
MIDW	Random Replacement of Character Strings	643
MIDWP		0.0
MNET	F-16NP / NT communication	419
MNETP		
MOV	Move	139
MOVP		
MTR	Input Matrix	263
MULP	Multiplication	174
Ν		
NEG	Negation	192
NEGP		
NEXT	End a FOR / NEXT Loop	129
0		
OR<	OR Compare <u>s1</u> < <u>s2</u>	
OR<>	OR Compare $(s1) \neq (s2)$	
OR=	OR Compare <u>s1</u> = <u>s2</u>	
OR>	OR Compare s1>s2	
OR<=	OR Compare <u>s1</u> ≤ <u>s2</u>)	
OR>=	OR Compare <u>s1</u> ≥ <u>s2</u>	675
ORD<	OR Compare <u>s1</u> < <u>s2</u>	010
ORD<>	OR Compare <u>s1</u> ≠ <u>s2</u>	
ORD=	OR Compare $(\underline{s1}) = (\underline{s2})$	
ORD>	OR Compare <u>s1</u> > <u>s2</u>	
ORD<=	OR Compare $\underline{s1} \leq \underline{s2}$	
ORD>=	OR Compare $\underline{s1} \ge \underline{s2}$	
Ρ		
PID	PID Control Loop	414
PLSR	Acceleration / Deceleration Setup	306
PLSV	Variable Speed Pulse Output	531
PLSY	Pulse Y Output	296
POP	Shift Last Data Read IFIL O Control	660
POPP		
PR	Print (ASCII Code)	378
PRUN	Parallel Run (Octal Mode)	393
PRUNP		

Mnemonic	Function	Ref. Page
Ρ		
PWM	Pulse Width Modulation	303
R		
RAMP	Ramp Variable Value	343
RBFM	Divided BFM Read	729
RCL	Detation Laft with Corns	205
RCLP	Rotation Left with Carry	
RCR	Potation Right with Corny	202
RCRP	Rotation Right with Carry	
RD3A	Road form Dodicated Apolog Plack	574
RD3AP	Read form Dedicated Analog Block	571
REF	Defreeh	255
REFP	Refresh	200
REFF	Defreeb and Filter Adjust	250
REFFP	Renesh and Filter Adjust	259
RIGHT	Extracting Character String Data From	604
RIGHTP	the Right	034
PMMN		400
PMMNP	F2-32RM monitor	429
RMRD		
RMRDP	Read from F2-32RM	427
RMST	F2-32RM start	424
RMWR		425
RMWRP	Write to F2-32RM	
RND		587
RNDP	Random Number Generation	
ROL		199
ROLP	Rotation Left	
ROR		196
RORP	Rotation Right	
ROTC	Rotary Table Control	346
RS	Serial Communication	390
RS2	Serial Communication 2	411
RWER		765
RWERP	Rewrite to ER	
S		
SAVER	Save to ER	748
SCI		0
SCLP	Scaling (Coordinate by Point Data)	691
SCL2		702 365
SCI 2P	Scaling 2 (Coordinate by X / Y Data)	
SEGD		
SEGDP	Seven Segment Decoder	
SEGI	Seven Segment With Latch	367
SER		507
SERD	Search a Data Stack	323
	Bit Shift Left with Carry	666

Appendix B: Applied Instruction List [by Instruction Type / in Alphabetic Order]
Appendix B-2 Applied instructions [in alphabetical order]

Mnemonic	Function	Ref. Page	
S			
SFR	Bit Shift Right with Carry	664	
SFRD	Shift Deed [E]EQ Control	222	
SFRDP	Shint Read [FIFO Control]	222	
SFRP	Bit Shift Right with Carry	664	
SFTL		210	
SFTLP	Bit Shift Left		
SFTR		208	
SFTRP	Bit Shift Right		
SFWR			
SFWRP	Shift Write [FIFO / FILO Control]	219	
SMOV			
SMOVP	Shift Move	143	
SORT	Sort Tabulated Data	349	
SORT2	Sort Tabulated Data 2	512	
SPD	Speed Detection	292	
SQR			
SORP	Square Root	248	
SRET	Subroutine Return	116	
STMR	Special Timer	337	
STOH			
STOHP	Second to Hour Conversion	554	
STR			
STRP	BIN to Character String Conversion	617	
SUBP	Subtraction	171	
SUM			
SUMP	Sum of Active Bits	236	
SWAP			
SWAPP	Byte Swap	510	
Т		l	
	RTC Data Addition	547	
	RTC Data Compare	541	
	Ten Key Innut	252	
		353	
	Write to a Special Function Block	386	
TOP			
	Read RTC data	557	
TSUB	RTC Data Subtraction	549	
ISUBP			
ITMR	Teaching Timer	334	
TWR	Set RTC data	559	
TWRP			
TZCP	RTC Data Zone Compare	544	
TZCPP	· ·	1	

Mnemonic	Function	Ref. Page
U		
UNI	4 hit Linking of Word Data	506
UNIP	4-bit Linking of word Data	500
V		
VAL	Character String to BIN Conversion	622
VALP		022
VRRD	Volume Read	406
VRRDP		400
VRSC	Volume Scale	409
VRSCP		
W		
WAND	Logical Word AND	185
WANDP		
WBFM	Divided BFM Write	735
WDT	Watchdog Timer Refresh	125
WDTP		
WOR	Logical Word OR	187
WORP	-	
WR3A	Write to Dedicated Analog Block	573
WR3AP		
WSFL	Word Shift Left	216
WSFLP		
WOFR	Word Shift Right	213
WSFRP		
	Sum of Word Data	497
WTOR		
WTORP	WORD to BYTE	500
WXOR		
WXORP	Logical Exclusive OR	189
X		
XCH		
XCHP	Exchange	157
Ζ		
ZCP		100
ZCPP	Zone Compare	136
ZONE		687
ZONEP		
ZPOP	Patch POP of Index Pagister	437
ZPOPP		
ZPUSH	Batch Store of Index Pegister	131
ZPUSHP	Daton Store of Index Register	
ZRN	Zero Return	527
ZRST	Zone Reset	225
ZRSTP		225

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company. However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module.

[Gratis Warranty Term]

The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place. Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.

[Gratis Warranty Range]

- The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
- 2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
 - a) Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
 - b) Failure caused by unapproved modifications, etc., to the product by the user.
 - c) When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
 - d) Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
 - e) Relay failure or output contact failure caused by usage beyond the specified Life of contact (cycles).
 - f) Failure caused by external irresistible forces such as fires or abnormal voltages, and failure caused by force majeure such as earthquakes, lightning, wind and water damage.
 - g) Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
 - h) Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production

Warranty

 Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued.

Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.

2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation of damages caused by any cause found not to be the responsibility of Mitsubishi, loss in opportunity, lost profits incurred to the user or third person by Failures of Mitsubishi products, special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products, replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

6. Product application

- In using the Mitsubishi MELSEC programmable logic controller, the usage conditions shall be that the application will not lead to a major accident even if any problem or fault should occur in the programmable logic controller device, and that backup and fail-safe functions are systematically provided outside of the device for any problem or fault.
- 2) The Mitsubishi programmable logic controller has been designed and manufactured for applications in general industries, etc. Thus, applications in which the public could be affected such as in nuclear power plants and other power plants operated by respective power companies, and applications in which a special quality assurance system is required, such as for Railway companies or Public service purposes shall be excluded from the programmable logic controller applications.

In addition, applications in which human life or property that could be greatly affected, such as in aircraft, medical applications, incineration and fuel devices, manned transportation, equipment for recreation and amusement, and safety devices, shall also be excluded from the programmable logic controller range of applications.

However, in certain cases, some applications may be possible, providing the user consults their local Mitsubishi representative outlining the special requirements of the project, and providing that all parties concerned agree to the special circumstances, solely at the users discretion.

Revised History

Date created	Revision	Description
1/2009	Α	First edition
7/2009	В	 Instructions was added: INV, MEP, MEF, RS, FLCRT, FLDEL, FLWR, FLRD, FLCMD, FLSTRD The following instructions are provided in the FX3G series. RD3A, RD3AP, WR3A, WR3AP
2/2010	С	Manual name of a related manual was changed.
4/2010	D	 Operands in sequence instructions was changed into array type. Appendix B was added.
9/2010	E	Applicable device lists were updated. (The operand type sequence was changed.)Errors are corrected.
1/2011	F	 Instructions was added: IVMC The following instructions are provided in the FX3U and FX3UC series. VRRD, VRSC
7/2011	G	 FBD language was added. The following instructions are provided in the FX3G series. IVMC
2/2012	Н	FX3GC was added.
5/2012	J	 Instructions was added: DHSCS_I Cautions on the DHOUR instruction are added.
5/2013	К	 FX3s was added. Instructions was added: ADPRW, ASC
9/2013	L	FX3G-485-BD-RJ connection was added.

FXCPU

Structured Programming Manual

Basic & Applied Instruction

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN HIMEJI WORKS: 840, CHIYODA CHO, HIMEJI, JAPAN

MODEL	FX-KP-SM-E
MODEL CODE	09R926